1. 10 pts . Find the volume of the region in space bounded by the graphs of $z=9-x^{2}, y=-x+2$, $y=0$, and $z=0$, with $x \geq 0$.
2. 15 pts . Rewrite the integral

$$
\int_{0}^{1} \int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} d z d y d x
$$

in the order $d y d z d x$, then evaluate the resulting integral.
3. 15 pts . Use cylindrical coordinates to find the volume of the region that is inside both the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.
4. 15 pts . Evaluate

$$
\iiint_{D}\left(x^{2}+y^{2}\right) d V
$$

where D is the region outside the sphere $x^{2}+y^{2}+z^{2}=1$ and inside the sphere $x^{2}+y^{2}+z^{2}=16$.
5. 15 pts . Find the points (if any) where the vector field $\mathbf{F}(x, y)=\langle 2 x, y\rangle$ is tangent or normal to the ellipse

$$
\frac{x^{2}}{4}+y^{2}=1
$$

6. Let C be the line segment from $(0,-3,2)$ to $(1,-7,4)$.
(a) 5 pts. Find a parametric description for C in the form $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$.
(b) 10 pts. Evaluate the line integral

$$
\int_{C}\left(x z-y^{2}\right) d s
$$

7. 10 pts. Evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle e^{x-1}, x y\right\rangle$, and the curve C is given by $\mathbf{r}(t)=\left\langle t^{2}, t^{3}\right\rangle$ for $0 \leq t \leq 2$.
8. 10 pts. Let $\mathbf{F}=\langle y-x, x\rangle$, and let C be the curve with parametrization $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t\rangle$ for $t \in[0,2 \pi]$. Find the flux of \mathbf{F} across C.
