
Math 242 Exam #4 Key (Fall 2010)
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2. The hyperboloid intersects the sphere at points (x, y, z) where 1+x2+y2 = 19−x2−y2, or x2+y2 = 9. Thus
the region D enclosed by the two surfaces projects onto the xy-plane as the region R = {(x, y) : x2 + y2 ≤ 9},
which is a circle centered at the origin with radius 3. The hyperboloid, moreover, is the “lower” boundary of D
while the sphere is the “upper” boundary. We thus have volume V given by
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4. We have
√
x2 + y2 ≤ z ≤ 4, where z =

√
x2 + y2 has the yz-trace z =

√
y2 = |y| which should remind

us that z =
√
x2 + y2 must be a cone with tip at (0, 0, 0) and opening upward along the positive z-axis. Let

D be the region enclosed by the plane z = 4 above and the cone z =
√
x2 + y2 below. The intersection

of the cone with the plane is at points (x, y, z) where
√
x2 + y2 = 4, and so the projection of D onto the

xy-plane is R = {(x, y) : −
√

16− x2 ≤ y ≤
√

16− x2,−4 ≤ x ≤ 4} — the closed disc centered at the
origin with radius 4. Now notice that R is precisely the region the points (x, y) range over according to
our limits of integration. Hence the region we’re integrating over is D. In cylindrical coordinates we have
D = {(r, θ, z) : 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2π, r ≤ z ≤ 4}, and so∫ 4
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6. First find where the two surfaces intersect, which will be where 2 cosϕ = 1. Solving gives ϕ = π/3. So, as is
evident in the figure below which shows a “slice” of the situation on the xz-plane, for 0 ≤ ϕ ≤ π/3 we find that
0 ≤ ρ ≤ 1 (see ray

−→
OA in the figure), but for π/3 < ρ ≤ π/2 we have 0 ≤ ρ ≤ 2 cosϕ (see ray

−−→
OB). In any event

we always have 0 ≤ θ ≤ 2π. To find the volume of our enclosed region we find the volumes of two subregions:
volume V1 for the subregion with 0 ≤ ϕ ≤ π/3, and volume V2 for the subregion with π/3 < ϕ ≤ π/2...
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Hence the total volume of the enclosed region is π/3 + π/12 = 5π/12.
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7. Mass is m =
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8. ϕ(x, y) = x+ y2, so F(x, y) = ∇ϕ(x, y) =
〈
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,
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∂y

〉
= 〈1, 2y〉

9. An equipotential curve for ϕ has the general form ϕ(x, y) = C, or x + y2 = C. The given curve contains
(1, 1), which means C must be such that C = 1 + 12 = 2 and therefore x+ y2 = 2 is the equation for the curve.
Solving for x gives x = 2 − y2, so the curve can be parameterized by r(t) = 〈2 − t2, t〉, −∞ < t < ∞. If the
point (x, y) lies on the curve, then at this point we have t = y and so r′(y) = 〈−2y, 1〉 is the tangent vector to
the curve. Now, at this point, we have

F(x, y) · 〈−2y, 1〉 = 〈1, 2y〉 · 〈−2y, 1〉 = 2y − 2y = 0,

which shows that the vector field F is orthogonal to the curve at this point. Since the point (x, y) is arbitrary,
we’ve shown that F is orthogonal to all points of the curve.
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