
Math 242 Exam #4 Key (Fall 2012)
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3 The region D is shown at left in the figure below. It will be convenient to work in cylindrical
coordinates, where x = r cos θ and y = r sin θ so that the equation of the paraboloid becomes

z = x2 + y2 = (r cos θ)2 + (r sin θ)2 = r2,

and the equation of the plane remains z = 25.
The intersection of the surfaces z = 25 and z = x2 + y2 is the set of points

{(x, y, 25) : x2 + y2 = 25},

which is a curve that projects onto the xy-plane as a circle of radius 5 centered at the origin.
Thus, the projection of D onto the xy-plane is a region R that is a closed disc with radius 5
centered at the origin, shown at right in the figure below.

Now, a point in R may have a θ-coordinate value ranging anywhere from θ = 0 to θ = 2π;
that is, if (r, θ) ∈ R, then 0 ≤ θ ≤ 2π.

If we fix θ ∈ [0, 2π], then a point (r, θ) ∈ R must lie on the line segment joining o = (0, 0)
and a = (5, θ), shown at right in the figure below. That is, given θ ∈ [0, 2π], a point (r, θ) ∈ R
can have r-coordinate value ranging anywhere from r = 0 to r = 5, which is to say 0 ≤ r ≤ 5.

Finally, fixing θ ∈ [0, 2π] and r ∈ [0, 5], we consider the limits on z in order for (r, θ, z)
to be a point that lies in D. We find that generally z must be such that (r, θ, z) is above the
paraboloid z = r2 and below the plane z = 25, which is to say r2 ≤ z ≤ 25.

Thus we find that the region E ⊆ R3
rθz for which Tcyl(E) = D is

E = {(r, θ, z) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 5, r2 ≤ z ≤ 25},
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and so
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4 D is given as {(ρ, ϕ, θ) : 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, 0 ≤ ρ ≤ 1} in spherical coordinates, so
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Substitution: let u = −ρ3, so that ρ2dρ = −1
3
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5 The line may be parameterized by r(t) = 〈t, t〉, −∞ < t < ∞, with tangent vector at r(t)
given by r′(t) = 〈1, 1〉. We must find a vector field F such that, for each t, F(r(t)) is orthogonal
(i.e. normal) to r′(t). That is, we must have

F(t, t) · 〈1, 1〉 = 0.

There are many possibilities: F(x, y) = 〈−1, 1〉, or F(x, y) = 〈−c, c〉 for any c 6= 0, or F(x, y) =
〈−x, x〉. (A trivial solution would be F(x, y) = 〈0, 0〉, but we are looking for a nonzero vector
field here.)
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√
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7 Here r′(t) = 〈−4 sin t, 4 cos t〉, soˆ
C
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8 For brevity let x = 〈x, y, z〉. We have F = 〈f, g, h〉 with f(x) = 2xy3z4, g(x) = 3x2y2z4,
and h(x) = 4x2y3z3. Since

fy(x) = 6xy2z4 = gx(x), fz(x) = 8xy3z3 = hx(x), gz(x) = 12x2y2z3 = hy(x),

it follows that F is conservative.
We now find ϕ. From ∇ϕ = F we have

ϕx(x) = 2xy3z4, ϕy(x) = 3x2y2z4, ϕz(x) = 4x2y3z3.

Hence

ϕ(x) =

ˆ
ϕx(x) dx = x2y3z4 + c(y, z).

Differentiating this with respect to y gives ϕy(x) = 3x2y2z4+cy(y, z), which, when compared to
ϕy(x) = 3x2y2z4, informs us that cy(y, z) = 0 and therefore c(y, z) = c(z) (that is, the function
c must not be a function of y).

At this point we have ϕ(x) = x2y3z4 + c(z). This implies that ϕz(x) = 4x2y3z3 + c′(z),
which, when compared to ϕz(x) = 4x2y3z3, informs us that c′(z) = 0. So c(z) = c, where c is
an arbitrary constant. Choosing c be zero, we obtain ϕ(x) = x2y3z4.

9 The curve C goes from a = 〈0, 0〉 to b = 〈ln 2, 2π〉, and the fact that it’s a line segment will
be irrelevant. Letting ϕ(x, y) = e−x cos y, the Fundamental Theorem of Line Integrals givesˆ

C
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2
− 1 = −1

2
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