
Math 242 Exam #4 Key (Fall 2016)

1 For any (x, y, z) ∈ D we have 0 ≤ z ≤ 9−x2. We can evaluate
˝

D
dV in the order dzdydx

(other orders are possible). See the figure below.
To determine the limits of integration for y and x, project D onto the xy-plane to obtain

the region R shown at right in the figure. There it can be seen that if (x, y) ∈ R, then
0 ≤ y ≤ 2− x for 0 ≤ x ≤ 2, and so the limits of integration for y will be 0 and 2− x, and the
limits of integration for x will be 0 and 2. We obtain

V(D) =

˚
D

dV =

ˆ 2

0

ˆ 2−x

0

ˆ 9−x2

0

dzdydx

=

ˆ 2

0

ˆ 2−x

0

(9− x2) dydx =

ˆ 2

0

[
9y − x2y

]2−x
0

dx

=

ˆ 2

0

[
9(2− x)− x2(2− x)

]
dx =

[
1

4
x4 − 2

3
x3 − 9

2
x2 + 18x

]2
0

=
50

3
.

It can be instructive to try determining the volume of D by integrating in the orders dzdxdy
and dydzdx.
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2 On the yz-plane the region of integration is

R =
{

(y, z) : 0 ≤ z ≤
√

4− y2, −2 ≤ y ≤ 2
}
,

the top half of a circular disc of radius 2:
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This region is also expressible as

R =
{

(y, z) : −
√

4− z2 ≤ y ≤
√

4− z2, 0 ≤ z ≤ 2
}
,



2

and so the integral becomes ˆ 1

0

ˆ 2

0

ˆ √4−z2
−
√
4−z2

dydzdx.

To evaluate the integral let z = 2 sin θ, so that dz = 2 cos θ dθ, and we obtain

ˆ 1

0

ˆ 2

0

ˆ √4−z2
−
√
4−z2

dydzdx =

ˆ 1

0

(ˆ π/2

0

2
√

4− 4 sin2 θ · 2 cos θ dθ

)
dx

=

ˆ 1

0

(
8

ˆ π/2

0

cos2 θ dθ

)
dx = 8

ˆ 1

0

ˆ π/2

0

1 + cos 2θ

2
dθ dx

= 8

ˆ 1

0

[
1

2
θ +

sin 2θ

4

]π/2
0

dx = 2π.

3 The mass m of the cone is

m =

ˆ 2π

0

ˆ 6

0

ˆ 6−r

0

(8− z)rdzdrdθ =

ˆ 2π

0

ˆ 6

0

(
30r − 2r2 − 1

2
r3
)
drdθ

=

ˆ 2π

0

[
15r2 − 2

3
r3 − 1

8
r4
]6
0
dθ =

ˆ 2π

0

234 dθ = 468π.

4a The region D is shown below.
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4b The volume V is given by ˆ 2π

0

ˆ 5

0

ˆ 25

r2
r dzdrdθ.

The reasoning is as follows. In cylindrical coordinates the equation of the paraboloid becomes

z = x2 + y2 = (r cos θ)2 + (r sin θ)2 = r2,

while the equation of the plane remains z = 25.
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Figure 1

The intersection of z = 25 and z = x2 + y2 is the set {(x, y, 25) : x2 + y2 = 25}, which is a
curve that projects onto the xy-plane as a circle of radius 5 centered at the origin. Thus the
projection of D onto the xy-plane is a region R that is a closed disc with radius 5 centered at
the origin, shown at left in Figure 1. A point in R has a θ-coordinate value ranging from θ = 0
to θ = 2π; that is, if (r, θ) ∈ R, then 0 ≤ θ ≤ 2π.

If we fix θ ∈ [0, 2π], then a point (r, θ) ∈ R must lie on the line segment joining o = (0, 0)
and a = (5, θ), shown at right in Figure 1. That is, given θ ∈ [0, 2π], a point (r, θ) ∈ R can
have r-coordinate value ranging from r = 0 to r = 5, so that 0 ≤ r ≤ 5.

Finally, fixing θ ∈ [0, 2π] and r ∈ [0, 5], we consider the limits on z in order for (r, θ, z) to
be a point in D. We find z must be such that (r, θ, z) is above the paraboloid z = r2 and below
z = 25, so r2 ≤ z ≤ 25.

Thus the set

{(r, θ, z) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 5, r2 ≤ z ≤ 25}
is D in cylindrical coordinates.

4c The volume V is

V =

ˆ 2π

0

ˆ 5

0

ˆ 25

r2
r dzdrdθ

=

ˆ 2π

0

ˆ 5

0

(25r − r3) drdθ =

ˆ 2π

0

[
25

2
r2 − 1

4
r4
]5
0

dθ

=

ˆ 2π

0

625

4
dθ =

625

4
· 2π =

625

2
π.

5 Let (x, y) ∈ C. A vector parallel to C at the point (x, y) would be 〈y,−x〉, whereas
F(x, y) = 〈y, x〉. So F(x, y) is tangent to C at (x, y) if F(x, y) = c〈y,−x〉 for some c 6= 0. That
is, 〈y, x〉 = c〈y,−x〉, giving y = cy and x = −cx. From y = cy there are two possibilities:
c = 1 or y = 0. If c = 1, then x = −x results, and hence x = 0. Then, since x2 + y2 = 1, it
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follows that y = ±1, and we obtain two points: (0,±1). If y = 0, then x2 + y2 = 1 implies that
x = ±1, and we obtain another two points: (±1, 0). That is, F is tangent to C at the four
points (±1, 0), (0,±1).

F(x, y) is normal to C at (x, y) if F(x, y) · 〈y,−x〉 = 0, which yields y2 − x2 = 0. Adding
this equation to x2 + y2 = 1 gives 2y2 = 1, or y = ±1/

√
2. On the other hand y2 = x2 implies

|x| = |y|, and so we obtain four points:(
1√
2
, 1√

2

)
,
(

1√
2
,− 1√

2

)
,
(
− 1√

2
, 1√

2

)
,
(
− 1√

2
,− 1√

2

)
.

Note: this problem can also be resolved by working with a parametrization for C, such as
the function r(t) = 〈cos t, sin t〉.

6a A fine parametrization would be

r(t) = 〈0,−3, 2〉(1− t) + 〈1,−7, 4〉t = 〈t,−4t− 3, 2t+ 2〉, t ∈ [0, 1].

6b We have r′(t) = 〈1,−4, 2〉, so that ‖r′(t)‖ =
√

21. Now,ˆ
C

(xz − y2) ds =
√

21

ˆ 1

0

[
t(2t+ 2)− (−4t− 3)2

]
dt

= −
√

21

ˆ 1

0

(14t2 + 22t+ 9) dt = −74
√

21

3
.

7 Making the substitution u = t2 − 1 along the way, we haveˆ
C

F · dr =

ˆ 1

0

F(r(t)) · r′(t) dt =

ˆ 1

0

F(t2, t3) · 〈2t, 3t2〉 dt

=

ˆ 1

0

〈et2−1, t5〉 · 〈2t, 3t2〉 dt =

ˆ 1

0

(2tet
2−1 + 3t7) dt

=

ˆ 1

0

2tet
2−1 dt+

ˆ 1

0

3t7 dt =

ˆ 0

−1
eu du+

3

8

[
t8
]1
0

=
11e− 8

8e
.

8 Here we have x(t) = 2 cos t and y(t) = 2 sin t, so x′(t) = −2 sin t and y′(t) = 2 cos t, and
then ˆ

C

F · n =

ˆ 2π

0

[
f(r(t))y′(t)− g(r(t))x′(t)

]
dt

=

ˆ 2π

0

[
f(2 cos t, 2 sin t)(2 cos t)− g(2 cos t, 2 sin t)(−2 sin t)

]
dt

=

ˆ 2π

0

[
(2 sin t− 2 cos t)(2 cos t)− (2 cos t)(−2 sin t)

]
dt

= 4

ˆ 2π

0

2 cos t sin t dt− 4

ˆ 2π

0

cos2 t dt
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=

ˆ 2π

0

sin(2t) dt− 4

ˆ 2π

0

1 + cos(2t)

2
dt

= 4

[
−1

2
cos(2t)

]2π
0

− 2

[
t+

1

2
sin(2t)

]2π
0

= 4 · 0− 2 · 2π = −4π.

Thus there is a net flux of 4π into the region enclosed by C.


