MATH 242 ExaM #5 KEY (FALL 2013)

1 We have F = (f, g) with f(z,y) = 22y and g(x,y) = 2% — ¢?, and since R is connected and
simply connected, and OR is simple, closed and piecewise-smooth, by Green’s Theorem
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2 We have F = (f, g) with f(z,y) = 0 and g(x,y) = xy, and since R (the region enclosed by
the triangle C') is connected and simply connected, and OR (the triangle C') is simple, closed
and piecewise-smooth, by the flux form of Green’s Theorem
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3 We have
(V-F)(z,y,2) = Dy(—2y) + Dy(32) + D,(2) =0+0+1 = 1.
4 We have
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= [Dy(z) — D.(zy))i — [D:v(z) - Dz(x2 - ?/2)}J + [Dm(l‘y) - Dy<x2 - 92)}1{
=0i—0j+ [y — (—2y)lk = (0,0, 3y).

5a A parameterization:
r(u,v) = (4dcosu,4sinu,v), (u,v) € [0,7] x [0,7].

5b Let ¥ denote the surface, and R = [0, 7] x [0,7]. Surface area:
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6 Here C is the circle in the zy-plane centered at the origin with radius 2v/3. As in homework,
we give C' the positive (i.e. counterclockwise) orientation, and so a parameterization for C' is

r(t) = 2v/3(cost,sint,0), t e [0,2x].

A convenient choice for a surface ¥ that has C as its boundary would be the planar region
enclosed by C, which is the circular disk in the zy-plane with radius 2v/3. A parameterization
for ¥ is

p(u,v) = (veosu,vsinu,0), (u,v) € R=|0,2n] X [0,2\/5}.
Clearly ¥ is orientable (i.e. it has two identifiable “sides”). We have

i j k
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for any (u,v) € Int(R) = (0,27) x (0,2v/3), and so
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Thus i : Int(R) — R? is continuous on Int(R), and it has continuous extension to R by setting
n(u,v) = —k for all (u,v) € OR = C. Indeed, since n is a constant function equal to —k on all

R, we simply define n = —k.

It must be determined which orientation n of ¥, n or —n, is consistent with the orientation
of C. That is, which orientation n of ¥ is such that (T x N)(¢) = n for all ¢ € [0, 27|, where T
and N are the unit tangent and principal unit normal vectors for C, respectively. We calculate

r'(t)

T(t) = oI (—sint, cost,0)
and ()
N(t) = O] = (—cost, —sint,0).
Now,
i j k
(T x N)(t) = |—sint cost 0| =(0,0,1),

—cost —sint 0

which we see agrees with —n(u,v) for all (u,v) € R, and so we give X the orientation —n.
Next, we have
(VX F)(z,y,2)=(1,-1,-2)
Finally by Stokes’ Theorem, substituting —n for n, we obtain
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7 Let D = B;(0), which is the solid ball with radius 1 and center at the origin. Clearly D is
connected and simply connected. The boundary of D is

oD = {x € R : ||x|| = 1},
which is the sphere with radius 1 and center at the origin. Thus 0D is a smooth, closed, and
orientable surface. The field F has scalar components
flwy,2)=22—y, g(z,y,2) ==z, M~y z2) =2
which have continuous first partials on R?. Finally, to find the “outward” flux of F across the

sphere means to give the sphere the positive orientation n = n. With all of the hypotheses of
the Divergence Theorem being satisfied, we calculate

(V-F)(z,y,2) = D;(22 —y) + Dy(z) + D.(—2z) =0,

ﬁgDF.dS://Dv.FdV:///D(O)dV:O.

That is, the net outward flux is zero.

and finally



