MATH 242 ExaM #4 KEY (FALL 2014)
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2 Let I be the integral. Making the substitution u = y? — 2 along the way, we have

In8 pvz ) In2y In8 vz )
I= / / e"”y _Z dydz = / / ye¥" Fdydz
lny
In8 In8
/ / —e“dudz = 2/ [€“]9_.dz = 5/ (1—e'"%)dz

= glere =S -1

1 T2 T 16

3 The region D is shown in the stereoscopic figure below. In r8z-space D corresponds to the
region
E={(r0,2):0<0<2m, 0<r <4, —5<z<4}.

We have
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4a A fine parameterization would be

r(t) = (0,1,2)(1 — ) + (=3,7, —1)t = (—3t, 1+ 6t,2— 3t), te[0,1].



4b  We have r'(t) = (—3,6,—3), so that ||r(t)|| = 3v/6. Now,
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5 Making the substitution u = t?> — 1 along the way, we have
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6 We have F = (f, g) with f(z,y) = ye® +siny and g(z,y) = €* + xcosy. It is easy to check
that

fy(z,y) = e + cosy = g.(,y),
and so F is indeed conservative. We now find a function ¢(z,y) such that Vo = F, or
<90x>(10y> = (f,g). We have

palev) = o) = plog) = [(e" 4 sing) do = ye” + asing + c(y)
where ¢(y) is some arbitrary (differentiable) function of y. But then

e +zcosy = gla,y) = @y (1,y) = & +wcosy +¢/(y),

giving ¢/(y) = 0, and hence ¢(y) = ¢ (i.e. ¢(y) must be independent of y and hence a constant
¢). Now ¢(x,y) = ye® + xsiny + ¢ for arbitrary constant ¢. Letting ¢ = 0 for convenience, we
obtain

o(x,y) = ye® + xsiny
as a potential function for F.

7 The curve C goes from a = (0,0) to b = (In2,27), and the fact that it’s a line segment will
be irrelevant. Letting ¢(z,y) = e~ cosy, the Fundamental Theorem of Line Integrals gives

/ V(e *cosy) - dr = / Vi -dr =p(b)—p(a) = p(In2,2r) — (0,0)
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