1 There exist precisely two vectors that fit the bill: $7 \mathbf{u}=\langle 14,-35\rangle$ and $-7 \mathbf{u}=\langle-14,35\rangle$.

2 The magnitude of the force of gravity is given by mass times acceleration, or in this case 980 N , and so the force vector is $\mathbf{F}=\langle 0,-980\rangle$. The picture is thus:

Here $\mathbf{v}=\langle\sqrt{3}, 1\rangle$ is a vector parallel to the surface of the ramp. The component of \mathbf{F} parallel to the surface of the ramp, $\mathbf{F}_{\|}$, is thus parallel to \mathbf{v}. We have

$$
\mathbf{F}_{\|}=\operatorname{proj}_{\mathbf{v}} \mathbf{F}=\left(\frac{\mathbf{F} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=-245\langle\sqrt{3}, 1\rangle
$$

The component of \mathbf{F} perpendicular to the ramp, \mathbf{F}_{\perp}, must be such that $\mathbf{F}_{\|}+\mathbf{F}_{\perp}=\mathbf{F}$, and so

$$
\mathbf{F}_{\perp}=\mathbf{F}-\mathbf{F}_{\|}=\langle 245 \sqrt{3},-735\rangle=245\langle\sqrt{3},-3\rangle
$$

3 Let $p=(1,2,3), q=(4,7,1)$, and $r=(x, y, 2)$. We need $\overrightarrow{p r}$ to be parallel to $\overrightarrow{p q}$. That is, we need $\overrightarrow{p r}=k(\overrightarrow{p q})$ for some $k \neq 0$. Since $\overrightarrow{p r}=\langle x-1, y-2,-1\rangle$ and $\overrightarrow{p q}=\langle 3,5,-2\rangle$, it follows that we need

$$
\langle x-1, y-2,-1\rangle=\langle 3 k, 5 k,-2 k\rangle .
$$

This in particular requires that $-2 k=-1$, or $k=1 / 2$. Now,

$$
x-1=3 k \Rightarrow x-1=\frac{3}{2} \Rightarrow x=\frac{5}{2}
$$

and

$$
y-2=5 k \Rightarrow y-2=\frac{5}{2} \Rightarrow y=\frac{9}{2} .
$$

4a Each of the points O, P, and Q are a distance of 2 from the others, and so the spheres each have radius. The sphere centered at C is shown to be symmetrically placed atop the lower three spheres, and so C is a distance of 2 from O, P, and Q. Thus C, O, P, and Q form a tetrahedron with edges of length 2 , and so C must lie directly over the geometric center T of the triangle $\triangle O P Q$.

Now, symmetry demands that T lie on the x-axis and so have coordinates $(x, 0,0)$. Symmetry also demands that $d(T, Q)=d(T, P)=d(T, O)$, which solves to give $x=2 / \sqrt{3}$, and so $T=\left(\frac{2}{\sqrt{3}}, 0,0\right)$. Since C lies directly above T, we have $C=\left(\frac{2}{\sqrt{3}}, 0, z\right)$ for some $z>0$. This, together with the fact that $d(C, O)=2$, solves to give $z=\frac{2 \sqrt{6}}{3}$, and therefore $C=\left(\frac{2}{\sqrt{3}}, 0, \frac{2 \sqrt{6}}{3}\right)$.

4b $\quad \mathbf{r}_{P Q}=\overrightarrow{P Q}=\langle 0,2,0\rangle$ and

$$
\mathbf{r}_{P C}=\overrightarrow{P C}=\left\langle\frac{2}{\sqrt{3}}-\sqrt{3}, 1, \frac{2 \sqrt{2}}{3}\right\rangle=\left\langle-\frac{1}{\sqrt{3}}, 1, \frac{2 \sqrt{2}}{3}\right\rangle
$$

5a $\quad\|\mathbf{u}\|=\sqrt{2^{2}+1^{2}+9^{2}}=\sqrt{86}$ and $\|\mathbf{v}\|=\sqrt{2^{2}+5^{2}+3^{2}}=\sqrt{38}$. Now,

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{28}{\sqrt{86} \sqrt{38}} \Rightarrow \theta=\cos ^{-1}\left(\frac{14}{\sqrt{817}}\right) \approx 60.67^{\circ}
$$

5b We have

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\frac{14}{19}\langle-2,-5,3\rangle .
$$

6 The area of the parallelogram is

$$
\|\mathbf{u} \times \mathbf{v}\|=\left\|\left|\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
-3 & 2 \\
1 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
-3 & 0 \\
1 & 1
\end{array}\right| \mathbf{k}\right\|=\sqrt{(-2)^{2}+5^{2}+(-3)^{2}}=\sqrt{38} .
$$

7 The direction vector of the line must be parallel to $\mathbf{u} \times \mathbf{v}$, and since

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{rr}
1 & -5 \\
4 & 0
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & -5 \\
0 & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right| \mathbf{k}=\langle 20,0,4\rangle
$$

a suitable direction vector for the line is $\langle 5,0,1\rangle$. Parametrization:

$$
\mathbf{r}(t)=\langle-3,4,2\rangle+t\langle 5,0,1\rangle=\langle 5 t-3,4, t+2\rangle, \quad t \in \mathbb{R}
$$

8 Since $\mathbf{r}^{\prime}(t)=\langle 3,7,2 t\rangle$, the tangent vector to the curve at the point corresponding to $t=1$ is $\mathbf{r}^{\prime}(1)=\langle 3,7,2\rangle$. The point itself is $\mathbf{r}(1)=\langle 2,9,1\rangle$. So the tangent line in question has direction $\langle 3,7,2\rangle$ and point $\langle 2,9,1\rangle$. Parametrization:

$$
\mathbf{r}(t)=\langle 2,9,1\rangle+t\langle 3,7,2\rangle=\langle 3 t+2,7 t+9,2 t+1\rangle, \quad t \in \mathbb{R}
$$

9 From $\mathbf{r}^{\prime}(t)=\langle\cos t-\sin t,-\cos t-\sin t\rangle$ we have

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{(\cos t-\sin t)^{2}+(\cos t+\sin t)^{2}}=\sqrt{2}
$$

and so the length of the curve is

$$
\int_{0}^{2 \pi}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{0}^{2 \pi} \sqrt{2} d t=2 \pi \sqrt{2}
$$

10 From $\mathbf{r}^{\prime}(t)=\langle-a \sin t, a \cos t, b\rangle$ we have

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}}=\sqrt{a^{2}+b^{2}}
$$

Now,

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{1}{\sqrt{a^{2}+b^{2}}}\langle-a \sin t, a \cos t, b\rangle
$$

implies

$$
\mathbf{T}^{\prime}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{1}{\sqrt{a^{2}+b^{2}}}\langle-a \cos t,-a \sin t, 0\rangle
$$

and then

$$
\left\|\mathbf{T}^{\prime}(t)\right\|=\sqrt{\frac{a^{2} \cos ^{2} t}{a^{2}+b^{2}}+\frac{a^{2} \sin ^{2} t}{a^{2}+b^{2}}}=\frac{a}{\sqrt{a^{2}+b^{2}}}
$$

Finally, the curvature is

$$
\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{a}{a^{2}+b^{2}}
$$

and it's seen that $\kappa(t) \rightarrow 0$ as $b \rightarrow \infty$.

