MATH 242 ExaM #3 KEY (FALL 2012)

la We have
2y 2x
—— and fy(z,y) =

fz(xvy) = _(x—y)

(z —y)?
Using
z = [fo(20,y0)(x — o) + fy(x0, Y0) (¥ — yo) + f(xo, Yo)
with (zg,y0) = (3,2), we get
z=—4(x —3)+6(y —2) + 5,

which simplifies to 4x — 6y + z = 5.

1b The tangent plane serves as a linearization L of the function f in a neighborhood of (3,2),
so that L(x,y) ~ f(x,y) for (z,y) near (3,2). From (la) we have

L(z,y) = —4z + 6y + 5,
and so f(2.95,2.05) ~ L(2.95,2.05) = 5.5.

2

Joy(@,y) = (1 =242y — Y)Y

At no point does either f, or f, fail to exist, so we search for any point (z,y) for which
fu(z,y) = fy(x,y) = 0. This yields the system

y—xy=20

r—ay=20
We see we must have = zy = y. Putting = v into the 1st equation yields  — 2? = 0, which
has solutions z = 0,1. When z = 0 we obtain (from the 1st equation) y = 0; and when z = 1
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we obtain (from the 2nd equation) y = 1. Thus we have solutions (0,0) and (1,1), which are
critical points.

From f,,(0,0) = f,,(0,0) =0 and f,,(0,0) = 1 we have (0,0) = —1 < 0, and therefore f
has a saddle point at (0,0) by the Second Derivative Test.

From f..(1,1) = f,(1,1) = —e % and f,,(1,1) = 0 we have ®(0,0) = e™* > 0, and
therefore f has a local maximum at (1,1) by the Second Derivative Test.

In the figure at left above, it is not at all obvious at a glance that there is a local maximum
present, but it is there! The figure at right zooms in on (0,0,0) to at least make the saddle
point clear.

3 We have fx(a:?y) = —2$, fy(x7y) = _8y7 fmc(x>y) = _27 fyy(xay) = _87 fxy(xay) = 07 and
thus ®(z,y) = 16. Setting f,(z,y) = f,(x,y) = 0 yields the system —2z = 0 & —8y = 0, which
gives (0,0) as the only critical point, which is a point that lies in R. Since f,,(0,0) = -2 <0
and ®(0,0) = 8 > 0, f has a local maximum at (0,0).

Along the top side of R we have y = 1, which yields the function fi(z) = 2 — 2? for
xr € [—2,2]. Using the Closed Interval Method on f; in [—2,2], the global maximum of f
occurs at z = 0 (corresponding to point (0,1) for f), and the global minimum at x = +2
(corresponding to points (£2,1) for f).

Along the bottom of R we have y = —1, which yields the function fy(z) = 2 — 2? for
x € [—2,2]. The global maximum of f, occurs at z = 0 (corresponding to point (0, —1) for f),
and the global minimum at x = +2 (corresponding to points (£2, —1) for f).

Along the left side of R we have x = —2, which yields the function f3(y) = 2 — 4y? for
y € [—1,1]. Using the Closed Interval Method on f3 in [—1,1], the global maximum of f3
occurs at y = 0 (corresponding to point (—2,0) for f), and the global minimum at y = +1
(corresponding to points (—2,+1) for f).

Along the right side of R we have x = 2, which yields the function fy(y) = 2 — 4y? for
y € [—1,1]. The global maximum of f; occurs at y = 0 (corresponding to point (2,0) for f),
and the global minimum at y = £1 (corresponding to points (2, 4+1) for f).

Any point in R that corresponds to a point where any of the functions f; has an extremum
is a point where f itself has an extremum. Thus to find the global extrema of f we evaluate
f at all these points as well as all critical points. We have: f(+2,+1) = =2, f(0,£1) = 2,
f(£2,0) =2, and f(0,0) = 6.

Therefore f has a global minimum at the points (+2, £1), and a global maximum at (0, 0).




4 By Fubini’s Theorem we have

In3 In2 In3 In2
// " T A = / / " drdy = / e ( / e’ dx) dy
R 1 0 1 0

In3 2 in2 In3 2 1 2 In3 1 )
= 1 e e"]y " dy = 1 e dy:§[e ]1 25(9—6): 5

5 By Fubini’s Theorem we have

//Ry3 sin(zy”) dA = /O\/W_/Q/Ol y? sin(xy?) doedy = /0 " [_z_zcos(xy2)]o dy

0 0 0

—y(cosy® — 1) dy = ydy —

=—-—z — % [Sin(yQ)]\/7r_/2

™ (™) dy = T
173/ [sm(y )] dy = 1

1/\/”_/2

6 In the first quadrant y = 2? and y = 8 — 22 intersect at (2,4), which allows us to determine

R so that
2 p8—gz2 2 1 8—z2
// (xr+y)dA = / / (x +y)dydx = / {xy + —y2} dz
R 0 Ja2? 0 27 |2
2

1

— /O {x(g — %) + %(8 — )2 — 2% — 5&} dx

2
:/ (32—|—8x—8x2—2x3)dx:—.
0

7 'The order dydx will prove more tractable:

1/4 Ve 1/4 2 VT 1/4 16 2
/ / y cos(16w2?)dydzr = / L cos(16mz?) = / z cos(167z%) dr.
0 0 0 2 0 2

0
Now let u = 16722 to obtain

V4 1 cos(16m?) Tcosu 1 1 [" 1
/0 2 v /0 v 3o T G ), Cosudu = G binulg

8 The sketch of R in the zy-plane is below. The region
S={(r0):0<r<3and0<60<mr}
in the ré-plane is such that T, (S) = R, and therefore

//Rm dA = //S 2(r cos ) (rsin f)r dA = / ” / " 51 cos.0) (rsin ) drdo
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i 3 T 1
= / / 213 cos 0 sin 6 drdf = / cosfsinf {—T4:| do
o Jo 0 2 ]

:%/gﬂCOSQSiHQdQZ%/Oﬂsin(QQ)dQZO.
Y,
1
L%
-3 3 *

9 By definition area is given by

T 2 cos 30 ™1 2 cos 30 T
A= / / rdrdd = / {—731 do = 2/ cos? 36 db
o Jo o L2 1o 0

7T1 . ™
:/ ﬂd@:/ (1 + cos 60)df = [9+SH;69] _
0 0

2
0
where along the way we make use of the old trigonometric identity
9 1 + cos2c
cos" o = ————.

Note a critical thing: the entire curve is traced out exactly once as 6 ranges from 0 to 7, so if
you integrate with respect to € from 0 to 27 you will get the area times 2!

Y,




