MATH 242 ExaM #3 KEY (FALL 2016)

1 The surface ¥ is given by F(x,y,2) =0 for F(x,y,z) = zysinz — 1. We have
VF(z,y,z) = (ysin z,xsin z, xy cos z) ,
and the equation of the tangent plane at ( —-2,—1, %) is given by
0:VF(—2,—1,%7T)-<x+2,y+1,z—%> :<—%,—1,\/§>-<x+2,y+1,z—% ,

or

3z 4 6y — 62v/3 = —12 — 57V/3.

2 First we gather our partial derivatives:

fm(x7y>:_3x2+4yv fy<x7y) :4I—4y,
.f:c:r:(may) = _6$7 fyy(x7y) = _47
fay(z,y) = 4.

At no point does f, or f, fail to exist, so we search for any (z,y) for which f,(z,y) = f,(z,y) =
0. This yields the system
=322 4+ 4y =0
dr — 4y =0
The solutions are (0,0) and (%, %), which are the critical points. Defining ® = f,, f,, — §y, we

construct a table:

Y) | fow | foy | oy | @ Conclusion
0)| 0| 0| 4 |-16| Saddle Point
3) | —8|—4| 4 | 16 | Local Maximum

3 This is problem 13.8.59 in the textbook (also this was done in class). The point on the

curve is (3, 1), and the point on the line is (£, —31).

4 Set g(z,y) =2(x —1)> +4(y — 1)*> — 1, so the constraint is g(z,y) = 0. Find all (z,y) € R?
for which there can be found some A € R such that the system

has a solution. Explicitly the system is
2=4Nz —1)

1=8\(y — 1) O
1=2(z—1)* 4+ 4(y — 1)?
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Clearly no solution can have x = 1, so the 1st equation can be written as A\ = ﬁ Substitute
this into the 2nd equation to get

8(y — 1)
2(x —1)

Put this last result into the 3rd equation:

1= r =4y — 3.

1 1
24y —3) — 1P +4(y—-12*=1 = 36(y—10°*=1 = |y—1|=6 = y=1=+z,

SOy = 6, 6 Since x = 4y — 3, we obtain two points: (%, %) and (g, %) We evaluate f(x,y) =
2z 4+ y + 10 at these points: f(3, 6) =11.5 and f(3, 6) = 14.5. Therefore the minimum values
of f(x,y) subject to the constraint g(z,y) = 01is 11.5 at ( ) and the maximum value is 14.5

at (5 (7),)

5 By Fubini’s Theorem, making the substitution « = 1 + xy in the inner integral,

3z+1
// // dyd:c—// —dudq:
(14 zy)? 1—i—xy
1
:/ dz
0 x+1 3z +1

= [+ 1)~ $taga + 1] = ()

6 First determine where the curves g(x) = 2 and h(z) = 8 — z? intersect:
g(x) =h(z) = 2°=8-2" = 2°=4 = z=42

Since R is in Quadrant I, only x = 2 is relevant, and this yields the intersection point (2,4).
Thus R is as shown below. In R we have 22 <y < 8 — 22 for each 0 < 2 < 2, and so

Y,




2 152
:/ (32+8x—8x2—2x3)dae:i.
0

7 On the zy-plane we have z = 0, and so the nonplanar boundary of the solid is given on the
ry-plane as 1 —y — 22 = 0, or y = 1 — 22. Thus the part of the solid lying on the xy-plane is
the region R shown below:
Y,
1 -

T

1 }

At each (z,y) € R the height of the solid is given by h(z,y) =1 —y — 22, and so

1 pl—a? 1
1
Volume—//h —/ / (1—y—x2)dydx—/ (-2 + 1Y) do = —.
R o Jo 0 15

8 By definition,

00 t t
/ e " Yy = lim [ e " Ydy = lim ex/ e Vdy=lme*(1—e")=e",
0 0

t—o0 0 t—o0 t—o0
and so
o0 ) o0 t
/ / e " dydx = / e “dr = lim e “dr = lim (1 — e_t) =1.
0 0 0 t—o0 0 t—o0

9 Find where the paraboloids p(z,y) = z* + y* and ¢(x,y) = 2 — 22 — y? intersect, which is
to say find (z,y) for which p(z,y) = q(z,y):

plz,y) =q(z,y) = *+y’=2—-2"-y* = 2+y* =1

This occurs at z = 1, since z = p(z,y) = 2> + y*> = 1. That is, the paraboloids intersect at
the circle in R? given by 22 + y? = 1 and z = 1. Project this circle down to the corresponding
circle C' in the zy-plane, and let R be the region inside C. For each (z,y) € R the height of
the solid is

h(z,y) = |p(z,y) — qlz,y)| = q(z,y) —p(z,y) = 2 —2* — ") — (2" + ") = 2 — 22" — 2",

Using polar coordinates, we find that

2m 1
Volume—//h(x,y) dA—/ / h(r cos @, rsin0)r drdf
R o Jo

27 1 27 1 27 1
= 2 — 21 rdrdf = r2— L4 qp = —df = .
2
0 0 0 0 0o 2



10 The region

S={(r,0):0<r<2+sinf and 0 <0 < 2r}
in the ré-plane corresponds to the region R in the xy-plane enclosed by the curve r = 2 +sin 6
shown below. The area of R is

2+sin 0 27
// dA = / / rdrd@-/ (2+281n9+ sin 0)d9

Using the identity sin® x = — cos 2x) yields

1
2

. . 9 9
+281H9—ZC0829)d9: ZdG_Q

0




