Math 242 Fall 2016 Exam 1

NAME:

- 1. 10 pts. Find two vectors in \mathbb{R}^2 that are parallel to $\mathbf{u} = \langle 2, -5 \rangle$, but with 7 times the magnitude.
- 2. 10 pts. A 100 kg load rests on a flat surface that makes an angle of 30° with the floor. Find the components of the force of gravity acting on the load that are perpendicular and parallel to the surface. (On Earth gravity exerts a force having magnitude mg on an object with mass m, where $g = 9.8 \text{ m/s}^2$.)
- 3. 10 pts. Determine the values of x and y such that the points (1,2,3), (4,7,1), and (x,y,2) are collinear (i.e. they lie on a line).
- 4. Pictured below are four spheres (it is a stereoscopic figure but the depth effect is not needed). The three lower spheres are centered at points O = (0, 0, 0), $P = (\sqrt{3}, -1, 0)$, and $Q = (\sqrt{3}, 1, 0)$. The top sphere sits upon the lower spheres such that its center C is equidistant from O, P, and Q.
 - (a) 10 pts. Find the coordinates of C.
 - (b) 5 pts. Let \mathbf{r}_{IJ} denote, in general, the vector from point I to point J. Find \mathbf{r}_{PQ} and \mathbf{r}_{PC} .

- 5. 10 pts. each Let $\mathbf{u} = \langle 2, -1, 9 \rangle$ and $\mathbf{v} = \langle -2, -5, 3 \rangle$.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} to the nearest tenth of a degree.
 - (b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v} .
- 6. 10 pts. Find the area of the parallelogram that has two adjacent sides given by $\mathbf{u} = \langle -3, 0, 2 \rangle$ and $\mathbf{v} = \langle 1, 1, 1 \rangle$.
- 7. 10 pts. Find a parametrization for the line through the point (-3, 4, 2) that is perpendicular to both $\mathbf{u} = \langle 1, 1, -5 \rangle$ and $\mathbf{v} = \langle 0, 4, 0 \rangle$.

8. 10 pts. Find a parametrization for the tangent line to the curve

$$\mathbf{r}(t) = \langle 3t - 1, 7t + 2, t^2 \rangle$$

at the point corresponding to t = 1, making sure the orientation of the line is the same as the direction of the tangent vector at that point.

9. 10 pts. Find the length of the curve

$$\mathbf{r}(t) = \langle \cos t + \sin t, \cos t - \sin t \rangle, \quad t \in [0, 2\pi].$$

10. 15 pts. Find the curvature κ of the helix

$$\mathbf{r}(t) = \langle a\cos t, a\sin t, bt \rangle,$$

where a, b > 0 are constants. What happens to the curvature as $b \to \infty$?