1. 10 pts . Find an equation of the plane containing the points $(1,1,0),(-2,8,4)$ and $(1,2,3)$.
2. 10 pts. Find an equation of the line where the planes $x+2 y-3 z=1$ and $x+y+z=2$ intersect.
3. 10 pts . Determine at what points in $\mathbb{R}^{2}$ the function

$$
F(x, y)=\sqrt{x}+\sqrt{1-x^{2}-y^{2}}
$$

is continuous.
4. 10 pts . Graph two level curves of the function $z=\sqrt{x^{2}+4 y^{2}}$, labeling each curve with its $z$-value.
5. 10 pts. Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1} .
$$

6. 10 pts. Use the Two-Path Test to prove that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2} \cos y}{x^{2}+y^{4}}
$$

does not exist.
7. 10 pts. each Find the partial derivatives indicated.
(a) Given $g(x, y)=x \ln \left(x^{2}+y^{2}\right)$, find $g_{x}$ and $g_{y}$.
(b) Given $h(x, y, z)=\cos (x+2 y+3 z)$, find $h_{z}$ and $h_{x y}$.
8. Let

$$
f(x, y)= \begin{cases}-\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) 10 pts. Is $f$ continuous at $(0,0)$ ? If not, prove it.
(b) 5 pts. Is $f$ differentiable at $(0,0)$ ? If not, why not?
(c) 10 pts. Evaluate $f_{x}(0,0)$, if it exists.
9. 10 pts . Given $w=\cos (2 x) \sin (3 y)$ with $x=t / 2$ and $y=t^{4}$, use an appropriate chain rule to find $d w / d t$. Express the answer in terms of $t$.
10. Let $f(x, y)=2 y-3 x^{3}$.
(a) 5 pts. Find the gradient of $f$.
(b) 5 pts. Find the unit vectors that give the direction of steepest ascent and steepest descent at $(1,2)$.
(c) 10 pts. Let $C$ be the path of steepest descent on the surface $z=f(x, y)$ beginning at $(1,2,1)$, and let $C_{0}$ be the projection of $C$ onto the $x y$-plane. Find an equation for $C_{0}$.
11. 10 pts . Compute the directional derivative of

$$
f(x, y)=e^{x} \sin y
$$

at the point $(0, \pi / 4)$ in the direction $\langle 1, \sqrt{3}\rangle$.

