1. A small plane is flying north in calm air at $300 \mathrm{~km} / \mathrm{h}$ when it is hit by a horizontal crosswind blowing northeast at $55 \mathrm{~km} / \mathrm{h}$ and a $32 \mathrm{~km} / \mathrm{h}$ downdraft.
(a) 10 pts . Find the resulting velocity and speed of the plane.
(b) 5 pts. To the nearest degree, what is the angle (with respect to the horizontal) of the plane's descent?
2. 10 pts. Let $\mathbf{u}=\langle 1,1\rangle$ and $\mathbf{v}=\langle-2,1\rangle$. For arbitrary numbers a and b, express $\langle a, b\rangle$ as a linear combination of \mathbf{u} and \mathbf{v}.
3. 10 pts. Find an equation of the sphere passing through $p=(-4,2,3)$ and $q=(0,2,7)$ with its center at the midpoint of $\overline{p q}$.
4. 10 pts. Find the values of x and y such that the points $(1,2,3),(4,7,1)$ and $(x, y, 9)$ are collinear.
5. 10 pts. each Let $\mathbf{u}=\langle 2,-1,0\rangle$ and $\mathbf{v}=\langle 4,-8,3\rangle$.
(a) Find the angle between \mathbf{u} and \mathbf{v} to the nearest tenth of a degree.
(b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v}.
6. 10 pts . Find the area of the parallelogram that has two adjacent sides given by $\mathbf{u}=\langle-3,0,2\rangle$ and $\mathbf{v}=\langle 1,1,1\rangle$.
7. 10 pts . Find a parametrization for the line through $(-3,-3,8)$ that is perpendicular to both the y-axis and $\mathbf{u}=\langle 0,3,-5\rangle$.
8. 10 pts. Determine whether the lines are parallel, intersecting, or skew:

$$
\mathbf{r}(t)=\langle 5+2 t, 3+3 t, 1-t\rangle, \quad \mathbf{R}(s)=\langle 13-3 s, 13-4 s, 4-2 s\rangle .
$$

If they intersect, find the point(s) of intersection.
9. 10 pts. Given that $\mathbf{r}^{\prime}(t)=\left\langle\cos t, 1-2 e^{-t}, 1-2 e^{t}\right\rangle$ and $\mathbf{r}(0)=\langle 1,1,1\rangle$, find the function \mathbf{r}.
10. 10 pts. Find the speed associated with the trajectory

$$
\mathbf{r}(t)=\left\langle 5 \cos t^{2}, 5 \sin t^{2}, 12 t^{2}\right\rangle
$$

and then find the length of the trajectory on the interval $0 \leq t \leq 2$.
11. 15 pts. Find the curvature κ of the curve $\mathbf{r}(t)=\left\langle t, t^{2}, t^{2} / 2\right\rangle$, and then find the point on the curve where the curvature attains a maximum. What is the maximum curvature value?

