
Math 242 Exam #3 Key (Fall 2016)

1 The surface Σ is given by F (x, y, z) = 0 for F (x, y, z) = xy sin z − 1. We have

∇F (x, y, z) = 〈y sin z, x sin z, xy cos z〉 ,

and the equation of the tangent plane at
(
− 2,−1, 5π

6

)
is given by

0 = ∇F
(
− 2,−1, 5π

6

)
·
〈
x+ 2, y + 1, z − 5π

6

〉
=
〈
− 1

2
,−1,

√
3
〉
·
〈
x+ 2, y + 1, z − 5π

6

〉
,

or

3x+ 6y − 6z
√

3 = −12− 5π
√

3.

2 First we gather our partial derivatives:

fx(x, y) = −3x2 + 4y, fy(x, y) = 4x− 4y,

fxx(x, y) = −6x, fyy(x, y) = −4,

fxy(x, y) = 4.

At no point does fx or fy fail to exist, so we search for any (x, y) for which fx(x, y) = fy(x, y) =
0. This yields the system {

−3x2 + 4y = 0
4x − 4y = 0

The solutions are (0, 0) and
(
4
3
, 4
3

)
, which are the critical points. Defining Φ = fxxfyy − f 2

xy, we
construct a table:

(x, y) fxx fyy fxy Φ Conclusion

(0, 0) 0 0 4 −16 Saddle Point(
4
3
, 4
3

)
−8 −4 4 16 Local Maximum

3 This is problem 13.8.59 in the textbook (also this was done in class). The point on the
curve is

(
1
2
, 1
4

)
, and the point on the line is

(
7
8
,−1

8

)
.

4 Set g(x, y) = 2(x− 1)2 + 4(y− 1)2− 1, so the constraint is g(x, y) = 0. Find all (x, y) ∈ R2

for which there can be found some λ ∈ R such that the system
fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)

g(x, y) = 0

has a solution. Explicitly the system is
2 = 4λ(x− 1)

1 = 8λ(y − 1)

1 = 2(x− 1)2 + 4(y − 1)2
(1)



2

Clearly no solution can have x = 1, so the 1st equation can be written as λ = 1
2(x−1) . Substitute

this into the 2nd equation to get

1 =
8(y − 1)

2(x− 1)
⇒ x = 4y − 3.

Put this last result into the 3rd equation:

2[(4y − 3)− 1]2 + 4(y − 1)2 = 1 ⇒ 36(y − 1)2 = 1 ⇒ |y − 1| = 1

6
⇒ y = 1± 1

6
,

so y = 5
6
, 7
6
. Since x = 4y − 3, we obtain two points:

(
1
3
, 5
6

)
and

(
5
3
, 7
6

)
. We evaluate f(x, y) =

2x+ y + 10 at these points: f
(
1
3
, 5
6

)
= 11.5 and f

(
5
3
, 7
6

)
= 14.5. Therefore the minimum values

of f(x, y) subject to the constraint g(x, y) = 0 is 11.5 at
(
1
3
, 5
6

)
, and the maximum value is 14.5

at
(
5
3
, 7
6

)
.

5 By Fubini’s Theorem, making the substitution u = 1 + xy in the inner integral,
¨
R

x

(1 + xy)2
dA =

ˆ 4

0

ˆ 3

1

x

(1 + xy)2
dydx =

ˆ 4

0

ˆ 3x+1

x+1

1

u2
dudx

=

ˆ 4

0

(
1

x+ 1
− 1

3x+ 1

)
dx

=
[

ln(x+ 1)− 1
3

ln(3x+ 1)
]4
0

= ln
(

5
3√13

)
.

6 First determine where the curves g(x) = x2 and h(x) = 8− x2 intersect:

g(x) = h(x) ⇒ x2 = 8− x2 ⇒ x2 = 4 ⇒ x = ±2.

Since R is in Quadrant I, only x = 2 is relevant, and this yields the intersection point (2, 4).
Thus R is as shown below. In R we have x2 ≤ y ≤ 8− x2 for each 0 ≤ x ≤ 2, and so

x

y

1 2 3

2

4

6

8

R

h

g

(2, 4)

¨
R

(x+ y) dA =

ˆ 2

0

ˆ 8−x2

x2
(x+ y) dydx =

ˆ 2

0

[
xy +

1

2
y2
]8−x2
x2

dx

=

ˆ 2

0

[(
x(8− x2) +

1

2
(8− x2)2

)
−
(
x3 +

1

2
(x2)2

)]
dx



3

=

ˆ 2

0

(
32 + 8x− 8x2 − 2x3

)
dx =

152

3
.

7 On the xy-plane we have z = 0, and so the nonplanar boundary of the solid is given on the
xy-plane as 1− y − x2 = 0, or y = 1− x2. Thus the part of the solid lying on the xy-plane is
the region R shown below:

x

y

1

1

R

At each (x, y) ∈ R the height of the solid is given by h(x, y) = 1− y − x2, and so

Volume =

¨
R

h =

ˆ 1

0

ˆ 1−x2

0

(1− y − x2)dydx =

ˆ 1

0

(
1
2
− x2 + 1

2
x4
)
dx =

1

15
.

8 By definition,ˆ ∞
0

e−x−ydy = lim
t→∞

ˆ t

0

e−x−ydy = lim
t→∞

e−x
ˆ t

0

e−ydy = lim
t→∞

e−x
(
1− e−t

)
= e−x,

and so ˆ ∞
0

ˆ ∞
0

e−x−ydydx =

ˆ ∞
0

e−xdx = lim
t→∞

ˆ t

0

e−xdx = lim
t→∞

(
1− e−t

)
= 1.

9 Find where the paraboloids p(x, y) = x2 + y2 and q(x, y) = 2− x2 − y2 intersect, which is
to say find (x, y) for which p(x, y) = q(x, y):

p(x, y) = q(x, y) ⇒ x2 + y2 = 2− x2 − y2 ⇒ x2 + y2 = 1.

This occurs at z = 1, since z = p(x, y) = x2 + y2 = 1. That is, the paraboloids intersect at
the circle in R3 given by x2 + y2 = 1 and z = 1. Project this circle down to the corresponding
circle C in the xy-plane, and let R be the region inside C. For each (x, y) ∈ R the height of
the solid is

h(x, y) =
∣∣p(x, y)− q(x, y)

∣∣ = q(x, y)− p(x, y) = (2− x2 − y2)− (x2 + y2) = 2− 2x2 − 2y2.

Using polar coordinates, we find that

Volume =

¨
R

h(x, y) dA =

ˆ 2π

0

ˆ 1

0

h(r cos θ, r sin θ)r drdθ

=

ˆ 2π

0

ˆ 1

0

(2− 2r2)r drdθ =

ˆ 2π

0

[
r2 − 1

2
r4
]1
0
dθ =

ˆ 2π

0

1

2
dθ = π.
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10 The region
S = {(r, θ) : 0 ≤ r ≤ 2 + sin θ and 0 ≤ θ ≤ 2π}

in the rθ-plane corresponds to the region R in the xy-plane enclosed by the curve r = 2 + sin θ
shown below. The area of R is

A(R) =

¨
R

dA =

ˆ 2π

0

ˆ 2+sin θ

0

r drdθ =

ˆ 2π

0

(
2 + 2 sin θ + 1

2
sin2 θ

)
dθ.

Using the identity sin2 x = 1
2
(1− cos 2x) yields

A(R) =

ˆ 2π

0

(
9
4

+ 2 sin θ − 1
4

cos 2θ
)
dθ =

ˆ 2π

0

9

4
dθ =

9

2
π.

x

y

1 2 3

1

2

3

R


