NAME:

- 1. 10 pts. Find all values of a such that $\mathbf{w} = a\mathbf{i} \frac{1}{4}a\mathbf{j}$ is a unit vector.
- 2. 10 pts. Three forces with magnitudes of 400 newtons, 280 newtons, and 350 newtons act on an object at angles of -30° , 45° , and 135° with the positive x-axis, respectively. Find the magnitude and direction of the resultant force **F**.
- 3. 10 pts. A remote sensing probe falls vertically with a terminal velocity of 60 m/s when it encounters a horizontal crosswind blowing north at 4 m/s and an updraft blowing vertically at 10 m/s. Find the magnitude and direction of the resulting velocity v relative to the ground.
- 4. 10 pts. Give a geometric description of the set of points $(x, y, z) \in \mathbb{R}^3$ that satisfy the equation

$$x^2 + y^2 + z^2 - 8x + 14y - 18z \ge 65.$$

- 5. 5 pts. each Let $\mathbf{u} = \langle 2, -1, 8 \rangle$ and $\mathbf{v} = \langle -2, 4, -3 \rangle$.
 - (a) Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
 - (b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v} .
 - (c) Find the angle between ${\bf u}$ and ${\bf v}$ to the nearest tenth of a degree.
- 6. 10 pts. Let $\mathbf{v} = \langle 0, 2, 0 \rangle$. Give a description of all position vectors \mathbf{u} such that

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \operatorname{proj}_{\mathbf{v}}\langle 1, 2, 4 \rangle.$$

7. 10 pts. Find the points, if any, where the plane y=1 intersects with the curve

$$\mathbf{r}(t) = \langle 10\cos t, 2\sin t, 1 \rangle, \quad t \in [0, 2\pi].$$

- 8. $\boxed{10 \text{ pts.}}$ Find a parameterization for the line segment having endpoints (-1, -8, 4) and (-9, 5, -3).
- 9. 10 pts. Find the unit tangent vector for the parameterized curve

$$\mathbf{r}(t) = \left\langle t, 2, \frac{2}{t} \right\rangle, \ t \ge 1$$

at the point corresponding to t = 2.

$$\int_0^1 \left\langle e^{2t}, e^{-t}, t \right\rangle dt$$

- 11. 10 pts. The acceleration of an object at time t is $\mathbf{a}(t) = \langle 1, t \rangle$. Given that the object's initial velocity is $\mathbf{v}(0) = \langle 2, -1 \rangle$ and initial position is $\mathbf{r}(0) = \langle -3, 6 \rangle$, find the object's position at time t.
- 12. Let C be the curve in \mathbb{R}^2 given by $f(x) = x^3$.
 - (a) 5 pts. Give C using a vector-valued function $\mathbf{r}(t)$.
 - (b) 10 pts. Find the curvature function of C using the formula

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}.$$

(c) $\boxed{\mbox{10 pts.}}$ Find the point on C where the curvature is greatest, and give the curvature at that point. Do not round your answer!