MATH 242 EXAM #3 Key (Fall 2010)

1. The direction needs to be a unit vector: $\hat{\mathbf{u}} = \left\langle \frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle$. Also $f_x(x,y) = -\frac{y}{(x-y)^2}$ and $f_y(x,y) = \frac{x}{(x-y)^2}$. So $D_{\hat{\mathbf{u}}}f(4,1) = \nabla f(4,1) \cdot \hat{\mathbf{u}} = \langle f_x(4,1), f_y(4,1) \rangle \cdot \langle u_1, u_2 \rangle = \left\langle -\frac{1}{9}, \frac{4}{9} \right\rangle \cdot \left\langle -\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right\rangle = \frac{1}{\sqrt{5}}$.

2a. $\nabla f(x,y) = \langle 12x + 4y, 4x - 6y \rangle$, so direction of steepest ascent is $\nabla f(6,-1) = \langle 68, 30 \rangle$, which as a unit vector is $\frac{1}{\sqrt{5524}} \langle 68, 30 \rangle = \frac{1}{\sqrt{1381}} \langle 34, 15 \rangle$. Direction of steepest descent is in the opposite direction: $-\frac{1}{\sqrt{1381}} \langle 34, 15 \rangle$.

2b. A direction of no change is orthogonal to a direction of maximum change, so one possibility is $\langle -30, 68 \rangle$.

3. Let $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ be the path *C*. At each point (x(t), y(t)) on *C* the tangent vector $\mathbf{r}'(t)$ must point in the direction of steepest descent, which is $-\nabla f(x, y)$. Hence we can define $\mathbf{r}(t)$ so that $\mathbf{r}'(t) = -\nabla f(x, y)$, which gives $\langle x'(t), y'(t) \rangle = -\langle -2x, -4y \rangle = \langle 2x, 4y \rangle$. This tells us that $\frac{dy}{dx} = \frac{2y}{x}$, whence $\int \frac{1}{y} dy = \int \frac{2}{x} dx$. Solving this leads to $\ln |y| = 2 \ln |x| + C$ and then $y = Kx^2$. Since (1, 1) is a point that lies on *C* (i.e. y = 1 when x = 1), we obtain K = 1 and so $y = x^2$ is the equation for *C*. (Equivalently we can define *C* by letting x(t) = t and $y(t) = [x(t)]^2 = t^2$, then $\mathbf{r}(t) = \langle x(t), y(t) \rangle = \langle t, t^2 \rangle$).

4. Here $F(x, y, z) = z - x^2 e^{x-y}$, and by definition the plane tangent to the surface F(x, y, z) = 0 at (2, 2, 4) has equation $\nabla F(2, 2, 4) \cdot \langle x-2, y-2, z-4 \rangle = 0$, which gives $\langle -8, 4, 1 \rangle \cdot \langle x-2, y-2, z-4 \rangle = 0$, or 8x - 4y - z = 4.

5. $f_x(x,y) = 4x^3 - 4y$ and $f_y(x,y) = 4y - 4x$, so $f_x(x,y) = f_y(x,y) = 0$ only at the points (0,0), (1,1), and (-1,-1). Since $f_{xx}(x,y) = 12x^2$, $f_{yy}(x,y) = 4$, and $f(x,y)_{xy}(x,y) = -4$, we find that: $D(0,0) = f_{xx}(0,0)f_{yy}(0,0) - f_{xy}^2(0,0) = -16 < 0$ (so f has a saddle point at (0,0)), $D(1,1) = 12 \cdot 4 - (-4)^2 = 32 > 0$ with $f_{xx}(1,1) = 12 > 0$ (so f has a local minimum value at (1,1)), and D(-1,-1) = 32 > 0 with $f_{xx}(-1,-1) = 12 > 0$ (so f has a local minimum value at (-1,-1)).

6.
$$\int_0^{\pi/2} [\sin xy]_0^1 dx = \int_0^{\pi/2} \sin x \, dx = [-\cos x]_0^{\pi/2} = 1.$$

7.
$$\int_{-1}^{1} \int_{1}^{2} (x^{2} + xy) dx dy = \int_{-1}^{1} \left[\frac{x^{3}}{3} + \frac{x^{2}y}{2} \right]_{1}^{2} dy = \int_{-1}^{1} \left(\frac{7}{3} + \frac{3}{2}y \right) dy = \left[\frac{7}{3}y + \frac{3}{4}y^{2} \right]_{-1}^{1} = \frac{14}{3}.$$

$$8. \quad \int_{-1}^{1} \int_{-x-1}^{2x+2} y^2 \, dy \, dx = \int_{-1}^{1} \left[\frac{y^3}{3} \right]_{-x-1}^{2x+2} \, dx = \frac{1}{3} \int_{-1}^{1} (9x^3 + 27x^2 + 27x + 9) \, dx = 3 \int_{-1}^{1} (x^3 + 3x^2 + 3x + 1) \, dx = 3 \left[\frac{1}{4}x^4 + x^3 + 32x^2 + x \right]_{-1}^{1} = 12.$$

$$9. \quad \int_{0}^{1/4} \int_{0}^{\sqrt{x}} y \cos(16\pi x^{2}) dy dx = \int_{0}^{1/4} \left[\frac{y^{2}}{2} \cos(16\pi x^{2}) \right]_{0}^{\sqrt{x}} = \int_{0}^{1/4} \frac{x \cos(16\pi x^{2})}{2} dx. \quad \text{Let } u = 16\pi x^{2} \text{ to get}$$
$$\int_{0}^{\pi} \frac{\cos u}{x} \cdot \frac{1}{32\pi} du = \frac{1}{64\pi} \int_{0}^{\pi} \cos u \, du = \frac{1}{64\pi} [\sin u]_{0}^{\pi} = 0.$$

10. Area is given by $A = \int_0^{\pi} \int_0^{2\cos 3\theta} r \, dr d\theta = \int_0^{\pi} \left[\frac{1}{2}r^2\right]_0^{2\cos 3\theta} d\theta = 2\int_0^{\pi} \cos^2 3\theta \, d\theta = \int_0^{\pi} \frac{1+\cos 6\theta}{2} \, d\theta = \int_0^{\pi} \frac{1+\cos 6\theta}{2} \, d\theta$

 $\int_0^{\pi} (1 + \cos 6\theta) d\theta = \left[\theta + \frac{\sin 6\theta}{6}\right]_0^{\pi} = \pi, \text{ where along the way we make use of the old trigonometric identity} \\ \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}. \text{ Note a critical thing: the entire curve is traced out exactly once as } \theta \text{ ranges from 0 to } \pi, \\ \text{so if you integrate with respect to } \theta \text{ from 0 to } 2\pi \text{ you will get the area times } 2!}$

