
Math 242 Exam #3 Key (Fall 2011)

1a. ∇f(x, y) = 〈fx(x, y), fy(x, y)〉 =
〈
−9x2, 2

〉

1b. Direction of steepest ascent is
∇f(1, 2)

|∇f(1, 2)|
=

〈−9, 2〉√
(−9)2 + 22

=
1√
85
〈−9, 2〉, and direction of steepest descent is

− 1√
85
〈−9, 2〉.

1c. Let C0 be given by r(t) = 〈x(t), y(t)〉 for t ≥ 0. Then for any t the tangent vector to C0 at the point (x(t), y(t)),
which is r′(t), must be in the direction of −∇f(x, y) = 〈9x2(t),−2〉. Therefore we set

r′(t) = 〈x′(t), y′(t)〉 = 〈9x2(t),−2〉,

from which we obtain the differential equations x′ = 9x2 and y′ = −2. The first equation can be solved by the
Method of Separation of Variables:

dx

dt
= 9x2 ⇒ 1

9x2
dx = dt ⇒

∫
1

9x2
dx =

∫
dt ⇒ − 1

9x
= t+K1 ⇒ x(t) = − 1

9t+K1
,

with arbitrary constant K1. The equation y′ = −1 easily gives y(t) = −2t + K2 for arbitrary constant K2.
Since C is given to start at (1, 2, 3), we must have C0 start at (1, 2); that is, r(0) = 〈x(0), y(0)〉 = 〈1, 2〉. From
−1/(9 · 0 + K1) = x(0) = 1 we obtain K1 = −1, and from −2(0) + K2 = y(0) = 2 we obtain K2 = 2. Therefore
an equation for C0 is

r(t) =

〈
1

1− 9t
, 2− 2t

〉
, t ≥ 0.

2. We have ∇f(x, y) =

〈
2x

4 + x2 + y2
,

2y

4 + x2 + y2

〉
, so ∇f(−1, 2) =

〈
−2

9
,
4

9

〉
. The unit vector in the direction

of 〈2, 1〉 is u =

〈
2√
5
,

1√
5

〉
. Now, Duf(−1, 2) = ∇f(−1, 2) · u =

〈
−2

9
,
4

9

〉
·
〈

2√
5
,

1√
5

〉
= − 4

9
√

5
+

4

9
√

5
= 0.

3. This is really just a Calculus 1 problem. From f(x, y) = 12 we get the equation 16 − x2

4
− y2

16
= 12, or

4x2 + y2 = 64. The equation (implicitly) defines y as a function of x in a neighborhood of x = 2
√

3, so we apply

implicit differentiation with respect to x: (4x2 + y2)′ = (64)′ ⇒ 8x+ 2y · y′ = 0 ⇒ y′(x) = −4x

y
. Now, at the

point (2
√

3, 4) the slope of the tangent line to the curve f(x, y) = 12 is y′(2
√

3) = −4(2
√

3)

4
= −2

√
3.

4a. First, fx(x, y) =
x√

x2 + y2
, and fy(x, y) =

y√
x2 + y2

. Using z = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) +

f(x0, y0) with (x0, y0) = (3,−4), we get z =
3

5
(x− 3)− 4

5
(y + 4) + 5, which simplifies to 3x− 4y − 5z = 0.

4b. The tangent plane serves as a linearization L of function f in a neighborhood of (3,−4), so that L(x, y) ≈
f(x, y) for (x, y) near (3,−4). From (4a) we have L(x, y) =

3

5
x − 4

5
y, and so f(3.06,−3.92) ≈ L(3.06,−3.92) =

4.972.



5. fx(x, y) = x2 + 2y, fy(x, y) = −y2 + 2x, fxx(x, y) = 2x, fyy(x, y) = −2y, fxy(x, y) = 2, and Φ(x, y) =
(2x)(−2y) − 22 = −4xy − 4. Setting fx(x, y) = fy(x, y) = 0, we get the system of equations x2 + 2y = 0 &
−y2 + 2x = 0. From the first equation we get y = −x2/2, which when substituted into the second equation gives
−1

4x
4 + 2x = 0. This becomes x4 − 8x = 0 and then x(x3 − 8) = 0, which has (real) solutions x = 0, 2. From this

we obtain the critical points (0, 0), (2,−2).

Now, Φ(0, 0) = −4 < 0 implies that f has a saddle point at (0, 0); and Φ(2,−2) = 12 > 0 and fxx(2,−2) = 4 > 0
implies that f has a local minimum at (2,−2).

6. fx(x, y) = 4x, fy(x, y) = 2y, fxx(x, y) = 4, fyy(x, y) = 2, fxy(x, y) = 0, Φ(x, y) = 8. Setting fx(x, y) =
fy(x, y) = 0 yields the system 4x = 0 & 2y = 0, which gives (0, 0) as the only critical point. (Note that (0, 0) ∈ R.)
Since fxx(0, 0) = 4 > 0 and Φ(0, 0) = 8 > 0, f has a local minimum at (0, 0).

Along the top side of R we have y = 2, which yields the function f1(x) = 2x2 + 8 for x ∈ [−1, 1]. Using the Closed
Interval Method of Calculus 1 on f1 in [−1, 1], we find the global maximum of f1 occurs at x = ±1 (corresponding
to points (±1, 2) for f), and the global minimum occurs at x = 0 (corresponding to (0, 2) for f).

Along the bottom of R we have y = −1, which yields the function f2(x) = 2x2 + 5 for x ∈ [−1, 1]. We find the
global maximum of f2 occurs at x = ±1, and the global minimum occurs at x = 0.

Along the left side of R we have x = −1, which yields the function f3(y) = y2 + 6 for y ∈ [−1, 2]. The global
maximum of f3 occurs at y = 2, and the global minimum occurs at y = 0.

Along the right side of R we have x = 1, which yields the function f4(y) = y2 + 6 for y ∈ [−1, 2]. The global
maximum of f4 occurs at y = 2, and the global minimum occurs at y = 0.

Any point in R2 that corresponds to a point where any of the functions fi has an extremum is a point where f
itself has an extremum. Thus to find the global extrema of f we evaluate f at all these points as well as all critical
points. We have: f(±1, 2) = 10, f(±1,−1) = 7, f(±1, 0) = 6, f(0, 2) = 8, f(0,−1) = 5, and f(0, 0) = 4.

Therefore f has a global minimum at (0, 0), and a global maximum at (±1, 2).
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7.

∫∫
R
ex+2y dA =

∫ ln 3

1

∫ ln 2

0
ex+2y dxdy =

∫ ln 3

1
e2y
(∫ ln 2

0
ex dx

)
dy =

∫ ln 3

1
e2y [ex]ln 2

0 dy =

∫ ln 3

1
e2y dy =

1

2

[
e2y
]ln 3

1
=

1

2
(9− e2) =

9− e2

2
.

2



8.

∫∫
R
y3 sin(xy2) dA =

∫ √π/2
0

∫ 1

0
y3 sin(xy2) dxdy =

∫ √π/2
0

[
−y

3

y2
cos(xy2)

]1
0

dy =

∫ √π/2
0

−y(cos y2 − 1) dy =∫ √π/2
0

y dy −
∫ √π/2
0

y cos(y2) dy =
π

4
− 1

2

∫ √π/2
0

[
sin(y2)

]′
dy =

π

4
− 1

2

[
sin(y2)

]√π/2
0

=
π

4
− 1

2

3


