
Math 242 Exam #3 Key (Fall 2015)

1 The surface S is given by F (x, y, z) = 0 for F (x, y, z) = tan−1(xy)− z. We have

∇F (x, y, z) =

〈
y

1 + x2y2
,

x

1 + x2y2
,−1

〉
,

and the equation of the tangent plane at (1, 1, π/4) is given by

0 = ∇F (1, 1, π/4) · 〈x− 1, y − 1, z − π/4〉 =
〈
1
2
, 1
2
,−1

〉
·
〈
x− 1, y − 1, z − π

4

〉
,

or 2x+ 2y − 4z = 4− π.

2 First we gather our partial derivatives:

fx(x, y) = 3x2 + 6y, fy(x, y) = −3y2 + 6x,

fxx(x, y) = 6x, fyy(x, y) = −6y,

fxy(x, y) = 6.

At no point does fx or fy fail to exist, so we search for any (x, y) for which fx(x, y) = fy(x, y) =
0. This yields the system {

3x2 + 6y = 0
−3y2 + 6x = 0

The solutions are (0, 0) and (2,−2), which are the critical points. We construct a table:

(x, y) fxx fyy fxy Φ Conclusion

(0, 0) 0 0 6 −36 Saddle Point

(2,−2) 12 12 6 108 Local Minimum

Below is a graph of a part of the surface containing the points of interest.

−2
0

2
4

−4 −2 0 2

0

100

x
y

z

3 We have fx(x, y) = 4x − 4, fy(x, y) = 6y, fxx(x, y) = 4, fyy(x, y) = 6, fxy(x, y) = 0, and
Φ(x, y) = 24. Now, fx(x, y) = fy(x, y) = 0 is only satisfied if (x, y) = (1, 0), and so there is a
local minimum for f at (1, 0), with f(1, 0) = 0.
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Now we look at the boundary of R, denoted by ∂R, which is a circle of radius 1 centered at
(1, 0), and so (x, y) ∈ ∂R implies that (x− 1)2 + y2 = 1 with x ∈ [0, 2]. In particular we have
y2 = 1− (x− 1)2 for (x, y) ∈ ∂R, and so

f(x, y) = 2x2 − 4x+ 3y2 + 2 = 2x2 − 4x+ 3[1− (x− 1)2] + 2 = 2 + 2x− x2

for all (x, y) ∈ ∂R. Let g(x) = 2 + 2x − x2 for x ∈ [0, 2]. To find the extrema of f on ∂R,
we find the extrema of g on [0, 2]. We have g′(x) = 2 − 2x, so g′(x) = 0 if and only if x = 1

2
.

We evaluate: g(0) = 2, g(2) = 2, and g(1
2
) = 23

4
. By the Closed Interval Method the global

maximum of g : [0, 2]→ R is g(1
2
) = 23

4
, and the global minimum is g(0) = g(2) = 2. Recalling

that y2 = 1− (x− 1)2 for (x, y) ∈ ∂R, x = 1
2

implies y = ±
√
3
2

, so

f
(
1
2
,±
√
3
2

)
= g
(
1
2

)
= 23

4
;

and x = 0, 2 implies y = 0, so

f(0, 0) = g(0) = 2 and f(2, 0) = g(2) = 2.

The global maximum of f on the closed disc R is f
(
1
2
,±
√
3
2

)
= 23

4
, and the global minimum of

f on R is f(1, 0) = 0.

4 Letting g(x, y) = x6 + y6 − 1, the given constraint is expressible as g(x, y) = 0. We find
every (x, y) ∈ R2 for which there can be found some λ ∈ R that results in the system

fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)

g(x, y) = 0

having a solution. We write the system as
x= 3λx5

y = 3λy5

1 = x6 + y6
(1)

and note that x = y = 0 is not possible.
Suppose x 6= 0 and y 6= 0. Then the first two equations give x−4 = 3λ = y−4, implying that

x4 = y4, and hence x6 = y6. Now the 3rd equation in the system becomes 2x6 = 1, and we
obtain four points:

p1 =
(
2−1/6, 2−1/6

)
, p2 =

(
− 2−1/6,−2−1/6

)
, p3 =

(
− 2−1/6, 2−1/6

)
, p4 =

(
2−1/6,−2−1/6

)
.

Next suppose that x = 0 and y 6= 0. Then the system (1) reduces to y = 3λy5 and y6 = 1,
which results in two more points: p5 = (0, 1) and p6 = (0,−1).

Finally suppose x 6= 0 and y = 0. The system (1) reduces to x = 3λx5 and x6 = 1, giving
another two points: p7 = (1, 0) and p8 = (−1, 0).

We now evaluate f at each of the eight points we have found. We have f(pn) = 2/ 3
√

2 ≈ 1.587
for n = 1, 2, 3, 4, and f(pn) = 1 for n = 5, 6, 7, 8. Therefore the maximum value of f subject to
the constraint g is 2/ 3

√
2 at the points p1, p2, p3, p4, and the minimum value of f is 1 at the

points p5, p6, p7, p8.
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5 The region R is given by

R =
{

(x, y) : 0 ≤ x ≤ 4 and 0 ≤ y ≤
√
x
}
.

Then, making the substitution u = 1 + x2 along the way, we obtain
¨
R

y

1 + x2
dA =

ˆ 4

0

ˆ √x
0

y

1 + x2
dydx =

ˆ 4

0

1

1 + x2

[
1

2
y2
]√x
0

dx

=
1

2

ˆ 4

0

x

1 + x2
dx =

1

2

ˆ 17

1

1/2

u
du =

1

4

[
ln |u|

]17
1

=
ln 17

4
.

6 The region D ⊆ R3 is a tetrahedron in the first octant as shown in the stereoscopic figure
below, with region R ⊆ R2 being the bottom side of D in the xy-plane. We have

R =
{

(x, y) : 0 ≤ x ≤ 6 and 0 ≤ y ≤ −2
3
x+ 4

}
.

At any point (x, y) ∈ R we find that the height of D is h(x, y) = 12 − 2x − 3y, and so the
volume of D is

V(D) =

¨
R

h =

ˆ 6

0

ˆ − 2
3
x+4

0

(12− 2x− 3y)dydx

=

ˆ 6

0

[
12y − 2xy − 3

2
y2
]− 2

3
x+4

0

dx =

ˆ 6

0

(
2

3
x2 − 8x+ 24

)
dx

=

[
2

9
x3 − 4x2 + 24x

]6
0

= 48.
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7 The area of the enclosed region R is

A(R) =

¨
R

dA =

ˆ 2

−1

ˆ x+2

x2
dydx =

ˆ 2

−1
(x+ 2− x2)dx =

9

2

8 The sketch of R in the xy-plane is below. The region

S = {(r, θ) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π/2}
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in the rθ-plane is such that Tpol(S) = R, and therefore, making the substitution u = 16 − r2,
we have ¨

R

1√
16− x2 − y2

dA =

¨
S

r√
16− r2

dA =

ˆ π/2

0

ˆ 2

0

r√
16− r2

drdθ

=

ˆ π/2

0

ˆ 12

16

−1/2√
u
dudθ =

1

2

ˆ π/2

0

ˆ 16

12

u−1/2 dudθ

=
π

4

[
1

2
u1/2

]16
12

=
π

8

(
4− 2

√
3
)

=
2−
√

3

4
π.

x
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θ

9 The graph of r = 4 cos 3θ in the xy-plane is shown below. The region

S = {(r, θ) : 0 ≤ r ≤ 4 cos 3θ and 0 ≤ θ ≤ π}
in the rθ-plane corresponds to the region R enclosed by the curve in the xy-plane. The area of
the region R is:

A(R) =

¨
R

dA =

ˆ π

0

ˆ 4 cos 3θ

0

r drdθ =

ˆ π

0

8 cos2 3θ dθ =

ˆ π

0

(4 + 4 cos 6θ) dθ

=

[
4θ +

2

3
sin 6θ

]π
0

= 4π.
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