
Math 242 Exam #2 Key (Fall 2012)

1 For p0 = (1, 1, 0), q0 = (−2, 8, 4), r0 = (1, 2, 3), we have #     „p0q0 = 〈−3, 7, 4〉 and #     „p0r0 = 〈0, 1, 3〉.
Now,

n = #     „p0q0 × #     „p0r0 =

∣∣∣∣∣∣
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0 1

∣∣∣∣k
= 17i + 9j− 3k = 〈17, 9,−3〉,

so if p = (x, y, z), then the equation of the plane is given by

n · #   „p0p = 〈17, 9,−3〉 · 〈x− 1, y − 1, z〉 = 0,

or 17x+ 9y − 3z = 26.

2 We have planes P : x+ 2y − 3z = 1 and Q : x+ y + z = 2. Now, the intersection of P and
the plane z = 0 is the set of points on the line `0 : x + 2y = 1, and the intersection of Q and
z = 0 is the line `′0 : x + y = 2. So the point that is an element of `0 ∩ `′0 must be a point in
P ∩Q. We find this point by finding the solution to the system{

x + 2y = 1
x + y = 2

which is (3,−1). Thus (3,−1, 0) ∈ P ∩Q (since we’re on the plane z = 0).
Next, the intersection of P and the plane z = 1 is the line `1 : x + 2y = 4, and the

intersection of Q and z = 1 is the line `′1 : x + y = 1. Again, a point in `1 ∩ `′1 is a point in
P ∩Q. The system {

x + 2y = 4
x + y = 1

has solution (−2, 3), and thus (−2, 3, 1) ∈ P ∩Q (recall we’re now on the plane where z is 1).
So the line of intersection for P and Q contains points r0(3,−1, 0) and r1(−2, 3, 1). Let

v = #     „r0r1 = 〈−5, 4, 1〉. An equation for the line is thus

r(t) = r0 + tv = 〈3,−1, 0〉+ t〈−5, 4, 1〉.

3 The function h is a composition of a polynomial function and the natural logarithm function,
and so it is continuous on its domain. We have

Dom(h) = {(x, y) : x2 − 3y > 0} =
{

(x, y) : y < 1
3
x2
}
,

which is the shaded region in R2 illustrated below.
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4 The level curve z = 1 has equation 1 =
√
x2 + 4y2, which implies

x2 +
y2

1/4
= 1,

an ellipse. The level curve z = 2 has equation 2 =
√
x2 + 4y2, which implies

x2

4
+ y2 = 1,

also an ellipse. Graph is below.
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5 We have

lim
(x,y)→(2,1)

x2 − 4y2

x− 2y
= lim

(x,y)→(2,1)

(x− 2y)(x+ 2y)

x− 2y
= lim

(x,y)→(2,1)
(x+ 2y) = 2 + 2(1) = 4.

6 First approach (0, 0) on the path (x(t), y(t)) = (t, 0) (i.e. the x-axis), so the limit becomes:

lim
t→0

x(t)y(t) + y3(t)

x2(t) + y2(t)
= lim

t→0

0

t2 + 0
= 0.

Next, approach (0, 0) on the path (x(t), y(t)) = (t, t) (i.e. the line y = x), so the limit becomes:

lim
t→0

x(t)y(t) + y3(t)

x2(t) + y2(t)
= lim

t→0

t2 + t3

t2 + t2
= lim

t→0

t2(1 + t)

2t2
= lim

t→0

1 + t

2
=

1

2
.

The limits don’t agree, so the original limit cannot exist by the Two-Path Test.

7a We have

gx(x, y) = ln(x2 + y2) +
2x2

x2 + y2
and gy(x, y) =

2xy

x2 + y2
.

7b We have

hz(x, y, z) = −3 sin(x+ 2y + 3z) and hzy(x, y, z) = −6 cos(x+ 2y + 3z).
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8a Along the path y = x the limit becomes

lim
(x,x)→(0,0)

− x · x
x2 + x2

= lim
(x,x)→(0,0)

−1

2
= −1

2
,

which implies that

lim
(x,y)→(0,0)

f(x, y) 6= f(0, 0) = 0

and therefore f is not continuous at (0, 0).

8b By an established theorem, since f is not continuous at (0, 0) it cannot be differentiable
at (0, 0).

8c By definition we have

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0
(0) = 0.

Thus, even though f is not differentiable at (0, 0), it can have partial derivatives at (0, 0).

9 Here w(t) = f(x, y) with f(x, y) = cos(2x) sin(3y), x = x(t) = t/2 and y = y(t) = t4. By
Chain Rule 1 in notes,

w′(t) = fx(x, y)x′(t) + fy(x, y)y′(t) = − sin(2x) sin(3y) + 12t3 cos(2x) cos(3y)

= − sin(t) sin(3t4) + 12t3 cos(t) cos(3t4).

10 Here z(s, t) = f(x, y) with f(x, y) = xy−2x+3y, x = x(s, t) = sin s and y = y(s, t) = tan t.
By Chain Rule 2 in notes,

zs(s, t) = fx(x, y)xs(s, t) + fy(x, y)ys(s, t) = (y − 2) cos s+ (x+ 3)(0) = (tan t− 2) cos s,

and

zt(s, t) = fx(x, y)xt(s, t) + fy(x, y)yt(s, t) = (y − 2)(0) + (x+ 3) sec2 t = (sin s+ 3) sec2 t.

11a ∇f(x, y) = 〈fx(x, y), fy(x, y)〉 = 〈−9x2, 2〉

11b Direction of steepest ascent is

∇f(1, 2)

|∇f(1, 2)|
=

〈−9, 2〉√
(−9)2 + 22

=
1√
85
〈−9, 2〉 ,

and direction of steepest descent is

− 1√
85
〈−9, 2〉 .
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11c Let C0 be given by r(t) = 〈x(t), y(t)〉 for t ≥ 0. Then for any t the tangent vector to C0

at the point (x(t), y(t)), which is r′(t), must be in the direction of −∇f(x, y) = 〈9x2(t),−2〉.
Therefore we set

r′(t) = 〈x′(t), y′(t)〉 = 〈9x2(t),−2〉,
from which we obtain the differential equations x′ = 9x2 and y′ = −2. The first equation can
be solved by the Method of Separation of Variables:

dx

dt
= 9x2 ⇒ dx

9x2
= dt ⇒

∫
1

9x2
dx =

∫
dt ⇒ − 1

9x
= t+K ⇒ x(t) = − 1

9t+K
,

with arbitrary constant K. The equation y′ = −1 easily gives y(t) = −2t + K ′ for arbitrary
constant K ′. Since C is given to start at (1, 2, 3), we must have C0 start at (1, 2); that is,
r(0) = 〈x(0), y(0)〉 = 〈1, 2〉. From −1/(9 · 0 + K) = x(0) = 1 we obtain K = −1, and from
−2(0) +K ′ = y(0) = 2 we obtain K ′ = 2. Therefore an equation for C0 is

r(t) =

〈
1

1− 9t
, 2− 2t

〉
, t ≥ 0.

12 First get the unit vector in the direction of 〈1,
√

3〉:

u =
〈1,
√

3〉
2

=

〈
1

2
,

√
3

2

〉
.

Now,

Duf(x, y) = ∇f(x, y) · u = 〈ex sin y, ex cos y〉 ·

〈
1

2
,

√
3

2

〉
=
ex sin y

2
+

√
3ex cos y

2
,

and so

Duf(0, π/4) =
e0 sin(π/4)

2
+

√
3e0 cos(π/4)

2
=

1/
√

2

2
+

√
3 · 1/

√
2

2
=

√
2 +
√

6

4
.


