NAME:

- 1. Let $f(x, y) = 2y 3x^3$.
 - (a) 5 pts. Find the gradient of f.
 - (b) 5 pts. Find the unit vectors that give the direction of steepest ascent and steepest descent at (1, 2).
 - (c) 10 pts. Let C be the path of steepest descent on the surface z = f(x, y) beginning at (1, 2, 1), and let C_0 be the projection of C onto the xy-plane. Find an equation for C_0 .
- 2. 10 pts. Compute the directional derivative of $f(x, y) = \ln(4 + x^2 + y^2)$ at the point (-1, 2) in the direction (2, 1).
- 3. 10 pts. Given $f(x,y) = 16 x^2/4 y^2/16$, find the slope of the tangent line to the level curve f(x,y) = 12 at the point $(2\sqrt{3}, 4)$.
- 4. Consider the surface S given by $f(x,y) = \sqrt{x^2 + y^2}$.
 - (a) 10 pts. Find an equation of the tangent plane to S at the point (3, -4, 5).
 - (b) 5 pts. Use the tangent plane to estimate the value of f(3.06, -3.92).
- 5. 10 pts. Find the critical points of $f(x, y) = x^3/3 y^3/3 + 2xy$, then determine whether each critical point corresponds to a local maximum, local minimum, or saddle point.
- 6. 15 pts. Find the global extrema of the function $f(x, y) = 4 + 2x^2 + y^2$ on the set

$$R = \{(x, y) : -1 \le x \le 1, -1 \le y \le 2\}$$

- 7. 10 pts. Evaluate $\iint_R e^{x+2y} dA$ over the region $R = \{(x, y) : 0 \le x \le \ln 2, 1 \le y \le \ln 3\}$
- 8. 10 pts. Evaluate $\iint_R y^3 \sin(xy^2) dA$ over the region $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le \sqrt{\pi/2}\}$, choosing a convenient order.