MATH 242 EXAM #2 Key (Fall 2010)

$$\mathbf{1.} \quad \mathbf{T} = \frac{\langle 2, 4\cos t, -4\sin t \rangle}{\sqrt{4 + 16\cos^2 t + 16\sin^2 t}} = \frac{\langle 2, 4\cos t, -4\sin t \rangle}{\sqrt{20}} = \frac{1}{\sqrt{5}} \langle 1, 2\cos t, -2\sin t \rangle; \quad \kappa = \frac{1}{|\mathbf{r}'(t)|} \cdot \left| \frac{d\mathbf{T}}{dt} \right| = 0.1 |\langle 0, -2\sin t, -2\cos t \rangle| = 0.2; \text{ and } \mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|} = \langle 0, -\sin t, -\cos t \rangle.$$

2. We have p = (1, 2, -3) and $\mathbf{n} = \langle -2, 5, -1 \rangle$. The plane P is the set of all points q = (x, y, z) such that $\overrightarrow{pq} \cdot \mathbf{n} = 0$, which gives $\langle x - 1, y - 2, z + 3 \rangle \cdot \langle -2, 5, -1 \rangle = 0$, or -2x + 5y - z = 11.

3. To find an equation for our line *L* it suffices to find two points that lie on it. Setting z = 0 in the equations of the planes gives equations of the lines in which the planes intersect the *xy*-plane: x + 2y = 1 & x + y = 1; this system has solution x = 1, y = 0, so (1, 0, 0) is a point lying on both planes. Setting z = 1 gives equations of lines in which the planes intersect the z = 1 plane: x + 2y - 1 = 1 & x + y + 1 = 1; this system has solution x = -2, y = 2, so (-2, 2, 1) is a point lying on both planes. So, $p_0 = (1, 0, 0)$ and $p_1 = (-2, 2, 1)$ lie on the line of intersection *L* for the planes. The direction of *L* is then $\mathbf{v} = \overline{p_0 p_1^2} = \langle -3, 2, 1 \rangle$, and by definition *L* is the set of all points q = (x, y, z) for which $\overline{p_0 q}$ is parallel to \mathbf{v} —meaning $\overline{p_0 q} = t\mathbf{v}$ for some $t \in \mathbb{R}$. From this we obtain $\langle x - 1, y, z \rangle = t \langle -3, 2, 1 \rangle$, or $\langle x(t), y(t), z(t) \rangle = \langle -3t + 1, 2t, t \rangle$ for $-\infty < t < \infty$. Letting $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ then gives us $\mathbf{r}(t) = \langle -3t + 1, 2t, t \rangle$, $-\infty < t < \infty$.

4a. Dom $g = \{(x, y) \mid y < x^2\}$ (all points in \mathbb{R}^2 that lie below the parabola $y = x^2$).

4b. Dom $h = \{(x, y) \mid y \le \frac{1}{2}x + 2\}$ (all points on or below the line $y = \frac{1}{2}x + 2$).

5a. Direct substitution can be employed since the point $(1, \ln 2, 3)$ lies in the domain of a function that is a combination of polynomial and exponential functions: $3e^{1 \cdot \ln 2} = 3 \cdot 2 = 6$.

5b. (2, 2) lies on the boundary of the function's domain, and the definition of limit requires that (x, y) approach (2, 2) while staying in the domain of the function $f(x, y) = \frac{y^2 - 4}{xy - 2x}$, which is $\{(x, y) \mid xy \neq 2x\}$. For $xy \neq 2x$ we have $\frac{y^2 - 4}{xy - 2x} = \frac{y + 2}{x}$, so $\lim_{(x,y)\to(2,2)} \frac{y^2 - 4}{xy - 2x} = \lim_{(x,y)\to(2,2)} \frac{y + 2}{x} = 2$.

6. Along the path y = x we get $\lim_{(x,y)\to(0,0)} \frac{y^3 + x^3}{xy^2} = \lim_{(x,x)\to(0,0)} \frac{x^3 + x^3}{x \cdot x^2} = \lim_{(x,x)\to(0,0)} (2) = 2$; but along the path y = 2x we get $\lim_{(x,y)\to(0,0)} \frac{y^3 + x^3}{xy^2} = \lim_{(x,2x)\to(0,0)} \frac{(2x)^3 + x^3}{x \cdot (2x)^2} = \lim_{(x,x)\to(0,0)} \frac{9x^3}{4x^3} = \frac{9}{4}$. Since the limit approaches two different values depending on the path taken, it can not exist.

7a.
$$f_x(x,y) = y^3 \sec^2 xy$$
 and $f_y(x,y) = xy^2 \sec^2 xy + 2y \tan xy$.

7b.
$$\rho_u = \frac{1}{v+2w}$$
, $\rho_v = -\frac{u}{(v+2w)^2}$, and $\rho_w = -\frac{2u}{(v+2w)^2}$.

8a. Along the path y = x the limit becomes $\lim_{(x,x)\to(0,0)} -\frac{x\cdot x}{x^2+x^2} = \lim_{(x,x)\to(0,0)} -\frac{1}{2} = -\frac{1}{2}$, which implies that $\lim_{(x,y)\to(0,0)} f(x,y) \neq f(0,0) = 0$ and therefore f is not continuous at (0,0).

8b. By an established theorem in the textbook, since f is not continuous at (0,0) it cannot be differentiable at (0,0).

8c. $f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} (0) = 0$. Thus, even though f is not differentiable at (0,0), it can have partial derivatives at (0,0).

9.
$$z_s = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} = \cos x \cos 2y - 2\sin x \sin 2y$$
, and similarly $z_t = \cos x \cos 2y + 2\sin x \sin 2y$.

10. Here $F(x,y) = ye^{xy} - 2$ is a function that is differentiable on its domain, so by an established theorem $\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{y^2 e^{xy}}{xye^{xy} + e^{xy}} = -\frac{y^2}{xy + 1}.$