
Math 242 Exam #3 Key (Fall 2012)

1a We have

fx(x, y) = − 2y

(x− y)2
and fy(x, y) =

2x

(x− y)2

Using
z = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0)

with (x0, y0) = (3, 2), we get

z = −4(x− 3) + 6(y − 2) + 5,

which simplifies to 4x− 6y + z = 5.

1b The tangent plane serves as a linearization L of the function f in a neighborhood of (3, 2),
so that L(x, y) ≈ f(x, y) for (x, y) near (3, 2). From (1a) we have

L(x, y) = −4x+ 6y + 5,

and so f(2.95, 2.05) ≈ L(2.95, 2.05) = 5.5.
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First we gather our partial derivatives:

fx(x, y) = (y − xy)e−x−y

fy(x, y) = (x− xy)e−x−y

fxx(x, y) = (xy − 2y)e−x−y

fyy(x, y) = (xy − 2x)e−x−y

fxy(x, y) = (1− x+ xy − y)e−x−y

At no point does either fx or fy fail to exist, so we search for any point (x, y) for which
fx(x, y) = fy(x, y) = 0. This yields the system{

y − xy = 0
x − xy = 0

We see we must have x = xy = y. Putting x = y into the 1st equation yields x−x2 = 0, which
has solutions x = 0, 1. When x = 0 we obtain (from the 1st equation) y = 0; and when x = 1



2

we obtain (from the 2nd equation) y = 1. Thus we have solutions (0, 0) and (1, 1), which are
critical points.

From fxx(0, 0) = fyy(0, 0) = 0 and fxy(0, 0) = 1 we have Φ(0, 0) = −1 < 0, and therefore f
has a saddle point at (0, 0) by the Second Derivative Test.

From fxx(1, 1) = fyy(1, 1) = −e−2 and fxy(1, 1) = 0 we have Φ(0, 0) = e−4 > 0, and
therefore f has a local maximum at (1, 1) by the Second Derivative Test.

In the figure at left above, it is not at all obvious at a glance that there is a local maximum
present, but it is there! The figure at right zooms in on (0, 0, 0) to at least make the saddle
point clear.

3 We have fx(x, y) = −2x, fy(x, y) = −8y, fxx(x, y) = −2, fyy(x, y) = −8, fxy(x, y) = 0, and
thus Φ(x, y) = 16. Setting fx(x, y) = fy(x, y) = 0 yields the system −2x = 0 & −8y = 0, which
gives (0, 0) as the only critical point, which is a point that lies in R. Since fxx(0, 0) = −2 < 0
and Φ(0, 0) = 8 > 0, f has a local maximum at (0, 0).

Along the top side of R we have y = 1, which yields the function f1(x) = 2 − x2 for
x ∈ [−2, 2]. Using the Closed Interval Method on f1 in [−2, 2], the global maximum of f1
occurs at x = 0 (corresponding to point (0, 1) for f), and the global minimum at x = ±2
(corresponding to points (±2, 1) for f).

Along the bottom of R we have y = −1, which yields the function f2(x) = 2 − x2 for
x ∈ [−2, 2]. The global maximum of f2 occurs at x = 0 (corresponding to point (0,−1) for f),
and the global minimum at x = ±2 (corresponding to points (±2,−1) for f).

Along the left side of R we have x = −2, which yields the function f3(y) = 2 − 4y2 for
y ∈ [−1, 1]. Using the Closed Interval Method on f3 in [−1, 1], the global maximum of f3
occurs at y = 0 (corresponding to point (−2, 0) for f), and the global minimum at y = ±1
(corresponding to points (−2,±1) for f).

Along the right side of R we have x = 2, which yields the function f4(y) = 2 − 4y2 for
y ∈ [−1, 1]. The global maximum of f4 occurs at y = 0 (corresponding to point (2, 0) for f),
and the global minimum at y = ±1 (corresponding to points (2,±1) for f).

Any point in R that corresponds to a point where any of the functions fi has an extremum
is a point where f itself has an extremum. Thus to find the global extrema of f we evaluate
f at all these points as well as all critical points. We have: f(±2,±1) = −2, f(0,±1) = 2,
f(±2, 0) = 2, and f(0, 0) = 6.

Therefore f has a global minimum at the points (±2,±1), and a global maximum at (0, 0).
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4 By Fubini’s Theorem we have¨
R

ex+2y dA =

ˆ ln 3

1

ˆ ln 2

0

ex+2y dxdy =

ˆ ln 3

1

e2y
(ˆ ln 2

0

ex dx

)
dy

=

ˆ ln 3

1

e2y [ex]ln 2
0 dy =

ˆ ln 3

1

e2y dy =
1

2

[
e2y

]ln 3

1
=

1

2
(9− e2) =

9− e2

2
.

5 By Fubini’s Theorem we have

¨
R

y3 sin(xy2) dA =

ˆ √π/2

0

ˆ 1

0

y3 sin(xy2) dxdy =

ˆ √π/2

0

[
−y

3

y2
cos(xy2)

]1
0

dy

=

ˆ √π/2

0

−y(cos y2 − 1) dy =

ˆ √π/2

0

y dy −
ˆ √π/2

0

y cos(y2) dy

=
π

4
− 1

2

ˆ √π/2

0

[
sin(y2)

]′
dy =

π

4
− 1

2

[
sin(y2)

]√π/2

0
=
π

4
− 1

2
.

6 In the first quadrant y = x2 and y = 8−x2 intersect at (2, 4), which allows us to determine
R so that ¨

R

(x+ y)dA =

ˆ 2

0

ˆ 8−x2

x2
(x+ y)dydx =

ˆ 2

0

[
xy +

1

2
y2
]8−x2
x2

dx

=

ˆ 2

0

[
x(8− x2) +

1

2
(8− x2)2 − x3 − 1

2
x4
]
dx

=

ˆ 2

0

(
32 + 8x− 8x2 − 2x3

)
dx =

152

3
.

7 The order dydx will prove more tractable:
ˆ 1/4

0

ˆ √x
0

y cos(16πx2)dydx =

ˆ 1/4

0

[
y2

2
cos(16πx2)

]√x
0

=

ˆ 1/4

0

x cos(16πx2)

2
dx.

Now let u = 16πx2 to obtainˆ 1/4

0

x cos(16πx2)

2
dx =

ˆ π

0

cosu

x
· 1

32π
du =

1

64π

ˆ π

0

cosu du =
1

64π
[sinu]π0 = 0.

8 The sketch of R in the xy-plane is below. The region

S = {(r, θ) : 0 ≤ r ≤ 3 and 0 ≤ θ ≤ π}
in the rθ-plane is such that Tpol(S) = R, and therefore¨

R

2xy dA =

¨
S

2(r cos θ)(r sin θ)r dA =

ˆ π

0

ˆ 3

0

2(r cos θ)(r sin θ)r drdθ
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=

ˆ π

0

ˆ 3

0

2r3 cos θ sin θ drdθ =

ˆ π

0

cos θ sin θ

[
1

2
r4
]3
0

dθ

=
81

2

ˆ π

0

cos θ sin θ dθ =
81

4

ˆ π

0

sin(2θ) dθ = 0.

x

y

33−3

r

θ

9 By definition area is given by

A =

ˆ π

0

ˆ 2 cos 3θ

0

r drdθ =

ˆ π

0

[
1

2
r2
]2 cos 3θ
0

dθ = 2

ˆ π

0

cos2 3θ dθ

=

ˆ π

0

1 + cos 6θ

2
dθ =

ˆ π

0

(1 + cos 6θ)dθ =

[
θ +

sin 6θ

6

]π
0

= π,

where along the way we make use of the old trigonometric identity

cos2 α =
1 + cos 2α

2
.

Note a critical thing: the entire curve is traced out exactly once as θ ranges from 0 to π, so if
you integrate with respect to θ from 0 to 2π you will get the area times 2!
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