1 The surface Σ is given by F(x, y, z) = 0 for $F(x, y, z) = xy \sin z - 1$. We have

 $\nabla F(x, y, z) = \langle y \sin z, x \sin z, xy \cos z \rangle,$

and the equation of the tangent plane at $\left(-2, -1, \frac{5\pi}{6}\right)$ is given by

$$0 = \nabla F\left(-2, -1, \frac{5\pi}{6}\right) \cdot \left\langle x + 2, y + 1, z - \frac{5\pi}{6} \right\rangle = \left\langle -\frac{1}{2}, -1, \sqrt{3} \right\rangle \cdot \left\langle x + 2, y + 1, z - \frac{5\pi}{6} \right\rangle,$$

or

$$3x + 6y - 6z\sqrt{3} = -12 - 5\pi\sqrt{3}.$$

2 First we gather our partial derivatives:

$$f_x(x,y) = -3x^2 + 4y, f_y(x,y) = 4x - 4y, f_{xx}(x,y) = -6x, f_{yy}(x,y) = -4, f_{xy}(x,y) = 4.$$

At no point does f_x or f_y fail to exist, so we search for any (x, y) for which $f_x(x, y) = f_y(x, y) = 0$. This yields the system

$$\begin{cases} -3x^2 + 4y = 0\\ 4x - 4y = 0 \end{cases}$$

The solutions are (0,0) and $(\frac{4}{3},\frac{4}{3})$, which are the critical points. Defining $\Phi = f_{xx}f_{yy} - f_{xy}^2$, we construct a table:

(x, y)	f_{xx}	f_{yy}	f_{xy}	Φ	Conclusion
(0, 0)	0	0	4	-16	Saddle Point
$\left(\frac{4}{3},\frac{4}{3}\right)$	-8	-4	4	16	Local Maximum

3 This is problem 13.8.59 in the textbook (also this was done in class). The point on the curve is $(\frac{1}{2}, \frac{1}{4})$, and the point on the line is $(\frac{7}{8}, -\frac{1}{8})$.

4 Set $g(x,y) = 2(x-1)^2 + 4(y-1)^2 - 1$, so the constraint is g(x,y) = 0. Find all $(x,y) \in \mathbb{R}^2$ for which there can be found some $\lambda \in \mathbb{R}$ such that the system

$$\begin{cases} f_x(x,y) = \lambda g_x(x,y) \\ f_y(x,y) = \lambda g_y(x,y) \\ g(x,y) = 0 \end{cases}$$

has a solution. Explicitly the system is

$$\begin{cases} 2 = 4\lambda(x-1) \\ 1 = 8\lambda(y-1) \\ 1 = 2(x-1)^2 + 4(y-1)^2 \end{cases}$$
(1)

Clearly no solution can have x = 1, so the 1st equation can be written as $\lambda = \frac{1}{2(x-1)}$. Substitute this into the 2nd equation to get

$$1 = \frac{8(y-1)}{2(x-1)} \Rightarrow x = 4y - 3.$$

Put this last result into the 3rd equation:

$$2[(4y-3)-1]^2 + 4(y-1)^2 = 1 \implies 36(y-1)^2 = 1 \implies |y-1| = \frac{1}{6} \implies y = 1 \pm \frac{1}{6},$$

so $y = \frac{5}{6}, \frac{7}{6}$. Since x = 4y - 3, we obtain two points: $(\frac{1}{3}, \frac{5}{6})$ and $(\frac{5}{3}, \frac{7}{6})$. We evaluate f(x, y) = 2x + y + 10 at these points: $f(\frac{1}{3}, \frac{5}{6}) = 11.5$ and $f(\frac{5}{3}, \frac{7}{6}) = 14.5$. Therefore the minimum values of f(x, y) subject to the constraint g(x, y) = 0 is 11.5 at $(\frac{1}{3}, \frac{5}{6})$, and the maximum value is 14.5 at $(\frac{5}{3}, \frac{7}{6})$.

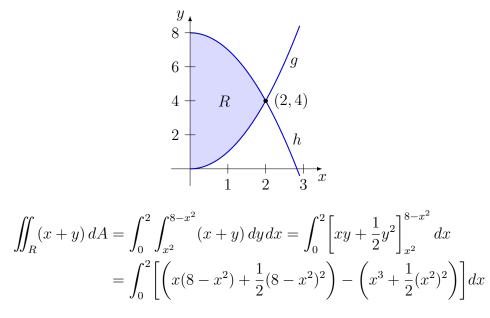
5 By Fubini's Theorem, making the substitution u = 1 + xy in the inner integral,

$$\iint_{R} \frac{x}{(1+xy)^{2}} dA = \int_{0}^{4} \int_{1}^{3} \frac{x}{(1+xy)^{2}} dy dx = \int_{0}^{4} \int_{x+1}^{3x+1} \frac{1}{u^{2}} du dx$$
$$= \int_{0}^{4} \left(\frac{1}{x+1} - \frac{1}{3x+1}\right) dx$$
$$= \left[\ln(x+1) - \frac{1}{3}\ln(3x+1)\right]_{0}^{4} = \ln\left(\frac{5}{\sqrt[3]{13}}\right).$$

6 First determine where the curves $g(x) = x^2$ and $h(x) = 8 - x^2$ intersect:

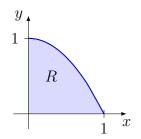
$$g(x) = h(x) \Rightarrow x^2 = 8 - x^2 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2.$$

Since R is in Quadrant I, only x = 2 is relevant, and this yields the intersection point (2, 4). Thus R is as shown below. In R we have $x^2 \le y \le 8 - x^2$ for each $0 \le x \le 2$, and so



$$= \int_0^2 \left(32 + 8x - 8x^2 - 2x^3\right) dx = \frac{152}{3}.$$

7 On the xy-plane we have z = 0, and so the nonplanar boundary of the solid is given on the xy-plane as $1 - y - x^2 = 0$, or $y = 1 - x^2$. Thus the part of the solid lying on the xy-plane is the region R shown below:



At each $(x, y) \in R$ the height of the solid is given by $h(x, y) = 1 - y - x^2$, and so

Volume =
$$\iint_R h = \int_0^1 \int_0^{1-x^2} (1-y-x^2) dy dx = \int_0^1 \left(\frac{1}{2} - x^2 + \frac{1}{2}x^4\right) dx = \frac{1}{15}$$

8 By definition,

$$\int_0^\infty e^{-x-y} dy = \lim_{t \to \infty} \int_0^t e^{-x-y} dy = \lim_{t \to \infty} e^{-x} \int_0^t e^{-y} dy = \lim_{t \to \infty} e^{-x} \left(1 - e^{-t}\right) = e^{-x},$$

and so

$$\int_0^\infty \int_0^\infty e^{-x-y} dy \, dx = \int_0^\infty e^{-x} dx = \lim_{t \to \infty} \int_0^t e^{-x} dx = \lim_{t \to \infty} \left(1 - e^{-t} \right) = 1.$$

9 Find where the paraboloids $p(x, y) = x^2 + y^2$ and $q(x, y) = 2 - x^2 - y^2$ intersect, which is to say find (x, y) for which p(x, y) = q(x, y):

$$p(x,y) = q(x,y) \Rightarrow x^2 + y^2 = 2 - x^2 - y^2 \Rightarrow x^2 + y^2 = 1.$$

This occurs at z = 1, since $z = p(x, y) = x^2 + y^2 = 1$. That is, the paraboloids intersect at the circle in \mathbb{R}^3 given by $x^2 + y^2 = 1$ and z = 1. Project this circle down to the corresponding circle C in the xy-plane, and let R be the region inside C. For each $(x, y) \in R$ the height of the solid is

$$h(x,y) = |p(x,y) - q(x,y)| = q(x,y) - p(x,y) = (2 - x^2 - y^2) - (x^2 + y^2) = 2 - 2x^2 - 2y^2.$$

Using polar coordinates, we find that

Volume =
$$\iint_R h(x, y) \, dA = \int_0^{2\pi} \int_0^1 h(r \cos \theta, r \sin \theta) r \, dr \, d\theta$$

= $\int_0^{2\pi} \int_0^1 (2 - 2r^2) r \, dr \, d\theta = \int_0^{2\pi} \left[r^2 - \frac{1}{2} r^4 \right]_0^1 d\theta = \int_0^{2\pi} \frac{1}{2} \, d\theta = \pi.$

10 The region

$$S = \{(r, \theta) : 0 \le r \le 2 + \sin \theta \text{ and } 0 \le \theta \le 2\pi\}$$

in the $r\theta$ -plane corresponds to the region R in the xy-plane enclosed by the curve $r = 2 + \sin \theta$ shown below. The area of R is

$$\mathcal{A}(R) = \iint_{R} dA = \int_{0}^{2\pi} \int_{0}^{2+\sin\theta} r \, dr \, d\theta = \int_{0}^{2\pi} \left(2 + 2\sin\theta + \frac{1}{2}\sin^{2}\theta\right) d\theta.$$

Using the identity $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ yields

$$\mathcal{A}(R) = \int_{0}^{2\pi} \left(\frac{9}{4} + 2\sin\theta - \frac{1}{4}\cos 2\theta\right) d\theta = \int_{0}^{2\pi} \frac{9}{4} d\theta = \frac{9}{2}\pi.$$