
Math 242 Exam #5 Key (Fall 2013)

1 We have F = 〈f, g〉 with f(x, y) = 2xy and g(x, y) = x2− y2, and since R is connected and
simply connected, and ∂R is simple, closed and piecewise-smooth, by Green’s Theorem‰

∂R

F · dr =

¨
R

(gx − fy) dA =

¨
R

(2x− 2x) dA = 0.

2 We have F = 〈f, g〉 with f(x, y) = 0 and g(x, y) = xy, and since R (the region enclosed by
the triangle C) is connected and simply connected, and ∂R (the triangle C) is simple, closed
and piecewise-smooth, by the flux form of Green’s Theoremˆ

C

f dy − g dx =

¨
R

(fx + gy) dA =

¨
R

x dA =

ˆ 2

0

ˆ −2x+4

0

x dydx =

ˆ 2

0

[xy]−2x+4
0 dx

=

ˆ 2

0

(−2x2 + 4x) dx =

[
−2

3
x3 + 2x2

]2

0

=
8

3
.

3 We have

(∇ · F)(x, y, z) = Dx(−2y) +Dy(3x) +Dz(z) = 0 + 0 + 1 = 1.

4 We have

(curlF)(x, y, z) = (∇× F)(x, y, z) =

∣∣∣∣∣∣
i j k
Dx Dy Dz

x2 − y2 xy z

∣∣∣∣∣∣
=

∣∣∣∣Dy Dz

xy z

∣∣∣∣ i− ∣∣∣∣ Dx Dz

x2 − y2 z

∣∣∣∣ j +

∣∣∣∣ Dx Dy

x2 − y2 xy

∣∣∣∣k
=[Dy(z)−Dz(xy)]i−

[
Dx(z)−Dz(x

2 − y2)
]
j +

[
Dx(xy)−Dy(x

2 − y2)
]
k

= 0i− 0j + [y − (−2y)]k = 〈0, 0, 3y〉.

5a A parameterization:

r(u, v) = 〈4 cosu, 4 sinu, v〉, (u, v) ∈ [0, π]× [0, 7].

5b Let Σ denote the surface, and R = [0, π]× [0, 7]. Surface area:

A(Σ) =

¨
Σ

dS =

¨
R

‖(ru × rv)(u, v)‖ dA

=

¨
R

‖〈−4 sinu, 4 cosu, 0〉 × 〈0, 0, 1〉‖ dA

=

¨
R

‖〈4 cosu, 4 sinu, 0〉‖ dA =

ˆ π

0

ˆ 7

0

4 dvdu = 28π.



2

6 Here C is the circle in the xy-plane centered at the origin with radius 2
√

3. As in homework,
we give C the positive (i.e. counterclockwise) orientation, and so a parameterization for C is

r(t) = 2
√

3〈cos t, sin t, 0〉, t ∈ [0, 2π].

A convenient choice for a surface Σ that has C as its boundary would be the planar region
enclosed by C, which is the circular disk in the xy-plane with radius 2

√
3. A parameterization

for Σ is
ρ(u, v) = 〈v cosu, v sinu, 0〉, (u, v) ∈ R = [0, 2π]×

[
0, 2
√

3
]
.

Clearly Σ is orientable (i.e. it has two identifiable “sides”). We have

(ρu × ρv)(u, v) =

∣∣∣∣∣∣
i j k

−v sinu v cosu 0
cosu sinu 0

∣∣∣∣∣∣ = 〈0, 0,−v〉

for any (u, v) ∈ Int(R) = (0, 2π)× (0, 2
√

3 ), and so

n̂(u, v) =
ρu × ρv
‖ρu × ρv‖

(u, v) =
〈0, 0,−v〉

v
= 〈0, 0,−1〉 .

Thus n̂ : Int(R)→ R3 is continuous on Int(R), and it has continuous extension to R by setting
n̂(u, v) = −k for all (u, v) ∈ ∂R = C. Indeed, since n̂ is a constant function equal to −k on all
R, we simply define n̂ = −k.

It must be determined which orientation n of Σ, n̂ or −n̂, is consistent with the orientation
of C. That is, which orientation n of Σ is such that (T×N)(t) = n for all t ∈ [0, 2π], where T
and N are the unit tangent and principal unit normal vectors for C, respectively. We calculate

T(t) =
r′(t)

‖r′(t)‖
= 〈− sin t, cos t, 0〉

and

N(t) =
T′(t)

‖T′(t)‖
= 〈− cos t,− sin t, 0〉.

Now,

(T×N)(t) =

∣∣∣∣∣∣
i j k

− sin t cos t 0
− cos t − sin t 0

∣∣∣∣∣∣ = 〈0, 0, 1〉 ,

which we see agrees with −n̂(u, v) for all (u, v) ∈ R, and so we give Σ the orientation −n̂.
Next, we have

(∇× F)(x, y, z) = 〈1,−1,−2〉
Finally by Stokes’ Theorem, substituting −n̂ for n, we obtain˛

∂Σ

F · dr = −
¨

Σ

(∇× F) · n̂ dS

= −
¨
R

(∇× F)(ρ(u, v)) · n̂(u, v)‖(ρu × ρv)(u, v)‖ dA

= −
¨
R

(∇× F)(ρ(u, v)) · (ρu × ρv)(u, v) dA

= −
¨
R

〈1,−1,−2〉 · 〈0, 0,−v〉 dA



3

= −
ˆ 2
√

3

0

ˆ 2π

0

2v dudv = −24π.

7 Let D = B1(0), which is the solid ball with radius 1 and center at the origin. Clearly D is
connected and simply connected. The boundary of D is

∂D = {x ∈ R3 : ‖x‖ = 1},
which is the sphere with radius 1 and center at the origin. Thus ∂D is a smooth, closed, and
orientable surface. The field F has scalar components

f(x, y, z) = 2z − y, g(x, y, z) = x, h(x, y, z) = −2x,

which have continuous first partials on R3. Finally, to find the “outward” flux of F across the
sphere means to give the sphere the positive orientation n = n̂. With all of the hypotheses of
the Divergence Theorem being satisfied, we calculate

(∇ · F)(x, y, z) = Dx(2z − y) +Dy(x) +Dz(−2x) = 0,

and finally ‹
∂D

F · dS =

˚
D

∇ · F dV =

˚
D

(0)dV = 0.

That is, the net outward flux is zero.


