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1. In the first quadrant y = 2% and y = 8 — 22 intersect at (2,4), so // +y)dA = / / (z + y)dydx =
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3. Sketch is below. We see R = {(r,0) : r < 3and 0 < 6 < w}. Converting to polar coordinates
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gives: // 2zydA = / / rcosf)(rsin@)rdrdd = / / 213 cos O sin 0 drdf = / cos fsin 0 [27“4] dg =
0o Jo 0 0

/ c08981n0d9—4/ sin(260) do = 0.

0

Y,

2 cos 30 ™ 2 cos 30 T -
T 1 1 0
4. By definition area is given by A = / / rdrdd = / [27"2} df = 2/ cos? 30 df = / %086 de
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= / (1 4 cos66)df = [0 + SH; ] = 7, where along the way we make use of the old trigonometric identity
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cos’a = &. Note a critical thing: the entire curve is traced out exactly once as 6 ranges from 0 to m, so

if you integrate with respect to # from 0 to 27 you will get the area times 2!
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5. / / / (xy + 2z + yz) dedydz = / / 2yzdydz = / (4z — 4z)dz = / (0)dz=0
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6. V= / / / dzdydx = / / (3 —y)dydx = / [Sy — —y2] dr = / (— — 322 + —:c4) dr =
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7. We have /22 + 32 < 2 < 4, where 2 = \/22 + 2 has the yz-trace z = \/? = |y| which should remind us that
z = /22 + y? must be a cone with tip at (0,0,0) and opening upward along the positive z-axis. Let D be the
region enclosed by the plane z = 4 above and the cone z = y/x2 + y2 below. The intersection of the cone with
the plane is at points (z,y, z) where \/z2 + y2 = 4, and so the projection of D onto the zy-plane is R = {(z,vy) :
—V16 — 22 <y < V16 — 22, —4 < 2 < 4} — the closed disc centered at the origin with radius 4. Now notice that
R is precisely the region the points (z,y) range over according to our limits of integration. Hence the region we're
integrating over is D. In cylindrical coordinates we have D = {(r,60,2) : 0 <r <4,0 <0 < 27m,r < z < 4}, and so
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= / (— / sin pdy — 8 / sin de | df, and since Ny 2(sec ¢)’ (if this isn’t clear then employ a
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9. As shown in the Chapter 14 notes: V(D) = /// dV = / / / p? sin o dpdpdf
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