MATH 242 ExaM #4 KeY (FALL 2015)

1 Forany (z,y,2) € D we have 0 < z < 9— 2% We can evaluate [[[,dV in the order dzdydx
(other orders are possible). See the figure below.

To determine the limits of integration for y and x, project D onto the zy-plane to obtain
the region R shown at right in the figure. There it can be seen that if (z,y) € R, then
0<y<2—zxfor 0 <z <2 and so the limits of integration for y will be 0 and 2 — x, and the
limits of integration for x will be 0 and 2. We obtain

D)= [f av - // /gxdzdyd:n
// dydx—/o [9y—xy] dx
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It can be instructive to try determining the volume of D by integrating in the orders dzdxdy
and dydzdzx.
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2 On the yz-plane the region of integration is
R={(y,2):0<z<\4d—y2 —2<y<2},

the top half of a circular disc of radius 2:

This region is also expressible as

R:{(y,z):—\/4—z2§y§\/4_22’ OSZSZ},



and so the integral becomes
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3 The mass m of the cone is
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4 The intersection of the hyperboloid with the plane z = 0 is the curve given by

0=V1IT—/1+22+y* = 1+22+y*=17 = 27 +4y* =16,
which is a circle in the xy-plane (i.e. the plane z = 0) with radius 4, centered at the origin.
The bounded region D in rectangular coordinates thus corresponds to a region

Ez{(r,@,z):O§9§27r,0§7’§4,0§z§\/ﬁ—\/l—i—rQ}

in cylindrical coordinates, noting that z2 4+ y? = 2. Volume V is thus
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5 Let (x,y) € C. A vector parallel to C' at the point (z,y) would be (y, —x), whereas
F(z,y) = (y,z). So F(x,y) is tangent to C at (z,y) if F(z,y) = ¢(y, —z) for some ¢ # 0. That
is, (y,z) = ¢(y,—x), giving y = cy and x = —cx. From y = cy there are two possibilities:
c=1lory=0. If c=1, then x = —x results, and hence x = 0. Then, since 2? + y? = 1, it
follows that y = +1, and we obtain two points: (0,41). If y = 0, then 2?4+ 3> = 1 implies that
x = £1, and we obtain another two points: (41,0). That is, F is tangent to C' at the four
points (£1,0), (0,+1).

F(z,y) is normal to C' at (z,y) if F(z,y) - (y, —x) = 0, which yields y* — 2*> = 0. Adding
this equation to 22 + 3> = 1 gives 2y> = 1, or y = £1/4/2. On the other hand y?> = 22 implies
|z| = |y|, and so we obtain four points:
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Note: this problem can also be resolved by working with a parametrization for C', such as
the function r(t) = (cost,sint).

6a A fine parametrization would be
r(t) =(0,-3,2)(1 —t) + (1,=7,4)t = (t,—4t — 3,2t + 2), t € [0,1].



6b We have r'(t) = (1, —4,2), so that ||r/(t)|| = v/21. Now,
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7 Making the substitution u = > — 1 along the way, we have
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/ F.dr = / F(r(t))-r'(t)dt = / F(t,t%) - (2t,3t%) dt
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8 Here we have z(t) = 2cost and y(t) = 2sint, so 2/(t) = —2sint and /() = 2cost, and
then

/ Fon— / ")y (1) — glr () (1)) de
C 0
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= / [f(2cost,2sint)(2cost) — g(2cost, 2sint)(—2sint)]|dt
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[(2sint — 2cost)(2cost) — (2cost)(—2sint)]dt
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=4 [—— cos(2t)} -2 {t + = sin(2t)]
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=4-0-2-2m = —4n.

Thus there is a net flux of 47 into the region enclosed by C.
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