1. Consider the surface S given by $f(x, y)=(x+y) e^{x y}$.
(a) 10 pts. Find an equation of the tangent plane to S at the point $(2,0,2)$.
(b) 5 pts. Use the tangent plane to estimate the value of $f(1.95,0.05)$.
2. 15 pts . Find the points at which the surface $S \subseteq \mathbb{R}^{3}$ given by

$$
x^{2}+y^{2}-z^{2}-2 x+2 y+3=0
$$

has horizontal tangent planes.
3. 15 pts . Find the critical points of

$$
f(x, y)=10-x^{3}-y^{3}-3 x^{2}+3 y^{2}
$$

then determine whether each critical point corresponds to a local maximum, local minimum, or saddle point.
4. 10 pts . Evaluate the double integral over the region R, choosing a convenient order of integration:

$$
\iint_{R} x^{5} e^{x^{3} y} d A, \quad R=\{(x, y): 0 \leq x \leq \ln 2,0 \leq y \leq 1\}
$$

5. 10 pts. Evaluate the integral

$$
\iint_{R} y^{2} d A
$$

where R is the region bounded by $x=1, y=2 x+2$, and $y=-x-1$.
6. 10 pts . Use a double integral to find the area of the region R in the first quadrant bounded by $y=e^{x}$ and the line $x=\ln 2$.
7. 10 pts . Sketch the region

$$
R=\left\{(x, y): x^{2}+y^{2} \leq 25, y \leq 0\right\}
$$

then evaluate the integral $\iint_{R} 2 x y d A$ using polar coordinates.
8. 10 pts . Use a double integral and polar coordinates to find the volume of the solid bounded by the paraboloids $z=2 x^{2}+y^{2}$ and $z=27-x^{2}-2 y^{2}$.

