MATH 242 ExaMm #2 Key (FaLL 2010)
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2. We have p = (1,2,—-3) and n = (—2,5,—1). The plane P is the set of all points ¢ = (z,y, z) such that
pg-n =0, which gives (x — 1,y — 2,2+ 3) - (—2,5,—-1) =0, or —2x + 5y — z = 11.

3. To find an equation for our line L it suffices to find two points that lie on it. Setting z = 0 in the equations
of the planes gives equations of the lines in which the planes intersect the zy-plane: x 4+2y =1& z+y = 1;
this system has solution x = 1,y = 0, so (1,0,0) is a point lying on both planes. Setting z = 1 gives equations
of lines in which the planes intersect the z = 1 plane: x +2y —1 =1 & x + y + 1 = 1; this system has solution
x=-2,y=2,80 (—2,2,1) is a point lying on both planes. So, pp = (1,0,0) and p; = (—2,2,1) lie on the line
of intersection L for the planes. The direction of L is then v = pop7 = (—3,2, 1), and by definition L is the set
of all points ¢ = (z,y, z) for which poq is parallel to v—meaning pog = tv for some ¢ € R. From this we obtain
(x —1,y,2) =t(—3,2,1), or (z(t),y(t), 2(t)) = (=3t + 1,2¢,t) for —oo <t < oo. Letting r(t) = (z(t), y(t), 2(t))
then gives us r(t) = (=3t + 1,2¢,t), —oo < t < 0.

4a. Dom g = {(z,y) | y < #?} (all points in R? that lie below the parabola y = x?).
4b. Dom h = {(z,y) | y < 2z + 2} (all points on or below the line y = 1z + 2).

5a. Direct substitution can be employed since the point (1,1n2,3) lies in the domain of a function that is a
combination of polynomial and exponential functions: 3e!™2 = 3.2 = 6.

5b. (2,2) lies on the boundary of the function’s domain, and the definition of limit requires that (z,y) approach
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different values depending on the path taken, it can not exist.

. Since the limit approaches two

Ta. fu(x,y) =y’ sec’xy and fy(z,y) = zy*sec’ xy + 2y tan zy.
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8b. By an established theorem in the textbook, since f is not continuous at (0,0) it cannot be differentiable
at (0,0).

f(0+h,0)— f(0,0)

A = }llir% (0) = 0. Thus, even though f is not differentiable at (0,0), it

8c. f2(0,0) = }llirr(l)
can have partial derivatives at (0,0).
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9. zg=— — == = coszcos 2y — 2sinx sin 2y, and similarly z; = cos z cos 2y + 2 sin x sin 2y.
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10. Here F(x,y) = ye™ — 2 is a function that is differentiable on its domain, so by an established theorem
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