MATH 242 ExaM #4 KeY (FALL 2010)
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2. The hyperboloid intersects the sphere at points (z, ¥y, z) where 1+2%+9% = 19—22 —9?, or 224+9% = 9. Thus
the region D enclosed by the two surfaces projects onto the xy-plane as the region R = {(x,y) : 2% + 3? < 9},
which is a circle centered at the origin with radius 3. The hyperboloid, moreover, is the “lower” boundary of D
while the sphere is the “upper” boundary. We thus have volume V' given by
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4. We have /22 + 42 < z < 4, where z = \/z2 + 92 has the yz-trace z = /92 = |y| which should remind
us that z = y/22 + y2 must be a cone with tip at (0,0,0) and opening upward along the positive z-axis. Let
D be the region enclosed by the plane z = 4 above and the cone z = /22 + y2 below. The intersection
of the cone with the plane is at points (x,y,z) where /22 +y? = 4, and so the projection of D onto the
zy-plane is R = {(z,y) : —V16—22 < y < V16— 22, —4 < 2 < 4} — the closed disc centered at the
origin with radius 4. Now notice that R is precisely the region the points (z,y) range over according to
our limits of integration. Hence the region we’re integrating over is D. In cylindrical coordinates we have
D={(r0,2):0<r<4,0<0<2mr<z<4}, and so
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6. First find where the two surfaces intersect, which will be where 2 cos ¢ = 1. Solving gives ¢ = 7/3. So, as is
evident in the figure below which shows a “slice” of the situation on the xz-plane, for 0 < ¢ < 7/3 we find that
0 <p<1(seeray OA in the figure), but for 7/3 < p < 7/2 we have 0 < p < 2cos ¢ (see ray O_B>) In any event
we always have 0 < 6 < 2x. To find the volume of our enclosed region we find the volumes of two subregions:
volume V; for the subregion with 0 < ¢ < /3, and volume V5 for the subregion with 7/3 < ¢ < m/2...
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Hence the total volume of the enclosed region is 7/3 + 7/12 = 57/12.
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7. Mass is m = // x,y)dA = / / 1 + E) dxdy = / 8dy = 16. Coordinates for the center mass are
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8. ¢(z,y) =z +y?% so F(z,y) = Vo(z,y) = <ai 8¢> = (1,2y)

9. An equipotential curve for ¢ has the general form ¢(z,y) = C, or = + y?> = C. The given curve contains
(1,1), which means C must be such that C = 1+ 12 = 2 and therefore x + y? = 2 is the equation for the curve.
Solving for x gives x = 2 — y?, so the curve can be parameterized by r(t) = (2 — t2,t), —oo < t < oco. If the
point (z,y) lies on the curve, then at this point we have t = y and so r'(y) = (—2y, 1) is the tangent vector to
the curve. Now, at this point, we have

F(xay) ’ <_2y7 1> = <17 2y> ’ <_2y7 1> =2y —2y =0,

which shows that the vector field F is orthogonal to the curve at this point. Since the point (z,y) is arbitrary,
we’ve shown that F is orthogonal to all points of the curve.



