Mat	\mathbf{h}	242
Exa	m	5
Fall	20	010

Name:

- 1. 10 pts. Evaluate $\int_C (x^2 + y^2) ds$, where C is the line segment from (0,0) to (5,5).
- 2. 10 pts. Compute the flux for the vector field $\mathbf{F}(x,y) = \langle y-x,x \rangle$ across $C: \mathbf{r}(t) = \langle 2\cos t, 2\sin t \rangle$, $0 \le t \le 2\pi$.
- 3. 15 pts. Determine whether the vector field $\mathbf{F}(x,y,z) = \langle y+z, x+z, x+y \rangle$ is conservative on \mathbb{R}^3 . If it is, determine a potential function.
- 4. 10 pts. Evaluate $\int_C \nabla \varphi \cdot d\mathbf{r}$ for $\varphi(x, y, z) = x + y + z$ and $C : \mathbf{r}(t) = \langle \sin t, \cos t, t/\pi \rangle$, $0 \le t \le \pi$.
- 5. 10 pts. Use a line integral on the boundary ∂R to find the area of the region R bounded by the parabolas $\mathbf{r}_1(t) = \langle t, 2t^2 \rangle$ and $\mathbf{r}_2(t) = \langle t, 12 t^2 \rangle$.
- 6. 10 pts. Use Green's Theorem to evaluate $\oint_C \mathbf{F} \cdot \mathbf{n}$, where $\mathbf{F}(x, y, z) = \langle 2x + e^{y^2}, 4y^2 + e^{x^2} \rangle$ and C is the boundary of the square with vertices (0, 0), (1, 0), (1, 1), (0, 1).
- 7. 5 pts. Find the divergence of $\mathbf{F}(x,y,z) = \langle e^{-x+y}, e^{-y+z}, e^{-z+x} \rangle$.
- 8. 10 pts. Find the curl of $\mathbf{F}(x, y, z) = \langle x^2 z^2, 1, 2xz \rangle$.
- 9. 10 pts. Find all vectors \mathbf{v} for which $(\operatorname{curl} \mathbf{F}) \cdot \mathbf{v} = 0$, given $\mathbf{F}(x, y, z) = \langle 2y, -3z, x \rangle$.