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1

1
Foundations

1.1 – Logic

There are two truth values: true and false. A statement is a word string (i.e. a
combination of words) that has a truth value deriving from prior knowledge. Thus “Two
plus five is seven” is a statement, but the Vulcan expression “Live long and prosper” is not a
statement. There are gray areas. Is the Klingon expression “Today is a good day to die” a
statement or not? As Obi-Wan would say, “It depends on your point of view.” Fortunately in
our study of calculus such gray areas will not arise.

In mathematics prior knowledge consists of lemmas, theorems, and corollaries. A lemma is
usually a technical result that facilitates the proof of a theorem, whereas a corollary is a result
that follows immediately from a theorem. In these notes a theorem is a relatively important
result, while a less important result is called a proposition. It will be sometimes convenient
to refer to lemmas, theorems, corollaries, and propositions collectively as “theorems” so as to
avoid excessive verbiage.

There is one fundamental problem. Each theorem in mathematics is by definition a true
statement, so its truth must derive from prior knowledge. This prior knowledge we would
reasonably surmise is comprised of one or more other theorems. But these other theorems in turn
must derive their truth from still other theorems, and so on. The problem is one of an “infinite
regress.” In order for mathematics to advance there must be some means of halting this infinitely
regressing chain of theorems, and the solution is simple even if (for many mathematicians)
unsatisfactory: allow the chain of theorems to regress only so far as is necessary in order for the
prior knowledge from which they derive their truth to be credibly declared a “self-evident” truth.
In mathematics self-evident truths and basic assumptions are called axioms or postulates.

Axioms often include undefined terms. For example, in plane geometry one axiom is “A
straight line may be drawn between any two points.” The terms “line” and “point” are undefined.
This is not a serious problem: every instance of the words “line” and “point” could be replaced
by “sillygon” and “shimsong” in the English translation of Euclid’s Elements, and the truth
value of not a single theorem would be affected.

In formal logic statements are often represented by symbols such as P and Q. Thus P is
rather akin to a variable such as x in elementary algebra, but whereas x in algebra usually
represents a numerical value, in logic P is regarded as having truth values. In fact it is more
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accurate to say that, in formal logic, P is a variable that assumes truth values; but since only
statements have truth values, it is still fine to think of P as standing for a statement.

Two statements P and Q are said to be equivalent if they always have the same truth
value; that is, Q is true whenever P is true, and Q is false whenever P is false. For instance the
statements “0 is less than 1” and “1 is greater than 0” are equivalent. The symbol ⇔ stands
for “is equivalent to,” so that P ⇔ Q is read as “P is equivalent to Q.” (We will dispense with
putting quotes around statements that are expressed entirely symbolically.) In mathematics
logically equivalent statements are entirely interchangeable.

The relation1 ⇔ has a transitive property. If P1, P2, . . . , Pn are statements such that
Pi ⇔ Pi+1 for all 1 ≤ i ≤ n− 1, then P1 ⇔ Pn.

Example 1.1. In algebra, the operation of “solving” an equation featuring a variable x is
actually one of establishing a chain of equivalencies that link the original equation to one or
more simpler equations in which the x is isolated. What this accomplishes, of course, is to
determine precisely what value(s) x may assume in order for the original equation to become a
true statement.2 Consider the equation 2x− 3 = 7. We have

2x− 3 = 7 ⇔ 2x = 10 ⇔ x = 5;

that is, 2x− 3 = 7 is equivalent to x = 5, or in other words 2x− 3 = 7 can only ever be true if
x = 5. ■

A statement P implies another statement Q, written P ⇒ Q, if Q is true whenever P is
true; that is, if P is known to be true, then it can be concluded that Q is also true. We note
that if P ⇒ Q and Q ⇒ P are both true, then P ⇔ Q is true; also, if P ⇔ Q is true, then
P ⇒ Q and Q ⇒ P are both true. The relation ⇒ has the same transitive property that ⇔
possesses.

Example 1.2. Let P be the statement x = 3, and Q the statement x2 = 9. Then clearly P
implies Q (i.e. P ⇒ Q). But Q does not imply P . We have

Q ⇒ x2 = 9 ⇒
√
x2 =

√
9 ⇒ |x| = 3 ⇒ x = ±3,

where the statement x = ±3 is equivalent to the statement “x = 3 or x = −3,” which certainly
does not necessarily imply that x = 3, which is statement P . We conclude that x = 3 and x2 = 9
are not equivalent statements. In particular if x = −3 then P is false, but since x2 = (−3)2 = 9
we see that Q is true. ■

Simple statements can be combined to make more complex statements. For instance, if
P and Q are statements, then “P or Q” is another statement. And this is important: the
statement “P or Q” is false only when both P and Q are false. Thus if P is the statement “1
is less than 2” and Q is the statement “1 is equal to 2,” then the statement “P or Q,” which
stands for “1 is less than 2 or 1 is equal to 2,” is true by virtue of the fact that P is true (even
though Q is false). Of course, we have notation at hand to write “P or Q” as 1 ≤ 2.

1The idea of a mathematical relation is defined more formally in §1.4, but for now it’s enough to say that a
relation is some rule that “relates” objects to one another, such as > relates 9 to 8 in the statement 9 > 8.

2Truth is a really big deal in mathematics.
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Another common compound statement is “P and Q,” and it’s important to remember that
it is only true if both P and Q are true. If either P is false or Q is false, then “P and Q” is
false. For instance, “1 is less than 2 and 1 is equal to 2” is false.

Many calculus theorems are if-then statements: “If P , then Q.” One important thing to
remember about “If P , then Q” is that it is only false if P is true and Q is false. Curiously, if P
is false then “If P , then Q” is true regardless of whether Q is true or false. Another important
thing about “If P , then Q” is that “If not P , then not Q” is an equivalent statement.
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1.2 – Set Theory

A set is a collection of objects. An object in a set is called an element of the set. If S is a
set and a is an element of S, we write a ∈ S. If a is not an element we write a /∈ S. Two sets A
and B are said to be equal, written A = B, if they contain precisely the same elements. The
empty set, denoted by ∅ or { }, is the set that contains no elements.

A set is well-defined if, given any object a, it can be determined, without ambiguity,
whether a is an element of S or not.

Example 1.3. If S is said to be the set of whole numbers greater than 3 and less than 9, then
S is well-defined since it is clear that the elements of S must be 4, 5, 6, 7, and 8.

If, on the other hand, S is said to be the set of “astronomically humongous” whole numbers,
then while it would be reasonably clear that, say, 1, 10, and 50 must not be elements of S, it
would not at all be certain that 10,000, 1,000,000, or 50,000,000 are elements. Thus S would
not be well-defined.

If S is said to be the set of “the ten best books ever written,” should we consider it to be
well-defined? ■

One common way of defining a set is roster notation, which is a notation which lists some
or all of the set’s elements between braces. Thus, if S is the set of whole numbers greater than
3 and less than 9, we can write

S = {4, 5, 6, 7, 8}.
The set of whole numbers from 1 to 100 can be presented in roster notation by

{1, 2, 3, . . . , 99, 100}.

The set of whole numbers greater than or equal to 1 is known as the set of natural numbers
(or counting numbers) and is given the special symbol R. In roster notation we can write

R = {1, 2, 3, 4, . . .}.

Also of great importance is the set of integers, symbol Z, which consists of the whole numbers
and their negatives, and so

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The set of rational numbers, symbol Q, consists of all numbers that are expressible as a ratio
of integers. Thus if r is a rational number, then there must exist p, q ∈ Z such that r = p/q,
with the one caveat being that we must have q ̸= 0 (otherwise no number results at all). It is
not practical to present Q in roster notation since a complete listing of rational numbers cannot
be given which preserves their order. Starting in the middle at 0 as was done for the integers,
the question arises: what is the “next higher” rational number? There is none! Before 1 there is
1/2, before 1/2 there is 1/3, before 1/3 there is 1/4, and so on ad infinitum.

A more robust way of defining sets is with set-builder notation. The general form is

{x : p(x)} or {x | p(x)},

which is read as “the set of all x such that p(x),” with p(x) being some logical statement whose
truth value depends on the value of x. The understanding is that if p(x) is true (truth value 1),
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then x is an element of the set; and if p(x) is false (truth value 0), then x is not an element of
the set. For example we may let p(x) be the statement “x is an integer, and x is greater than 3
and less than 10,” in which case {x : p(x)} may be written as

{x : x ∈ Z and 3 < x < 10},

which is read as: “The set of all x such that x ∈ Z and 3 < x < 10.” Thus the set consists of
integers that are greater than 3 and less than 10, which is to say

{x : x ∈ Z and 3 < x < 10} = {4, 5, 6, 7, 8, 9}.

Returning to the rational numbers, we can write

Q =

ß
p

q

∣∣∣∣ p, q ∈ Z and q ̸= 0

™
.

In the next section we will define the set R of real numbers, which includes all the rational
numbers.

If all the elements of a set A are also elements of a set B, then we say A is a subset of B
and write A ⊆ B. More precisely,

A ⊆ B ⇔ ∀x(x ∈ A→ x ∈ B).

Thus R ⊆ Z and Z ⊆ Q, for instance. An equivalent way of writing A ⊆ B is B ⊇ A, which
can be read as “A is a subset of B” or “B is a superset of A.” It should be clear that A = B if
and only if A ⊆ B and A ⊇ B, just as in algebra x = y if and only if x ≤ y and x ≥ y.

We now define a variety of set operations that will be indispensable throughout the book.
First there is the notion of the union of two sets A and B, defined to be the set A∪B given by

A ∪B = {x : x ∈ A or x ∈ B},

where A ∪B is read as “A union B.” The intersection of A and B is the set A ∩B given by

A ∩B = {x : x ∈ A and x ∈ B},

where A ∩B is read as “A intersect B.” Thus if A = {1, 4, 8, 9} and B = {1, 2, 3, 4, 5}, then

A ∪B = {1, 4, 8, 9} ∪ {1, 2, 3, 4, 5} = {1, 2, 3, 4, 5, 8, 9},

and

A ∩B = {1, 4, 8, 9} ∩ {1, 2, 3, 4, 5} = {1, 4}.

The complement of a set A, written Ac, is defined to be the set of all objects in a set
U ⊇ A that are not elements of A. More precisely,

Ac = {x : x ∈ U and x /∈ A}.

The set U is called the universe of discourse and usually contains all objects that are relevant
to an analysis. In calculus we usually have U = R, the set of real numbers discussed in Section
1.3.
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Example 1.4. Let A = {3, 4, 5, 6, . . .}. If U = R, then

Ac = {x : x ∈ R and x /∈ A} = {x : x = 1, 2, 3, . . . and x ̸= 3, 4, 5, . . .} = {1, 2}.

If U = Z, then

Ac = {x : x ∈ Z and x /∈ A} = {. . . ,−2,−1, 0, 1, 2} = {2, 1, 0,−1,−2, . . .}.

Finally, if U = A then Ac = ∅. ■

Definition 1.5. Let S be a set. An order on S is a relation among its elements, denoted by <,
that has the following properties:

1. For all a, b ∈ S exactly one of the following statements must be true: a < b, a = b, b < a.
2. For all a, b, c ∈ S, if a < b and b < c, then a < c.

A set S with an order < is called an ordered set and may be denoted by (S,<).

The relation < may be pronounced as “is less than,” although all the symbol really represents
is this abstract setting is a general rule for ordering (i.e. arranging) the elements of S in some
fashion, so that given any two elements a and b in S, we can determine which element comes
“first”. Thus < could also be read as “comes before” or “is the predecessor to” or “precedes”.
We take a > b to be equivalent to b < a, and define a ≤ b and a ≥ b to signify the statements
“a < b or a = b” and “a > b or a = b,” respectively. (More about relations in general will be
discussed in §1.4.)

Certainly if S happens to be the set of integers Z, say, we would expect < to represent the
familiar “less than” relation. It should be clear that R, Z, and Q are all ordered sets.

Definition 1.6. Let (S,<) be an ordered set, and suppose A ⊆ S. If there exists some α ∈ S
such that x ≤ α for all x ∈ A, then α is an upper bound for A and A is bounded above. If
there exists some β ∈ S such that x ≥ β for all x ∈ A, then β is a lower bound for A and A
is bounded below.

Definition 1.7. Suppose (S,<) is an ordered set, A ⊆ S, and A is bounded above. Suppose
α ∈ S has the following properties:

1. α is an upper bound for A.
2. If γ is an upper bound for A, then γ ≥ α.

Then α is the least upper bound of A, also called the supremum of A, and we write

α = sup(A).

Definition 1.8. Suppose (S,<) is an ordered set, A ⊆ S, and A is bounded below. Suppose
β ∈ S has the following properties:

1. β is a lower bound for A.
2. If γ is a lower bound for A, then γ ≤ α.

Then β is the greatest lower bound of A, also called the infimum of A, and we write

β = inf(A).
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Example 1.9. Consider the set A ⊆ Q given by

A =
{
x : x ∈ Q and x ≤ 1

2

}
,

which is bounded above but not bounded below. Certainly 3 ∈ Q is an upper bound for A, but
it is not the least upper bound since smaller numbers such as 2, 1, and 3

5
are also upper bounds.

Clearly the least upper bound is 1
2
, and so we write sup(A) = 1

2
. In fact if we remove 1

2
from A

to obtain the set
A′ =

{
x : x ∈ Q and x < 1

2

}
,

the least upper bound remains unchanged: sup(A′) = 1
2
. What this shows is that the least

upper bound of a set need not be an element of the set.
Now consider the set B ⊆ Q given by

B =
¶
x : x ∈ Q and x ≤

√
2
©
,

the set of all rational numbers not larger than
√
2. This set is also bounded above. One upper

bound is 3
2
, since

3
2
= 1.5 > 1.41421356 ≈

√
2,

but clearly 3
2
is not the least upper bound. Successively smaller upper bounds for B are:

1.42, 1.419, 1.418, 1.417, 1.416, 1.415, 1.4149, 1.4148, 1.4147, 1.4146, ...

All of these upper bounds are elements of Q, but none of them is the least upper bound. The
least upper bound for B is

√
2, however

√
2 is not an element of Q. There exists no α ∈ Q such

that α = sup(B)! ■
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1.3 – Real Numbers

Given a set S, a binary operation on S is a rule for combining two elements of S in order
to obtain another element of S. The basic operations of addition, subtraction, multiplication,
and division encountered in arithmetic are examples of binary operations. So, for instance, the
addition operation + takes any two elements of Z (i.e. any two integers m and n) and returns
another element of Z (i.e. an integer m+ n).

Definition 1.10. The real number system (R,+, ·, >) consists of a set R of objects called
real numbers, together with binary operations + and · on R, and a relation >, that are subject
to the following axioms:

F1. a+ b = b+ a for all a, b ∈ R.
F2. a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.
F3. There exists some 0 ∈ R such that a+ 0 = a for all a ∈ R.
F4. For all a ∈ R there exists some b ∈ R such that a+ b = 0.
F5. a · b = b · a for all a, b ∈ R.
F6. a · (b · c) = (a · b) · c for all a, b, c ∈ R.
F7. There exists some 1 ∈ R such that 1 ̸= 0 and a · 1 = a for all a ∈ R.
F8. For all a ∈ R such that a ̸= 0 there exists some b ∈ R such that a · b = 1.
F9. a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.
O1. For all a ∈ R exactly one of the following statements must be true: a > 0, a = 0, 0 > a.
O2. For all a, b ∈ R, if a, b > 0, then a+ b > 0.
O3. For all a, b ∈ R, if a, b > 0, then a · b > 0.
O4. For all a, b ∈ R, if a > b, then a+ c > b+ c for all c ∈ R.
C1. For any S ⊆ R such that S ̸= ∅, if S has an upper bound in R, then S has a least upper
bound in R.

The element b in Axiom F4 is called the additive inverse of a, which we usually denote by
the symbol −a so that (together with Axiom F1) we have

(−a) + a = a+ (−a) = 0.

The binary operations + and · are naturally called addition and multiplication, and as a
notational convenience we define a subtraction operation − by

a− b = a+ (−b),

where of course −b denotes the additive inverse of b.
Any set of objects that satisfies Axioms F1 to F9 is called a field, and so for that reason

these axioms are called the field axioms of the real number system. Axioms O1 to O4 are the
order axioms, which together with the field axioms make the real number system an ordered
field. Finally, Axiom C1 is the Completeness Axiom, which as an isolated statement defines
the property known as completeness. The Completeness Axiom warrants closer examination,
but first we verify that the relation > in Definition 1.10 is in fact an order for the elements of R.

Proposition 1.11. R is an ordered set.
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Proof. Let a, b ∈ R. By Axiom F4 there exists some −b ∈ R such that b+ (−b) = 0, and thus

a+ (−b) ∈ R

since + is given to be a binary operation on R. By Axiom O1 exactly one of

a+ (−b) > 0, a+ (−b) = 0, 0 > a+ (−b)

is true, and so by Axiom O4 it follows that exactly one of

(a+ (−b)) + b > 0 + b, (a+ (−b)) + b = 0 + b, 0 + b > (a+ (−b)) + b

is true. Now we employ Axioms F2 and F3 to obtain

a+ ((−b) + b) > b, a+ ((−b) + b) = b, b > a+ ((−b) + b),

whence
a+ 0 > b, a+ 0 = b, b > a+ 0.

Therefore, using Axiom F3, we conclude that exactly one of

a > b, a = b, b > a

is true, which shows that the first property given in Definition 1.5 holds.
For the second property, let a, b, c ∈ R, and suppose c > b and b > a. By Axiom F4 there

exists some −a,−b ∈ R such that a+ (−a) = 0 and b+ (−b) = 0, and so by Axiom O4

c+ (−b) > b+ (−b) and b+ (−a) > a+ (−a),
whence

c− b > 0 and b− a > 0.

Now, by Axiom O2,
(c− b) + (b− a) > 0, (1.1)

where

(c− b) + (b− a) = (c+ (−b)) + (b+ (−a))
= ((c+ (−b)) + b) + (−a) (Axiom F2)

= (b+ (−b+ c)) + (−a) (Axiom F1)

= ((b+ (−b)) + c) + (−a) (Axiom F2)

= (0 + c) + (−a)
= (c+ 0) + (−a) (Axiom F1)

= c+ (−a) (Axiom F3)

Putting this result into (1.1) yields
c+ (−a) > 0.

By Axiom O4 we may add a to both sides to obtain

(c+ (−a)) + a > 0 + a,
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whereupon application of Axioms F1 and F2 on the left, and F3 on the right, yields

c > a

as desired. ■

The rational number system (Q,+, ·, >) consists of the set of rational numbers defined in
the previous section, along with the usual arithmetic operations of addition and multiplication,
and also the familiar order relation > known as “greater than”. It can be verified, though it is
tedious, that (Q,+, ·, >) satisfies all the field and order axioms in Definition 1.10. The only
axiom (Q,+, ·, >) fails to satisfy is Axiom C1, the Completeness Axiom. In fact we discovered
this in Example 1.9, when we considered the set B ⊆ Q given by

B =
¶
x : x ∈ Q and x ≤

√
2
©
.

B has an upper bound in Q (for instance 2), yet it does not have a least upper bound in Q.
This violates the completeness property given by Axiom C1, and so the rational number system
is set apart from the real number system.

One might wonder how we “know” the set of objects R presented in Definition 1.10 really
is the set of real numbers encountered in elementary algebra courses? The numbers 0 and 1
appear to be mentioned, but where is

√
2 among the axioms? Where is π? It turns out that,

just as the rational numbers can be constructed from the integers, so too can the real numbers
of elementary algebra be constructed from the rational numbers. The precise way in which this
is done is beyond the scope of this book, but suffice it to say that once the feat is accomplished
there is no doubt that the end result is a set of numerical quantities that satisfy all the axioms
in Definition 1.10. But again, how do we “know” the set of objects given by Definition 1.10 are
the same as the numerical quantities that are constructed from the rational numbers? In fact
we don’t know. So why are the objects in the definition above being called real numbers? The
reason stems from a basic truth: mathematics does not so much study objects themselves, but
rather relationships between objects.

The reality of the situation is as follows. It can be proven that any two sets of objects,
say R1 and R2, that satisfy all the axioms of Definition 1.10 are isomorphic. This essentially
means that the sets of objects are identical in every way except for the symbols used to denote
them. In R1 the square root of two and pi may be represented by the symbols

√
2 and π, while

in R2 they may be represented by x and y. But this makes no substantive difference! The
symbols x and y have as much claim to be the numbers square root of two and pi as the symbols√
2 and π. Symbols represent things, and have no innate properties that hold interest for the

mathematician.
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1.4 – Relations and Functions

Recall that for an ordered pair (x, y), x is called the first coordinate and y the second
coordinate.

Suppose X and Y are sets. Then the Cartesian product of X and Y , written X × Y , is
defined as

X × Y = {(x, y) : x ∈ X and y ∈ Y },

which is to say that X × Y is the set of all ordered pairs (x, y) such that x (the first-coordinate
value) is an element of X and y (the second-coordinate value) is an element of Y . Thus, if
X = {a, b, c} and Y = {1, 2, 3, 4}, then

X × Y = {(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4), (c, 1), (c, 2), (c, 3), (c, 4)}
and

Y ×X = {(1, a), (2, a), (3, a), (4, a), (1, b), (2, b), (3, b), (4, b), (1, c), (2, c), (3, c), (4, c)}.

Notice that in general X × Y ̸= Y ×X.
In particular if [a, b ] and [c, d ] are closed intervals in R, we have

[a, b]× [c, d ] =
{
(x, y) : x ∈ [a, b] and y ∈ [c, d ]

}
=
{
(x, y) : a ≤ x ≤ b and c ≤ y ≤ d

}
,

which forms a rectangle in the xy-plane as shown in Figure 1.

Definition 1.12. A relation R is an ordered triple (X, Y,Γ), where X and Y are arbitrary
sets, and Γ ⊆ X×Y is a set of ordered pairs called the graph of R. We may write R = (X, Y,Γ)
and say R is a relation from X into Y . The set X is the domain of R, written Dom(R),
and Y is the co-domain of R. The range of R is the set Ran(R) ⊆ Y given by

Ran(R) = {y : ∃x ∈ X((x, y) ∈ Γ)}.
Two relations R1 = (X1, Y1,Γ1) and R2 = (X2, Y2,Γ2) are equal if and only if X1 = X2,

Y1 = Y2, and Γ1 = Γ2, in which case we write R1 = R2.

Observe that the range of a relation R is just the set of second-coordinate values of the
ordered pairs belonging to the graph Γ of R. The definition for a relation may seem rather
arcane, but the idea behind the ordered triple (X, Y,Γ) is simple: There is a set of objects X,

x

y

a b

c

d
[a, b]× [c, d ]

Figure 1. The Cartesian product of two closed intervals in R.
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another set of objects Y , and then Γ is some rule that relates (i.e. pairs) objects in X to objects
in Y in some fashion.

Example 1.13. One kind of relation we have already encountered is the order relation introduced
in Definition 1.5, denoted by <, which establishes an order among the elements of a set S so as
to create an ordered set (S,<). In terms of Definition 1.12 the relation < is a triple (S, S,Γ),
where Γ ⊆ S×S consists precisely of all ordered pairs (s1, s2) of elements of S for which s1 < s2
is true. Put another way, (s1, s2) ∈ Γ if and only if s1 < s2. ■

Some authors identify a relation R = (X, Y,Γ) with is graph Γ, and may even say that a
relation is simply any set of ordered pairs. This makes sense if we are studying relations that
all have a fixed domain X and co-domain Y , in which case the only thing that distinguishes
one relation from another are their graphs (which must be subsets of X × Y ). We do not take
this approach because we will be adopting a convention that will result in variation among the
domains of the relations we encounter. Before establishing the convention we’ll consider an
example that will help to make clear why a convention above and beyond Definition 1.12 is even
necessary.

Example 1.14. An inequality from algebra such as

2x− 5y ≤ 10 (1.2)

can be used to define a relation once the allowed sets of values that the variables x and y may
assume are specified. If x and y are declared to be real-valued variables, then we may take the
inequality (1.2) to define a relation R from R into R with graph

ΓR = {(x, y) : x, y ∈ R and 2x− 5y ≤ 10}.

On the other hand we may wish to only allow x to take on integer values, in which case (1.2)
defines a relation R′ from Z into R with graph

ΓR′ = {(x, y) : x ∈ Z, y ∈ R and 2x− 5y ≤ 10}.

It’s important to recognize that R = (R,R,ΓR) and R′ = (Z,R,ΓR′) are not the same relation
since the domain of R is R and the domain of R′ is Z. Indeed the graphs of R and R′ are
different. For instance (1

2
, 0) is an element of ΓR but not an element of ΓR′ , since 1

2
/∈ Z.

Now define a relation R′′ from C into R with graph

ΓR′′ = {(x, y) : x ∈ C, y ∈ R and 2x− 5y ≤ 10}.

It turns out that ΓR′′ = ΓR, since no complex number that is not a real number can be
substituted for x to satisfy (1.2), for the simple reason that there is no such thing as “bigger”
or “smaller” nonreal complex numbers, and no nonreal complex number is “bigger” or “smaller”
than any real number. Nevertheless R = (R,R,ΓR) and R′′ = (C,R,ΓR′′) are not equal since
the given domains of the relations are not equal! ■

In the study of calculus relations are typically given as algebraic equations or inequalities
involving two variables x and y. However, in Example 1.14 we saw how the inequality (1.2)
could be used to define three different relations. Which one should we choose? This is largely a
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question of choosing a sensible domain, and in calculus the domain will always be a subset of R.
Certainly this disqualifies R′′ in Example 1.14, but R and R′ are still in the running.

Let S(x, y) be an algebraic statement concerning variable objects x and y. Then S(x, y) will
be taken to define a relation (X,R,Γ) for which

Γ = {(x, y) ∈ R× R : S(x, y) is true}. (1.3)

and
X = {x : x ∈ R and there exists some y ∈ R such that S(x, y) is true} (1.4)

In the case of the inequality (1.2) the statement S(x, y) is

“2x− 5y is less than or equal to 10.”

Now, given any x ∈ R we can certainly manage to find at least one y ∈ R such that 2x− 5y is
less than or equal to 10; indeed, all we need to do is choose any value for y for which

y ≥ 2x− 10

5
.

Thus, for any x ∈ R some real number y can be found which will make S(x, y) true, and so by
(1.4) we take (1.2) to define a relation with domain X = R. As for the graph, we have by (1.3)

Γ = {(x, y) ∈ R× R : 2x− 5y ≤ 10 is true}.

Therefore (1.2) is taken to define the relation (R,R,Γ), which is in fact equal to the relation R
in Example 1.14 since Γ = ΓR.

The foregoing deliberations can ultimately be distilled down to a succinct convention—the
convention promised after Definition 1.12 which will generally apply to every relation we
encounter that is not a function (defined below), and to every function for which we are not
interested in finding an inverse function (defined in §7.1). There will be occasions when we will
wish to waive the convention, either by restricting the domain or the co-domain of a relation to
some smaller subset, but at those times it will be explicitly stated that the convention is not in
effect.

Convention. Any set of ordered pairs Γ ⊆ R × R will be understood to define a relation
R = (X,R,Γ) with X = {x ∈ R : (x, y) ∈ Γ for some y ∈ R}.

The advantage of wording the convention this way is that is makes no mention of some
statement S(x, y) involving variables x and y. Thus we can consider completely arbitrary sets
of ordered pairs for which no associated statement such as 2x− 5y ≤ 10 is apparent.

For example, consider the following sets of ordered pairs:

Γ1 = {(a, 2), (a, 4), (b, 3), (c, 1)},

Γ2 = {(a, 2), (b, 3), (b, 4)},

Γ3 = {(a, 1), (a, 2), (a, 3)}.

We assume that a, b, c ∈ R. By the Convention stated above we take these sets of ordered pairs
to define the relations

R1 = ({a, b, c},R,Γ1), R2 = ({a, b},R,Γ2), and R3 = ({a},R,Γ3).
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Thus the co-domain of every relation is R. The domains and ranges of the relations vary,
however:

Dom(R1) = {a, b, c}, Dom(R2) = {a, b}, and Dom(R3) = {a},
and

Ran(R1) = {1, 2, 3, 4}, Ran(R2) = {2, 3, 4}, and Ran(R3) = {1, 2, 3}.

Definition 1.15. A relation R = (X, Y,Γ) is a function if for each x ∈ X there exists a
unique y ∈ Y such that (x, y) ∈ Γ.

Note in the definition that

{x : (x, y) ∈ Γ for some y ∈ R} = X,

which is in agreement with the convention stated above. As with relations in general we will
take the codomain Y of a function to be R unless otherwise specified.

If (X, Y,Γ) is a function it is typical to give it the symbol f , though this by no means is a
requirement. The notation f : X → Y is frequently used to denote any function f with domain
X and codomain Y (leaving the set Γ ⊆ X × Y unspecified), which may be read as “f maps X
into Y ” or “f is a function from X into Y ”.

Definition 1.16. Suppose f = (X, Y,Γ) is a function. If (x, y) ∈ Γ, then in function notation
we write f(x) = y to indicate that y is the unique element of Y that is paired with x ∈ X by f .
For any A ⊆ X the set

f(A) = {y ∈ Y : f(x) = y for some x ∈ A}.
is the image of A under f .

More compactly we may write

f(A) = {f(x) : x ∈ A},

which cuts out y as the “middleman.” Observe that, of necessity, f(X) = Ran(f). Using
function notation we can restate Definition 1.15 of a function as follows.

Definition 1.17. A relation f from X into Y is a function f : X → Y if for every x ∈ X there
is exactly one y ∈ Y such that f(x) = y.

The utility of function notation cannot be overstated. First and perhaps foremost, function
notation facilitates the common interpretation of a function as being a “machine” that receives
an x value as input and returns a y value as output. Thus if (2, 5) ∈ f , we can think of f as
taking in 2 and putting out 5, and write f(2) = 5.

2 −→ f −→ 5

We’ll make frequent references to this interpretation later on.
The domain of a function f is just the set of all the first-coordinate values of all the ordered

pairs that it contains, and the range of f is the set of all the second-coordinate values.
It’s important to remember that the domain X and co-domain Y of a function f are integral

parts of the function’s definition. Quite often in mathematics a function f is defined by use of
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a “rule” of some kind, such as an algebraic equation or a verbal description, which expresses a
relationship between x and y that must be satisfied in order for (x, y) to be eligible to be an
element of f . Indeed in many textbooks one will find a statement to the effect that a function
is a rule. In any event it is commonly left to the reader to choose an appropriate domain and
co-domain in which to apply a given rule so as to obtain a well-defined function, but the context
of the discussion usually makes the choice clear.

An example of a rule is to put numbers in correspondence with their square roots. That is,
we can declare f to be a function that consists of ordered pairs having the property that the
second coordinate, y, is the square root of the first coordinate, x, so that (x, y) ∈ f implies that
(x, y) = (x,

√
x). Algebraically the rule can be expressed by the equation y =

√
x, or even better

we can employ function notation and write the rule as f(x) =
√
x. However, as stated this rule

by itself does not fully determine a function because a domain and co-domain were not specified!
The foremost question here is: do we want to permit square roots of negative numbers? If
the answer is yes, then we can let Dom(f) = R and obtain a function f : R → C which, for
instance, contains ordered pairs like (−4,

√
−4) = (−4, 2i) and (−13,

√
−13) = (−13, i

√
13).3 If

the answer is no, then we might let Dom(f) = [0,∞) (i.e. we only permit x ≥ 0) and obtain a
function f : [0,∞) → R which does not contain pairs like (−4, 2i) or (−13, i

√
13).

For the purposes of this course, whenever we’re given a rule like f(x) =
√
x from which to

construct a function f , we will always define the domain of f to be the largest set X ⊆ R such
that f(X) ⊆ R. That is, given a rule f , we will take Dom(f) to be the set of all real numbers x
such that the associated y value (where y = f(x)) is also a real number. Do you like set-builder
notation? Then here you are:

Dom(f) = {x ∈ R : f(x) ∈ R}. (1.5)

It then follows that, for the range of f , we have

Ran(f) = {f(x) : x ∈ Dom(f)}. (1.6)

Following this convention, a rule like f(x) =
√
x does fully determine a function since we know

to let Dom(f) = [0,∞), and so we can safely adopt the viewpoint that a function is a rule.
We’ve now encountered three interpretations of a function: a function is a set of ordered pairs,
a function is a machine, and a function is a rule. In light of the machine interpretation and
Definition 1.17, a function is a machine that returns no more than one output for each input.

Example 1.18. Find the domain and range of the function f given by the rule f(x) = x2 + 5.

Solution. The function f will contain ordered pairs (x, y) such that y = f(x), where in this
case we’re given f(x) = 4

√
81− x2. Following our convention (1.5), we start with

Dom(f) =
¶
x ∈ R :

4
√
81− x2 ∈ R

©
and ask: what can x be in order that 4

√
81− x2 is a real number? For fourth roots, like with

square roots, we need the radicand to be nonnegative: 81− x2 ≥ 0, so we need −9 ≤ x ≤ 9 and
conclude that Dom(f) = [−9, 9].

3Recall that C is the set of complex numbers: C = {a+ bi : a, b ∈ R}.
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As for the range, by (1.6) Ran(f) is the set of all the values the expression f(x) = 4
√
81− x2

can assume for x ∈ [−9, 9]. Notice that f(x) = 0 when x = −9 or x = 9, and peaks at a
value of f(0) = 4

√
81 = 3 when x = 0. Thus, for −9 ≤ x ≤ 9 we find that 0 ≤ f(x) ≤ 3, so

Ran(f) = [0, 3].
To complete the ordered pair (1, y), we note that x = 1 and therefore

y = f(1) =
4
√
81− 12 =

4
√
80 = 2

4
√
5,

and so the pair must be (1, 2 4
√
5).

Turning to the pair (x, 2), we must find x such that y = f(x) = 2, or 4
√
81− x2 = 2. This

equation implies 81− x2 = 24, or x2 = 65 and thus x = ±
√
65. Therefore two possible ordered

pairs result: (−
√
65, 2) and (

√
65, 2). ■

Example 1.19. Find the domain and range of the function f given by the rule f(x) = 4
√
81− x2,

then complete the ordered pairs (1, y) and (x, 2) so that they belong to f .

Solution. The function f will contain ordered pairs (x, y) such that y = f(x), where here we’re
given f(x) = 4

√
81− x2. Once again by (1.5), we start with

Dom(f) =
¶
x ∈ R :

4
√
81− x2 ∈ R

©
and ask: what can x be in order that 4

√
81− x2 is a real number? For fourth roots, like with

square roots, we need the radicand to be nonnegative: 81− x2 ≥ 0, so we need −9 ≤ x ≤ 9 and
conclude that Dom(f) = [−9, 9].

As for the range, by (1.6) Ran(f) is the set of all the values the expression f(x) = 4
√
81− x2

can assume for x ∈ [−9, 9]. Notice that f(x) = 0 when x = −9 or x = 9, and peaks at a
value of f(0) = 4

√
81 = 3 when x = 0. Thus, for −9 ≤ x ≤ 9 we find that 0 ≤ f(x) ≤ 3, so

Ran(f) = [0, 3].
To complete the ordered pair (1, y), we note that x = 1 and therefore

y = f(1) =
4
√
81− 12 =

4
√
80 = 2

4
√
5,

and so the pair must be (1, 2 4
√
5).

Turning to the pair (x, 2), we must find x such that y = f(x) = 2, or 4
√
81− x2 = 2. This

equation implies 81− x2 = 24, or x2 = 65 and thus x = ±
√
65. Therefore two possible ordered

pairs result: (−
√
65, 2) and (

√
65, 2). ■
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Section 1.4 Exercises

1. Let f(x) = x3 + 2x2 − 3.

(a) Find f(0), f(3), and f(−3)

(b) Find f(1/a) and f(−x)

2. Let g(t) = t− 1

t
.

(a) Find g(1), g(−1), and g(3/2)

(b) Find g(a+ 3) and g(1/a)

For #3 – 8, find the domain and range
of the function.

3. f(x) = x2 + 1 for −4 ≤ x ≤ 3

4. f(x) = 2− 3x for −3 ≤ x ≤ 7

5. f(x) =
√
7− 4x

6. f(x) =
√
x2 − 25

7. f(x) = |x− 8| − 5

8. f(x) = 6/x

For #9 – 22, find the domain of the func-
tion (not the range).

9. f(x) = 3
√
x+ 13

10. g(x) =
√
x+ 13

11. h(x) = 4
√
x− 6− 9

12. j(x) =
√
2x2 + 5x− 3

13. k(x) =
x− 4

x+ 5

14. ℓ(x) =
1

x2 + 6x− 27

15. p(x) =
x− 4

x2 − 16

16. q(x) =
x2√
5− x

17. r(x) =
81√

x2 + 2x− 3
+ 3x

18. s(x) = 6

…
x+ 1

x− 4

19. u(x) =

 
x2 − 3x

x+ 2

20. v(x) =
√
x− 4 +

√
x+ 8

21. w(x) =
√
x− 4 +

√
12− x

22. z(x) = 3
√
x− 2 + 4

√
x2 − 9 + 6

√
2x− 1
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1.5 – Function Combinations and Compositions

New functions can be built from old ones in many ways. Typically the old functions are
common, simple functions that are put together to construct a more complex function that
models some observed phenomenon. How such constructions are accomplished in the context of
real-valued functions we make precise in this section, starting with the notions of taking sums,
differences, products, and quotients of functions whose domains have nonempty intersections.

Definition 1.20. Let f : X → R and g : Y → R be functions such that X ∩ Y ̸= ∅. Define
functions f + g, f − g, fg : X ∩ Y → R by

(f + g)(x) = f(x) + g(x), (f − g)(x) = f(x)− g(x), (fg)(x) = f(x)g(x)

for all x ∈ X ∩ Y .
Let Z = {x ∈ X ∩ Y : g(x) ̸= 0}, and define f/g : Z → R by

(f/g)(x) = f(x)/g(x).

In addition to adding, subtracting, multiplying, and dividing functions, we also introduce
function exponentiation.

Definition 1.21. Let f : X → R be a function. For any n ∈ R we define fn : X → R by

fn(x) = [f(x)]n.

The arithmetic operations for functions given by Definitions 1.20 and 1.21 are collectively
called function combinations. Another function combination that is perhaps the most important
operation of all is function composition.

Definition 1.22. Let f : X → Y and g : Y → Z be functions. The composition of g with f
is the function g ◦ f : X → Z given by

(g ◦ f)(x) = g(f(x))

for all x ∈ X.

Generally if f and g are functions such that Ran(f) ⊆ Dom(g), then it is possible to construct
the composition g ◦ f and we will have

Dom(g ◦ f) = Dom(f).

If Ran(f) ⊆ Dom(g) is not the case, but it is still true that Ran(f) ∩ Dom(g) ̸= ∅, then it is
still possible to construct g ◦ f by defining

Dom(g ◦ f) =
{
x : x ∈ Dom(f) and f(x) ∈ Dom(g)

}
. (1.7)

What we are doing in adopting this convention (which we shall strictly adhere to throughout
this text) is restricting the domain of g to Ran(f) ∩Dom(g).

If Ran(f) ∩ Dom(g) ̸= ∅, then Dom(g ◦ f) ̸= ∅ also and we will say g ◦ f exists. If
Dom(g ◦ f) = ∅ then g ◦ f does not exist.

Example 1.23. Let f(x) =
√
36− x2 and g(x) =

√
9x− 5. Find g ◦ f and its domain.
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Solution. We have Dom(f) = [−6, 6] and Dom(g) = [5/9,∞), and also

Ran(f) = {f(x) : x ∈ Dom(f)} =
{√

36− x2 : −6 ≤ x ≤ 6
}
= [0, 6].

Since

Ran(f) ∩Dom(g) = [0, 6] ∩ [5/9,∞) ̸= ∅,

it follows that Dom(g ◦ f) ̸= ∅ and the function g ◦ f exists.
To find g ◦f means to find an algebraic expression in x for (g ◦f)(x). This is straightforward:

assuming x ∈ Dom(g ◦ f), we have

(g ◦ f)(x) = g(f(x)) = g
(√

36− x2
)
=
√

9
√
36− x2 − 5.

To find the domain of g ◦ f , by (1.7) we have

Dom(g ◦ f) = {x : x ∈ Dom(f) & f(x) ∈ Dom(g)}

=
¶
x : −6 ≤ x ≤ 6 and

√
36− x2 ≥ 5

9

©
=
{
x : −6 ≤ x ≤ 6 and x2 ≤ 2891

81

}
=
¶
x : −6 ≤ x ≤ 6 and −7

√
59
9

≤ x ≤ 7
√
59
9

©
=
î
−7

√
59
9
, 7

√
59
9

ó
,

since 7
√
59
9

≈ 5.97 < 6. ■

The composition of any number of functions may be effected, as the following more general
definition makes precise.

Definition 1.24. Let fi : Xi → Xi+1 be functions for i = 1, 2, . . . , n. We define the composi-
tion of f1, . . . , fn to be the function

fn ◦ · · · ◦ f2 ◦ f1 : X1 → Xn+1

given by

(fn ◦ · · · ◦ f2 ◦ f1)(x) = fn(· · · f2(f1(x)) · · · )
for all x ∈ X1.

In particular if f : X → Y , g : Y → Z, and h : Z → W , then

h ◦ g ◦ f : X → W

is given by

(h ◦ g ◦ f)(x) = h(g(f(x)))

for all x ∈ X. If it is not the case that Ran(f) ⊆ Dom(g) or Ran(g) ⊆ Dom(h), then we adopt
the convention that

Dom(h ◦ g ◦ f) =
{
x ∈ X : x ∈ Dom(f), f(x) ∈ Dom(g), and g(f(x)) ∈ Dom(h)

}
(1.8)
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Example 1.25. Let f(x) =
√
10− x, g(x) = 12/(x− 9), and h(x) = x/(x+ 6). Find h ◦ g ◦ f

and its domain.

Solution. For any x in the domain of h ◦ g ◦ f ,

(h ◦ g ◦ f)(x) = h(g(f(x))) = h
(
g
(√

10− x
))

= h

Å
12√

10− x− 9

ã
=

12√
10− x− 9
12√

10− x− 9
+ 6

=
12

12 + 6(
√
10− x− 9)

=
12

6
√
10− x− 42

.

To actually find the domain of h ◦ g ◦ f we first obtain the domains of f , g, and h:

Dom(f) = (−∞, 10],

Dom(g) = (−∞, 9) ∪ (9,∞),

Dom(h) = (−∞,−6) ∪ (−6,∞).

By (1.8) we have

Dom(h ◦ g ◦ f) =
{
x ∈ X : x ≤ 10, f(x) ̸= 9, and g(f(x)) ̸= −6

}
, (1.9)

where f(x) ̸= 9 is equivalent to f(x) ∈ (−∞, 9) ∪ (9,∞), and g(f(x)) ̸= −6 is equivalent to
g(f(x)) ∈ (−∞,−6) ∪ (−6,∞). Now,

f(x) ̸= 9 ⇔
√
10− x ̸= 9 ⇔ 10− x ̸= 81 ⇔ x ̸= −71, (1.10)

and

g(f(x)) ̸= −6 ⇔ 12√
10− x− 9

̸= −6 ⇔ 12 ̸= −6
(√

10− x− 9
)

⇔
√
10− x ̸= 7 ⇔ 10− x ̸= 49 ⇔ x ̸= −39. (1.11)

Putting the results of (1.10) and (1.11) into (1.9) yields

Dom(h ◦ g ◦ f) =
{
x ∈ X : x ≤ 10, x ̸= −71, and x ̸= −39

}
= (−∞,−71) ∪ (−71,−39) ∪ (−39, 10]

as the domain. ■
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Section 1.5 Exercises

For #1 – 6, find f + g, f − g, fg, f/g, and their domains.

1. f(x) =
√
1− x, g(x) =

1

x− 2

2. f(x) =
√
10 + x, g(x) =

√
50− x

3. f(x) =
√
9− x2, g(x) =

√
x2 − 1

4. f(x) =
2

x+ 2
, g(x) =

x

x+ 2

5. f(x) =
1√

2x− 3
, g(x) = 3x2 − 8

6. f(x) = 6
√
3− x, g(x) = 4

√
x− 5

For #7 – 12, find f ◦ g, g ◦ f , f ◦ f , g ◦ g, and their domains.

7. f(x) = 3x2 − 7, g(x) = x+ 5

8. f(x) =
√
x− 3, g(x) = x2

9. f(x) =
1

x− 1
, g(x) =

x− 1

x+ 1

10. f(x) = 3
√
x, g(x) = 1−

√
x

11. f(x) =
√
x2 − 4, g(x) =

√
2− x

12. f(x) =
1
4
√
x
, g(x) = x2 − 4x

For #13 – 14, find f ◦ g ◦ h and its domain.

13. f(x) =
√
x− 2, g(x) = 4

√
x− 1, h(x) = 3

√
x+ 3

14. f(x) =
√
2x, g(x) =

x

x− 1
, h(x) = 5

√
x

For #15 – 18, find simple functions that do the job of the complex function.

15. H(x) = (x− 8)4. Find functions f and g so that f ◦ g = H.

16. L(x) =
1

5x− 3
. Find functions f and g so that f ◦ g = L.

17. Φ(x) = 3
√√

x− 1. Find functions f , g and h so that f ◦ g ◦ h = Φ.

18. W (x) =
9

(4−
√
x)2

. Find functions f , g and h so that f ◦ g ◦ h = W .
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1.6 – Mathematical Proofs: Tools and Techniques

Throughout these notes there are many proofs, and a fair number of the proofs juggle
absolute values and inequalities. One of the simplest inequalities involving absolute value is

− |t| ≤ t ≤ |t| (1.12)

for any t ∈ R. Indeed if t ≥ 0 then t = |t|, and if t < 0 then t = −(−t) = −|t|, so in fact
|t| = ±|t| depending on whether t is nonnegative or negative.

Another inequality featuring absolute value, arguably the most useful of them all, is the
Triangle Inequality. In words it amounts to a simple fact: the sum of the lengths of the two
shortest sides of a triangle is less than the length of the longest side. Algebraically this fact is
rendered as follows.

Proposition 1.26 (Triangle Inequality). For any x, y ∈ R,
|x+ y| ≤ |x|+ |y|.

Proof. Let x, y ∈ R. With (1.12) we have −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|, and adding these
results yields

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|.
Therefore |x+ y| ≤ |x|+ |y|. ■

A slight variant of the Triangle Inequality is

|x− y| ≤ |x|+ |y|

for any x, y ∈ R. This follows immediately from the proposition above and the fact that
| − t| = |t| for any t ∈ R:

|x− y| = |x+ (−y)| ≤ |x|+ | − y| = |x|+ |y|.

A more significant variant is the following.

Proposition 1.27 (Reverse Triangle Inequality). For any x, y ∈ R,∣∣|x| − |y|
∣∣ ≤ |x− y|.

Proof. Let x, y ∈ R. Using the Triangle Inequality, we obtain the inequalities

|x| = |(x− y) + y| ≤ |x− y|+ |y|
and

|y| = |(y − x) + x| ≤ |y − x|+ |x| = |x− y|+ |x|,
which become

|x| − |y| ≤ |x− y| and |x| − |y| ≥ −|x− y|,
respectively, so that

− |x− y| ≤ |x| − |y| ≤ |x− y|,

and therefore ||x| − |y|| ≤ |x− y|. ■
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Combining our findings, we have

|x| − |y| ≤
∣∣|x| − |y|

∣∣ ≤ |x− y| ≤ |x|+ |y|.

The Triangle Inequality has the following generalization: for any x1, x2, . . . , xn ∈ R,

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|,

or in sigma notation ∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ ≤
n∑
k=1

|xk|.
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2
Limits and Continuity

2.1 – Neighborhoods and Limit Points

Given a point c ∈ R, a neighborhood of c is any open interval I ⊆ R that contains c. Thus,
for any a < c and b > c, the interval (a, b) is a neighborhood of c. Other neighborhoods of c are
(−∞, b), (a,∞), and (−∞,∞). In fact, R itself qualifies as a neighborhood for any real number,
albeit an uninteresting one.

A common way to construct a neighborhood for a real number c is to designate some γ > 0,
usually regarded as being quite small, and consider the interval (c− γ, c+ γ). This is the open
interval with center c and radius γ, which we will frequently denote by the symbol Bγ(c) and
call the γ-neighborhood of c; that is,

Bγ(c) = (c− γ, c+ γ)

for any γ > 0.
A deleted neighborhood of c ∈ R is a neighborhood of c with c removed. Thus, if (a, b)

is a neighborhood of c for any −∞ ≤ a < c and c < b ≤ ∞, then (a, c) ∪ (c, b) is a deleted
neighborhood of c, where of course (a, c) ∪ (c, b) is the set of all real numbers between a and b
except for c:

(a, c) ∪ (c, b) = {x : a < x < b and x ̸= c}.

Removing c from a γ-neighborhood (c − γ, c + γ) of c produces what we shall call a deleted
γ-neighborhood of c:

(c− γ, c) ∪ (c, c+ γ) = {x : c− γ < x < c+ γ and x ̸= c}.

It will be convenient to use the significantly more compact symbol B′
γ(c) to denote the deleted

γ-neighborhood of c:
B′
γ(c) = (c− γ, c) ∪ (c, c+ γ).

Observe that x ∈ B′
γ(c) if and only if 0 < |x− c| < γ.

Definition 2.1. A point x ∈ R is a limit point of a set S ⊆ R if

B′
γ(x) ∩ S ̸= ∅

for all γ > 0.
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For example, a is a limit point of the interval (a, b). This is because no matter how small
γ > 0 is, there are points in (a, b) that lie between a and a+ γ, and hence

B′
γ(a) ∩ (a, b) =

[
(a− γ, a) ∪ (a, a+ γ)

]
∩ (a, b)

=
[
(a− γ, a) ∩ (a, b)

]
∪
[
(a, a+ γ) ∩ (a, b)

]
= (a, a+ γ) ∩ (a, b) ̸= ∅

for all γ > 0. Similarly, b is a limit point since for any γ > 0, no matter how small, there are
points in (a, b) that lie between b− γ and b, and so

B′
γ(b) ∩ (a, b) ̸= ∅

for all γ > 0. In fact, every x ∈ (a, b) is a limit points of (a, b). Put another way, the set of limit
points of the open interval (a, b) is the closed interval [a, b].

Example 2.2. Recall the set of natural numbers N = {1, 2, 3, . . .}, otherwise known as the set
of positive integers. Let S be the set consisting of the reciprocals of the natural numbers:

S =

ß
1

n
: n ∈ N

™
.

This set has at least one limit point: the number 0. To see this, note that for any γ > 0 we can
find a sufficiently large natural number N so that 1/N < γ, and hence 1/N ∈ B′

γ(0) ∩ S. That
is, B′

γ(0) ∩ S ̸= ∅ for all γ > 0, and therefore 0 is a limit point of S.
Does S have any other limit points? Can 1 be a limit point? No, since the deleted

neighborhood B′
0.1(1) = (0.9, 1) ∪ (1, 1.1) contains no elements of S. Now consider the number

1/n for some integer n ≥ 2. We find that

1

n+ 1
<

1

n
<

1

n− 1
,

where all the values in the inequality are elements of S, and no elements of S exist between
1/(n+ 1) and 1/n or between 1/n and 1/(n− 1). Thus there exists a sufficiently small γ > 0
such that B′

γ(1/n) ∩ S = ∅,4 which shows that 1/n is not a limit point of S. Similar arguments
can be made to show that no real number x > 0 can be a limit point of S, nor can any real
x < 0 be a limit point. Therefore 0 is the only limit point of S. ■

4In fact we could choose to let γ be half the distance between 1/n and 1/(n+ 1):

γ =
1

2

Å
1

n
− 1

n+ 1

ã
.
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2.2 – The Limit of a Function

Throughout this chapter we assume that any function f is real-valued, and has domain D
that is a subset of the set of real numbers R; that is, f : D → R for some D ⊆ R.

Definition 2.3. Let f be a real-valued function, and let c ∈ R be a limit point of Dom(f).
Given L ∈ R, we say f has limit L at c, written

lim
x→c

f(x) = L,

if for each ϵ > 0 there exists some δ > 0 such that, for any x ∈ Dom(f),

0 < |x− c| < δ ⇒ |f(x)− L| < ϵ.

Remark. Throughout these notes, whenever we say that a limit limx→c f(x) “exists,” we mean
there is some L ∈ R such that limx→c f(x) = L. Otherwise we say that the limit “does not
exist.”

Notation. A notational alternative to limx→c f(x) = L is to write “f(x) → L as x→ c.”

Example 2.4. Prove that

lim
x→4

(2x+ 1) = 9.

Preliminary Analysis. By Definition 2.3 we must show that, for any ϵ > 0, there is some
δ > 0 such that 0 < |x− 4| < δ implies∣∣(2x+ 1)− 9

∣∣ < ϵ, (2.1)

or equivalently (simplifying the left-hand side),

|2x− 8| < ϵ. (2.2)

However, since |2x− 8| = 2|x− 4|, we can rewrite (2.2) as |x− 4| < ϵ/2. Working backward,
we see that |x− 4| < ϵ/2 leads to (2.2), which in turn becomes (2.1). Thus, if we assume x is
such that 0 < |x− 4| < δ for δ = ϵ/2, then (2.1) necessarily follows. We now proceed with the
formal proof with this choice for δ in mind. ■

Proof. Let ϵ > 0. Choose δ = ϵ/2 and suppose x is such that 0 < |x−4| < δ. Then |x−4| < ϵ/2,
and since

|x− 4| < ϵ

2
⇒ |2x− 8| < ϵ ⇒

∣∣(2x+ 1)− 9
∣∣ < ϵ,

the proof is done. ■

Example 2.5. Prove that

lim
x→2

(x2 + x− 12) = −6.
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Preliminary Analysis. We must show that, for any ϵ > 0, there’s some δ > 0 such that
0 < |x− 2| < δ implies ∣∣(x2 + x− 12)− (−6)

∣∣ < ϵ,

or equivalently (simplifying the left-hand side),

|x− 2||x+ 3| < ϵ. (2.3)

First consider what would happen if we just assumed 0 < |x− 2| < 1 (so provisionally we’re
letting δ = 1). Since

|x− 2| < 1 ⇒ −1 < x− 2 < 1 ⇒ 4 < x+ 3 < 6,

the assumption 0 < |x− 2| < 1 implies that |x+ 3| < 6. Notice that |x+ 3| is one of the factors
at left in (2.3). Of course, the other factor at left in (2.3) is |x− 2|, and if we were to make the
assumption that 0 < |x− 2| < ϵ/6 in addition to 0 < |x− 2| < 1, then we would obtain∣∣(x2 + x− 12)− (−6)

∣∣ = |x− 2||x+ 3| < ϵ

6
· 6 = ϵ

as desired.
Thus we need δ chosen such that having 0 < |x− 2| < δ implies |x− 2| is less than both 1

and ϵ/6 simultaneously. So what should δ be? The smaller of the two quantities 1 and ϵ/6! We
indicate this by writing δ = min{1, ϵ/6}, which can be read as “δ is the minimum element of
the set {1, ϵ/6}.” We are now ready to write a formal proof. ■

Proof. Let ϵ > 0. Choose δ = min{1, ϵ/6} and suppose that 0 < |x−2| < δ. Then |x−2| < ϵ/6
is immediate, and from |x− 2| < 1 we have |x+ 3| < 6 as shown in the preliminary analysis.
Now, ∣∣(x2 + x− 12)− (−6)

∣∣ = |x− 2||x+ 3| < ϵ

6
· 6 = ϵ,

and the proof is done. ■

Example 2.6. The proof that

lim
x→0

x sin

Å
1

x

ã
= 0

is relatively straightforward. Let ϵ > 0, and choose δ = ϵ. Suppose x is such that 0 < |x| < δ.
Then |x| < ϵ with x ̸= 0, and we obtain∣∣∣∣x sinÅ1xã∣∣∣∣ = |x|

∣∣∣∣sinÅ1xã∣∣∣∣ ≤ |x| < ϵ,

since | sin(1/x)| ≤ 1. This finishes the proof. ■

Definition 2.3 is the definition of the limit of a real-valued function of a single real variable
that we will use throughout these notes, and it is in agreement with the definition of limit found
in more advanced texts on the subject of mathematical analysis. Unfortunately, Definition 2.3
is not consonant with the definition of limit found in most mainstream introductory calculus
texts. In such texts the meaning of

lim
x→c

f(x) = L
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is, in fact, rather more complicated by virtue of having one more component: namely, a
requirement that a deleted neighborhood of c be a subset of the domain of f . That is,
introductory calculus texts state that there must exist some γ > 0 such that B′

γ(c) ⊆ Dom(f),
otherwise limx→c f(x) does not exist. Not only does this make for a more cumbersome and
restrictive concept of limit than the one given here, it also often results in longer and more
awkward proofs of otherwise simple theorems.

Fortunately, nearly every function of a single real variable that is encountered in a basic
calculus course will have a domain that is either an interval of real numbers or a disjoint union of
intervals. For such functions our definition of limx→c f(x) and the definition given in mainstream
texts will yield identical results for each c ∈ R for which neither of the following is true:

1. There exists γ > 0 such that (c, c+ γ) ⊆ Dom(f) and (c− γ, c) ∩Dom(f) = ∅.
2. There exists γ > 0 such that (c− γ, c) ⊆ Dom(f) and (c, c+ γ) ∩Dom(f) = ∅.

The occurrence of either Case (1) or Case (2) will automatically result in limx→c f(x) not
existing according to the definition of most calculus texts, but depending on the behavior of
f the limit concept given by Definition 2.3 might exist. To address either Case (1) or (2),
mainstream texts consider what is known as a one-sided limit. Specifically, to treat Case (1) or
Case (2), texts employ respectively a right-hand or left-hand limit. We shall generally observe
the same practice in these notes as well, not only in the interests of academic harmony, but also
since there are situations in which the limit of Definition 2.3 fails to exists, and yet one or the
other of the one-sided limits defined as follows does exist.

Definition 2.7 (Right-Hand Limit). Let f be a real-valued function, and let c ∈ R be such
that Dom(f) ∩ (c, c+ γ) ̸= ∅ for all γ > 0. Given L ∈ R, we say f has right-hand limit L at
c, written

lim
x→c+

f(x) = L,

if for all ϵ > 0 there exists some δ > 0 such that, for any x ∈ Dom(f),

c < x < c+ δ ⇒ |f(x)− L| < ϵ.

Definition 2.8 (Left-Hand Limit). Let f be a real-valued function, and let c ∈ R be such
that Dom(f)∩ (c− γ, c) ̸= ∅ for all γ > 0. Given L ∈ R, we say f has left-hand limit L at c,
written

lim
x→c−

f(x) = L,

if for all ϵ > 0 there exists some δ > 0 such that, for any x ∈ Dom(f),

c− δ < x < c ⇒ |f(x)− L| < ϵ.

Notation. The limit limx→c+ f(x) = L can be written as “f(x) → L as x→ c+,” and the limit
limx→c− f(x) = L can be written as “f(x) → L as x→ c−.”

Theorem 2.9. If
lim
x→c−

f(x) = lim
x→c+

f(x) = L (2.4)

for some L ∈ R, then
lim
x→c

f(x) = L.
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Proof. Suppose that (2.4) holds. Let ϵ > 0. There exists some δ1 > 0 such that, for all
x ∈ Dom(f),

c− δ1 < x < c ⇒ |f(x)− L| < ϵ;

and also there exists some δ2 > 0 such that, for all x ∈ Dom(f),

c < x < c+ δ2 ⇒ |f(x)− L| < ϵ.

Let δ = min{δ1, δ2}. Suppose x ∈ Dom(f) is such that 0 < |x−c| < δ. Then either c−δ < x < c
or c < x < c+ δ must be the case, and since the former implies that c− δ1 < x < c, and the
latter implies that c < c < c+ δ2, it follows that |f(x)−L| < ϵ. Therefore limx→c f(x) = L. ■

Remark. The converse of Theorem 2.9 is not true in general. That is, if limx→c f(x) = L,
then it is not necessarily the case that both one-sided limits will equal L. For example we have
limx→0

√
x = 0, and while it is the case that limx→0+

√
x = 0 also, it turns out that limx→0−

√
x

does not exist! This is because the domain of
√
x is [0,∞), and so the requirement in Definition

2.8 that [0,∞) ∩ (−γ, 0) ̸= ∅ for all γ > 0 is not satisfied.

Example 2.10. Let f be a function with graph as depicted in Figure 2. Whereas f(1) = 2,
from the graph we find that

lim
x→1−

f(x) = 2 and lim
x→1+

f(x) = 4,

and so since a limit can equal at most one real number it follows that limx→1 f(x) does not
exist. On the other hand we have limx→−1 f(x) = 3 even though f(−1) is undefined, and also
limx→−2 f(x) = 1 even though f(−2) = 2. Finally, we have limx→3− f(x) = 1 while limx→3+ f(x)
does not exist. ■

Example 2.11. The limit

lim
x→0

cos

Å
1

x

ã
(2.5)

does not exist, which is to say it does not equal any real number. This will now be shown by
constructing a proof by contradiction.

x

f(x)

1 2 3−1−2−3

2

4

Figure 2.
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Suppose that there is some L ∈ R such that cos(1/x) → L as x → 0. By definition this
means that, for every ϵ > 0, there exists some δ > 0 such that, if 0 < |x| < δ, then

| cos(1/x)− L| < ϵ.

Thus, if we let ϵ = 1/2, then there’s some δ > 0 such that 0 < |x| < δ implies

| cos(1/x)− L| < 1/2.

Now, let n ∈ R be sufficiently large so that 1/n < δ, in which case

0 <
1

2nπ
< δ and 0 <

1

(2n+ 1)π
< δ,

and hence ∣∣ cos(2nπ)− L
∣∣ < 1

2
and

∣∣cos ((2n+ 1)π
)
− L

∣∣ < 1

2
.

Since cos(2nπ) = cos 0 = 1 and

cos
(
(2n+ 1)π

)
= cos(π) = −1,

we next obtain

|1− L| < 1

2
and | − 1− L| < 1

2
,

which we can write as |L−1| < 1/2 and |L+1| < 1/2. From |L−1| < 1/2 comes 1/2 < L < 3/2,
and from |L+ 1| < 1/2 comes −3/2 < L < −1/2. Both of these double inequalities must be
satisfied simultaneously, which clearly is impossible no matter what real number L is. Thus
there can be no L ∈ R such that cos(1/x) → L as x→ 0.

Therefore the limit (2.5) does not exist. ■
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Exercises

Use the definition of a limit, Definition 2.3, to prove the following limits.

1. lim
x→8

3x = 24.

2. lim
x→4

(5x− 3) = 17.

3. lim
x→−2

(1
2
x+ 1) = 0.

4. lim
x→3

(17− 7x) = −4.

5. lim
x→−1

2x2 − x− 3

x+ 1
= −5.

6. lim
x→−3

(x2 + 6x+ 12) = 3.

7. lim
x→5

(x2 − 3x+ 1) = 11.

8. lim
x→6

2

x
=

1

3
.
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2.3 – Properties of Limits

We now lay out and prove a theorem that gives some of the general properties of two-sided
limits. The properties carry over without change to one-sided limits, with proofs that are much
the same.

Theorem 2.12 (Laws of Limits). Suppose a, c ∈ R. If
lim
x→c

f(x) = L and lim
x→c

g(x) =M

for some L,M ∈ R, then the following hold.

1. lim
x→c

a = a

2. lim
x→c

af(x) = a lim
x→c

f(x)

3. lim
x→c

[
f(x)± g(x)

]
= lim

x→c
f(x)± lim

x→c
g(x)

4. lim
x→c

[
f(x)g(x)

]
= lim

x→c
f(x) · lim

x→c
g(x)

5. Provided that limx→c g(x) ̸= 0,

lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)
.

6. For any integer n > 0,

lim
x→c

[f(x)]n =
[
lim
x→c

f(x)
]n
.

7. For any integer m > 0,

lim
x→c

m

»
f(x) = m

√
lim
x→c

f(x),

provided there exists γ > 0 such that f(x) ≥ 0 for all x ∈ B′
γ(c) ∩Dom(f) if m is even.

Proof.
Proof of Law (1). Let ϵ > 0. We can choose δ = 1, and then, supposing that 0 < |x− c| < 1, we
find immediately that |a− a| = 0 < ϵ.

Proof of Law (2). If a = 0, then

lim
x→c

0 · f(x) = lim
x→c

0 = 0 = 0 · lim
x→c

f(x)

by Law (1). Assume that a ̸= 0. Let ϵ > 0. Since ϵ/|a| > 0 and limx→c f(x) = L, there exists
some δ > 0 such that |f(x)− L| < ϵ/|a|. Now,

|a| · |f(x)− L| < ϵ

|a|
· |a|.

implies that |af(x)− aL| < ϵ.

Proof of Law (3). Let ϵ > 0. Then there is some δ1 > 0 such that 0 < |x − c| < δ1 implies
that |f(x) − L| < ϵ/2, and there is some δ2 > 0 such that 0 < |x − c| < δ2 implies that
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|g(x)−M | < ϵ/2. Choose δ = min{δ1, δ2}. Suppose that 0 < |x− c| < δ. Then, by the Triangle
Inequality (see §1.6),∣∣(f(x) + g(x))− (L+M)]

∣∣ = |(f(x)− L) + (g(x)−M)|

≤ |f(x)− L|+ |g(x)−M | < ϵ

2
+
ϵ

2
= ϵ,

and ∣∣(f(x)− g(x))− (L−M)]
∣∣ = |(f(x)− L) + (M − g(x))|

≤ |f(x)− L|+ |M − g(x)|

= |f(x)− L|+ |g(x)−M | < ϵ

2
+
ϵ

2
= ϵ.

Proof of Law (4). Let ϵ > 0. There exists a δ1 > 0 such that 0 < |x − c| < δ1 implies
|f(x)− L| < 1, a δ2 > 0 such that 0 < |x− c| < δ2 implies

|f(x)− L| < ϵ/2

|M |+ 1
,

and a δ3 > 0 such that 0 < |x− c| < δ3 implies

|g(x)−M | < ϵ/2

|L|+ 1
.

Choose δ = min{δ1, δ2, δ3}. Suppose that 0 < |x − c| < δ. From |f(x) − L| < 1 we obtain
|f(x)| < |L|+ 1, and thus

|f(x)g(x)− LM | = |f(x)g(x)− f(x)M + f(x)M − LM |

= |f(x)(g(x)−M) +M(f(x)− L)|

≤ |f(x)| · |g(x)−M |+ |M | · |f(x)− L|

< (|L|+ 1) · ϵ/2

|L|+ 1
+ |M | · ϵ/2

|M |+ 1

< ϵ/2 + ϵ/2 = ϵ

Proof of Law (5). First it will be proved that limx→c 1/g(x) = 1/M for M ≠ 0. Let ϵ > 0. Since
limx→c g(x) =M there exists some δ1 > 0 such that

0 < |x− c| < δ1 ⇒ |g(x)−M | < |M |
2
,

which in turn implies |M | − |g(x)| < |M |/2 and hence |g(x)| > |M |/2 > 0. Also there exists
some δ2 > 0 such that

0 < |x− c| < δ2 ⇒ |g(x)−M | < M2

2
ϵ.

Choose δ = min{δ1, δ2}. Suppose that 0 < |x− c| < δ. Then

|g(x)−M | < ϵM2

2
= ϵ|M | · |M |

2
< ϵ|M | · |g(x)|,
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so, since |g(x)| > 0, ∣∣∣∣g(x)−M

M · g(x)

∣∣∣∣ < ϵ,

and finally ∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ < ϵ.

Therefore limx→c 1/g(x) = 1/M , and since limx→c f(x) = L, by Law (4) we obtain

lim
x→c

f(x)

g(x)
= lim

x→c

ï
f(x) · 1

g(x)

ò
= L · 1

M
=

L

M
.

Proof of Law (6). This law is easily proven using Law (4) and induction. The base case, when
n = 1, is already given:

lim
x→c

[f(x)]1 = lim
x→c

f(x) = L = L1.

Now let n be an arbitrary positive integer and suppose that limx→c[f(x)]
n = Ln. Then

lim
x→c

[f(x)]n+1 = lim
x→c

[f(x) · (f(x))n] = lim
x→c

f(x) · lim
x→c

[f(x)]n = L · Ln = Ln+1

by Law (4). ■

To prove Law (7) we need Proposition 2.41 below, along with the fact that limx→c
m
√
x = m

√
c

for any integer m > 0, where c ∈ (−∞,∞) if m is odd and c ∈ (0,∞) if m is even. The latter
fact isn’t proved until Chapter 7, so the definitive proof of Law (7) will have to wait until then.

Exercise. What is wrong with the following “proof” of Law (7)?
Let m > 0 be an integer, and assume f(x) ≥ 0 for all x near c if m is even. Now, employing

Law (6), we have

L = lim
x→c

f(x) = lim
x→c

[
m

»
f(x)

]m
=
[
lim
x→c

m

»
f(x)

]m
.

Now, taking mth roots throughout, we obtain

m
√
L =

m

…[
lim
x→c

m

»
f(x)

]m
= lim

x→c

m

»
f(x)

as desired. ■

Corollary 2.13. Let limx→c+ f(x) = L and limx→c+ g(x) =M for some L,M ∈ R. Then Laws
(1)–(6) of Theorem 2.12 all hold with limx→c replaced with limx→c+. Law (7) changes as follows:

lim
x→c+

m

»
f(x) = m

»
L = m

√
lim
x→c+

f(x)

for any integer m > 0, provided there exists some γ > 0 such that f(x) ≥ 0 for all x ∈
(c, c+ γ) ∩Dom(f) if m is even.
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Corollary 2.14. Let limx→c− f(x) = L and limx→c− g(x) =M for some L,M ∈ R. Then Laws
(1)–(6) of Theorem 2.12 all hold with limx→c replaced with limx→c−. Law (7) changes as follows:

lim
x→c−

m

»
f(x) = m

»
L = m

√
lim
x→c−

f(x)

for any integer m > 0, provided there exists some γ > 0 such that f(x) ≥ 0 for all x ∈
(c− γ, c) ∩Dom(f) if m is even.

Lemma 2.15. For any c ∈ R, limx→c x = c.

Proof. Let ϵ > 0. Choose δ = ϵ and suppose that 0 < |x− c| < δ. Then we obtain |x− c| < ϵ
and we’re done. ■

Proposition 2.16. Suppose that f and g are polynomial functions. If c ∈ R, then
1. lim

x→c
f(x) = f(c)

2. lim
x→c

f(x)/g(x) = f(c)/g(c) if g(c) ̸= 0.

Proof. (1) Since f is a polynomial function there exists some integer n ≥ 0 and real numbers
a0, . . . , an such that

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for all x ∈ R.
Let c ∈ R be arbitrary. Referencing the laws given by Theorem 2.12,

f(c) = anc
n + an−1c

n−1 + · · ·+ a1c+ a0

= an

(
lim
x→c

x
)n

+ an−1

(
lim
x→c

x
)n−1

+ · · ·+ a1 lim
x→c

x+ a0 (Lemma 2.15)

= an lim
x→c

xn + an−1 lim
x→c

xn−1 + · · ·+ a1 lim
x→c

x+ a0 (Law 6)

= lim
x→c

anx
n + lim

x→c
an−1x

n−1 + · · ·+ lim
x→c

a1x+ lim
x→c

a0 (Laws 1,2)

= lim
x→c

(
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

)
(Law 3)

= lim
x→c

f(x).

This proves part (1) of the theorem.5

(2) Suppose that g(c) ̸= 0. Since limx→c f(x) = f(c) and limx→c g(x) = g(c) by part (1), we
obtain

f(c)

g(c)
=

lim
x→c

f(x)

lim
x→c

g(x)
= lim

x→c

f(x)

g(x)
,

where the second equality follows from Law 5. This proves part (2) of the theorem. ■

5A common practice is to execute the steps in the reverse order, which is a flawed approach since we would
possess no a priori knowledge of whether the limits we are working with actually exist, and so use of Theorem
2.12 would not be justified.
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Proposition 2.16 enables us to evaluate polynomial and rational functions by “direct sub-
stitution,” without having to craft an ϵ-δ argument as in the previous section. This greatly
streamlines our labors, as the next example demonstrates when compared with the way the
same limit was treated in Example 2.5

Example 2.17. Evaluate

lim
x→2

(x2 + x− 12).

Solution. By Proposition 2.16 we substitute 2 for x to obtain

lim
x→2

(x2 + x− 12) = 22 + 2− 12 = −6,

and we’re done. ■

The following theorem will enable us to evaluate some limits limx→c f(x) when c is not in
the domain of f .

Theorem 2.18. Suppose limx→c φ(x) = L for some c, L ∈ R. If c is a limit point of Dom(f), and
there exists some γ > 0 such that f(x) = φ(x) for all x ∈ Dom(f)∩B′

γ(c), then limx→c f(x) = L.

Proof. Let ϵ > 0. Since limx→c φ(x) = L, there is some δ0 > 0 such that, for any x ∈ Dom(φ),

0 < |x− c| < δ0 ⇒ |φ(x)− L| < ϵ. (2.6)

Choose δ = min{δ0, γ}, let x ∈ Dom(f), and suppose that 0 < |x − c| < δ. Then we have
0 < |x− c| < δ0, and we also have 0 < |x− c| < γ so that

x ∈ Dom(f) ∩B′
γ(c)

and hence f(x) = φ(x). This shows that x ∈ Dom(φ), and since 0 < |x− c| < δ0 also, it follows
by (2.6) that |φ(x) − L| < ϵ and hence |f(x) − L| < ϵ. Since ϵ > 0 is arbitrary, we conclude
that limx→c f(x) = L. ■

In the statement of Theorem 2.18 it is understood that c is a limit point of the domain of φ,
since otherwise the hypothesis limx→c φ(x) = L makes no sense.

Example 2.19. Evaluate the limit

lim
x→9

2x2 − 21x+ 27

x2 − 9x
.

Solution. For convenience define

f(x) =
2x2 − 21x+ 27

x2 − 9x
.

Now, for any x ̸= 0, 9, we have

f(x) =
2x2 − 21x+ 27

x2 − 9x
=

(2x− 3)(x− 9)

x(x− 9)
=

2x− 3

x
.
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It’s important to bear in mind that the last equality is justified only if x does not equal 0 or 9!
If we define

g(x) =
2x− 3

x
,

then it is clear that f(x) = g(x) for all x ∈ (−∞, 0) ∪ (0, 9) ∪ (9,∞), and in particular for all
x ∈ (9− γ, 9) ∪ (9, 9 + γ) for sufficiently small γ > 0 (for instance we could let γ = 1). Since

lim
x→9

g(x) = lim
x→9

2x− 3

x
=

2(9)− 3

9
=

5

3

by Proposition 2.16, it follows that

lim
x→9

2x2 − 21x+ 27

x2 − 9x
= lim

x→9
f(x) = lim

x→9
g(x) =

5

3

by Theorem 2.18. ■

Example 2.20. Evaluate the limit

lim
x→0

√
2x2 + 25− 5

x2
.

Solution. Letting

f(x) =

√
2x2 + 25− 5

x2
,

observe that for any x ̸= 0

f(x) =

√
2x2 + 25− 5

x2
·
√
2x2 + 25 + 5√
2x2 + 25 + 5

=
(2x2 + 25)− 25

x2(
√
2x2 + 25 + 5)

=
2x2

x2(
√
2x2 + 25 + 5)

=
2√

2x2 + 25 + 5
.

Thus if we let

g(x) =
2√

2x2 + 25 + 5
,

then f(x) = g(x) for all x ∈ (−∞, 0) ∪ (0,∞), and so

lim
x→0

√
2x2 + 25− 5

x2
= lim

x→0
f(x) = lim

x→0
g(x) = lim

x→0

2√
2x2 + 25 + 5

=
lim
x→0

(2)

lim
x→0

(
√
2x2 + 25 + 5)

=
2

lim
x→0

√
2x2 + 25 + lim

x→0
(5)

=
2√

lim
x→0

(2x2 + 25) + 5
=

2√
2(0)2 + 25 + 5

=
1

5
,

by Theorem 2.18, appropriate limit laws, and finally Proposition 2.16. ■
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In Figure 3 the graph of the function f in Example 2.20 looks much as it should. However,
if we zoom in enough on the point (0, 1

5
) the graph will appear to become extremely erratic

such as in Figure 4. The zig-zagging behavior is not a property of f , but rather an artifact of
rounding errors! This phenomenon highlights one of the pitfalls of evaluating the limit of a
function simply by examining the function’s graph.

Sometimes the limit of a function is problematic to deal with directly, but it may be possible
to bound the function between two other functions whose limits are straightforward and equal.
When that’s the case we can employ the following.

Theorem 2.21 (Squeeze Theorem). Let c ∈ R be a limit point of Dom(f). Suppose there
are functions φ and ψ, and some γ > 0, such that

φ(x) ≤ f(x) ≤ ψ(x)

for all x ∈ Dom(f) ∩B′
γ(c). If

lim
x→c

φ(x) = lim
x→c

ψ(x) = L

for some L ∈ R, then
lim
x→c

f(x) = L.

Proof. Suppose that φ(x), ψ(x) → L ∈ R as x → c. Let ϵ > 0. Since limx→c φ(x) = L, there
exists some δ1 > 0 such that, for any x ∈ Dom(φ),

0 < |x− c| < δ1 implies |φ(x)− L| < ϵ.

Since limx→c ψ(x) = L, there exists some δ2 > 0 such that, for any x ∈ Dom(ψ),

0 < |x− c| < δ2 implies |ψ(x)− L| < ϵ.
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Choose δ = min{γ, δ1, δ2} and suppose x ∈ Dom(f) is such that 0 < |x − c| < δ; that is,
x ∈ Dom(f) ∩ B′

δ(c). Since B
′
δ(c) ⊆ B′

γ(c), it follows that x ∈ Dom(f) ∩ B′
γ(c), and therefore

φ(x) ≤ f(x) ≤ ψ(x) holds. Moreover we have

0 < |x− c| < δ1 and 0 < |x− c| < δ2

since δ ≤ δ1, δ2, and so

− ϵ < φ(x)− L < ϵ and − ϵ < ψ(x)− L < ϵ (2.7)

both hold. From φ(x) ≤ f(x) ≤ ψ(x) we obtain

φ(x)− L ≤ f(x)− L ≤ ψ(x)− L,

which together with (2.7) gives
−ϵ < f(x)− L < ϵ,

or equivalently |f(x)− L| < ϵ.
We have now shown that, for any x ∈ Dom(f), 0 < |x− c| < δ implies |f(x)− L| < ϵ, and

therefore
lim
x→c

f(x) = L

as desired. ■

Example 2.22. Let f(x) = x sin(1/x) and consider the limit limx→0 f(x). In Figure 5 we see
that the graph of sin(1/x) becomes wildly oscillatory in the neighborhood of x = 0, and so we
might expect that limx→0 f(x) does not exist. But we shouldn’t despair too quickly.

For all x ∈ (−∞, 0) ∪ (0,∞) we have −1 ≤ sin(1/x) ≤ 1, and hence

− |x| ≤ x sin

Å
1

x

ã
≤ |x|.

Now, since limx→0 |x| = 0 and limx→0(−|x|) = − limx→0 |x| = 0, by the Squeeze Theorem we
conclude that

lim
x→0

x sin

Å
1

x

ã
= 0

as well. ■

Proposition 2.23. Let L ∈ R. Then
lim
x→c

f(x) = L if and only if lim
h→0

f(c+ h) = L.

x

y

1−1

Figure 5. The graph of sin(1/x).
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Proof. Suppose that limx→c f(x) = L. Let ϵ > 0. Then there exists some δ > 0 such that
0 < |x− c| < δ implies |f(x)− L| < ϵ. Suppose that 0 < |h| < δ. Then we have

0 < |(c+ h)− c| < δ,

and hence |f(c+ h)− L| < ϵ. We have now shown that for every ϵ > 0 there exists some δ > 0
such that 0 < |h| < δ implies |f(c+ h)− L| < ϵ, which is to say limh→0 f(c+ h) = L.

For the converse, suppose that limh→0 f(c+h) = L. Let ϵ > 0. Then there exists some δ > 0
such that 0 < |h| < δ implies that |f(c+ h)− L| < ϵ. Suppose that 0 < |x− c| < δ. Then we
have

|f(c+ (x− c))− L| < ϵ,

and thus |f(x)− L| < ϵ. Therefore limx→c f(x) = L. ■
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2.4 – Infinite Limits

An infinite limit is a limit that equals either +∞ or −∞. Thus an infinite limit is a kind
of limit that does not exist in the sense that it does not equal a real number, but at least some
information is conveyed about the reason for the nonexistence. The precise definition for what
it means for a limit to equal +∞ or −∞ follows.

Definition 2.24. Let f be a real-valued function, and let c ∈ R be a limit point of Dom(f). We
say f has limit +∞ at c, written

lim
x→c

f(x) = +∞,

if for all α > 0 there exists some δ > 0 such that, for any x ∈ Dom(f),

0 < |x− c| < δ ⇒ f(x) > α.

We say f has limit −∞ at c, written

lim
x→c

f(x) = −∞,

if for all α > 0 there exists some δ > 0 such that, for any x ∈ Dom(f),

0 < |x− c| < δ ⇒ f(x) < −α.

There are one-sided versions of the above definitions. For instance, limx→c+ f(x) = +∞
means that, for any α > 0 there is some δ > 0 such that x ∈ (c, c+ δ) implies f(x) > α for all
x ∈ Dom(f).

Example 2.25. Prove that

lim
x→3

25

(x− 3)2
= +∞.

Preliminary Analysis. By Definition 2.24 we must show that, for any α > 0, there is some
δ > 0 such that 0 < |x− 3| < δ implies

25

(x− 3)2
> α. (2.8)

However,
25

(x− 3)2
> α ⇔ (x− 3)2 <

25

α
⇔ |x− 3| < 5√

α
,

so in particular we must find some δ such that |x− 3| < δ implies |x− 3| < 5/
√
α. Clearly we

should choose δ = 5/
√
α. With this in mind, we proceed with the proof. ■

Proof. Let α > 0. Choose δ = 5√
α
, and suppose 0 < |x− 3| < δ. Then |x− 3| < 5/

√
α follows,

and as seen in the preliminary analysis this implies that (2.8) holds. This finishes the proof. ■

If c is a limit point of Dom(f), then f is said to have vertical asymptote x = c if

lim
x→c−

|f(x)| = +∞ or lim
x→c+

|f(x)| = +∞.

There is no theoretical limit to how many vertical asymptotes a function may have. Recall that
the tangent function in trigonometry has an infinite number of vertical asymptotes.
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Example 2.26. Consider the function

f(x) =
x2 + x− 6

x2 − x− 2
.

Factoring the numerator and denominator, we obtain

f(x) =
(x− 2)(x+ 3)

(x− 2)(x+ 1)
,

which makes clear that the domain of f is D = (−∞,−1) ∪ (−1, 2) ∪ (2,∞). By Proposition
2.16(2) we find that

lim
x→c

f(x) =
(c− 2)(c+ 3)

(c− 2)(c+ 1)
∈ R

for all c ∈ D, and so the only remaining candidates for a vertical asymptote of f are x = 2 and
x = −1. However, for all x ∈ B′

1(2) we have

(x− 2)(x+ 3)

(x− 2)(x+ 1)
=
x+ 3

x+ 1
, (2.9)

and so by Theorem 2.18 and Proposition 2.16(2) we obtain

lim
x→2

f(x) = lim
x→2

x+ 3

x+ 1
=

2 + 3

2 + 1
=

5

3
.

This shows that limx→2 |f(x)| ≠ +∞, and thus x = 2 is not a vertical asymptote of f .
Finally we turn to x = −1. Equation (2.9) holds also for x ∈ B′

1(−1), and so

lim
x→−1

|f(x)| = lim
x→−1

|x+ 3|
|x+ 1|
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by Theorem 2.18. This limit does in fact equal +∞, for as x approaches −1 we find that the
numerator |x+ 3| approaches 2 while the denominator |x+ 1| approaches 0 from the right.

We can make this rigorous. Let α > 0 be arbitrary. Choose δ = min{1, 1/α}. Suppose
x ∈ Dom(f) is such that 0 < |x+ 1| < δ. In particular this implies that |x+ 1| < 1, which is to
say 1 < x+ 3 < 3 and hence |x+ 3| > 1. Now,

0 < |x+ 1| < δ ⇒ |x+ 1| < 1

α
⇒ 1

|x+ 1|
> α ⇒ |x+ 3|

|x+ 1|
> α,

and so |f(x)| > α. In accordance with Definition 2.24 this proves that

lim
x→−1

|f(x)| = +∞,

and therefore x = −1 is the only vertical asymptote for f .
A graph of f is shown in Figure 6, with the vertical asymptote depicted as a dashed line. It

can be seen that, in particular, f(x) → −∞ as x → −1−, and f(x) → +∞ as x → −1+. At
the point

(
2, 5

3

)
there is merely a hole in the graph. ■
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2.5 – Limits at Infinity

We now consider what happens to the value of a function f as x grows without bound toward
either +∞ or −∞, which is known as a limit at infinity.

Definition 2.27. Let f be a real-valued function, L ∈ R, and suppose there exists some γ > 0
for which (γ,∞) ⊆ Dom(f). We say the limit of f(x) as x approaches +∞ is L, written

lim
x→∞

f(x) = L,

if for every ϵ > 0 there exists some β > 0 such that x > β implies that |f(x)− L| < ϵ.
Now suppose (−∞,−γ) ⊆ Dom(f) for some γ > 0. We say the limit of f(x) as x

approaches −∞ is L, written
lim

x→−∞
f(x) = L,

if for every ϵ > 0 there exists some β > 0 such that x < −β implies that |f(x)− L| < ϵ.

A function f is said to have horizontal asymptote y = L if

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L.

A function can have at most two horizontal asymptotes.

Example 2.28. Determine the horizontal asymptotes, if any, of the function f given by

f(x) =

√
x2 + 2x+ 6− 3

2x− 1
.

Solution. Recall that in general
√
x2 = |x|. Now, when x→ ∞ we have x > 0, so then

√
x2 = x

and we obtain

lim
x→∞

f(x) = lim
x→∞

√
x2 + 2x+ 6− 3

2x− 1
= lim

x→∞

x
√

1 + 2/x+ 6/x2 − 3

2x− 1

= lim
x→∞

√
1 + 2/x+ 6/x2 − 3/x

2− 1/x
=

√
1 + 0 + 0− 0

2− 0
=

1

2
.

On the other hand x→ −∞ implies x < 0, so then
√
x2 = −x and we obtain

lim
x→−∞

f(x) = lim
x→−∞

√
x2 + 2x+ 6− 3

2x− 1
= lim

x→−∞

−x
√

1 + 2/x+ 6/x2 − 3

2x− 1

= lim
x→−∞

−
√

1 + 2/x+ 6/x2 − 3/x

2− 1/x
=

−
√
1 + 0 + 0− 0

2− 0
= −1

2
.

Hence the horizontal asymptotes of f are y = 1
2
and y = −1

2
.

A graph of f is shown in Figure 7, with the horizontal asymptotes depicted as dashed lines.
As can be seen, it is entirely possible for the graph of a function to cross one of its horizontal
asymptotes. ■

The following proposition informs us that a limit at infinity, when it exists, is always
equivalent to a one-sided limit at 0.
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Proposition 2.29. For any function f and L ∈ [−∞,∞],

lim
x→0+

f(x) = L if and only if lim
x→∞

f(1/x) = L,

and
lim
x→0−

f(x) = L if and only if lim
x→−∞

f(1/x) = L.

Proof. It will suffice to prove only the first biconditional statement, since the proof of the
second one is much the same.

First assume that −∞ < L < ∞. Suppose limx→0+ f(x) = L, and let ϵ > 0. Then there
exists some δ > 0 such that 0 < x < δ implies that |f(x)−L| < ϵ. Choose β = 1/δ, and suppose
that x > β. Then x > 1/δ > 0, whence 0 < 1/x < δ obtains and we get |f(1/x)− L| < ϵ. Thus
limx→∞ f(1/x) = L.

For the converse, suppose that limx→∞ f(1/x) = L, and again let ϵ > 0. Then there exists
some β > 0 such that x > β implies that |f(1/x)− L| < ϵ. Choose δ = 1/β, and suppose that
0 < x < δ. Then 0 < 1/δ = β < 1/x, whence we obtain

|f(x)− L| =
∣∣∣∣fÅ 1

1/x

ã
− L

∣∣∣∣ < ϵ

and thus limx→0+ f(x) = L.
Now we consider the case when L = ∞. Suppose limx→0+ f(x) = ∞, and let α > 0. There

exists some δ > 0 such that 0 < x < δ implies that f(x) > α. Choose β = 1/δ, and suppose
that x > β. Then x > 1/δ > 0, whence we get 0 < 1/x < δ and so f(1/x) > α. Thus
limx→∞ f(1/x) = ∞.

For the converse, suppose that limx→∞ f(1/x) = ∞, and let α > 0. There exists some β > 0
such that x > β implies that f(1/x) > α. Choose δ = 1/β, and suppose that 0 < x < δ. Then
0 < 1/δ = β < 1/x, whence we obtain

f(x) = f

Å
1

1/x

ã
> α.
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Thus limx→0+ f(x) = ∞. ■

Because of this proposition we can assume that all the properties of limits given in §2.3
also apply to limits at infinity. For instance, if limx→∞ f(x) and limx→∞ g(x) exist, then with
Proposition 2.29 and Theorem 2.12 we find that

lim
x→∞

[
f(x)g(x)

]
= lim

x→0+

[
f(1/x)g(1/x)

]
= lim

x→0+
f(1/x)· lim

x→0+
g(1/x) = lim

x→∞
f(x)· lim

x→∞
g(x),

which is the analog of Law (4) in Theorem 2.12. For the sake of completeness we state the
following proposition, which could also be proved directly using Definition 2.27 in much the
same manner that Theorem 2.12 was proved using Definition 2.3.

Proposition 2.30. Laws (1) through (6) given by Theorem 2.12 are valid in the cases when
c = ±∞. If c = ∞, then Law (7) holds provided there’s some γ > 0 such that f(x) ≥ 0 for all
x > γ. If c = −∞, then Law (7) holds provided there’s some γ > 0 such that f(x) ≥ 0 for all
x < −γ.

The next proposition imposes certain conditions on a function f that ensure that limx→∞ f(x)
exists in R. There is, however, no shortage of limits at infinity that exist for functions that do
not satisfy the proposition’s nondecreasing assumption. We make no use of the proposition
until §8.6.

Proposition 2.31. Suppose that f is a nondecreasing function on (a,∞); that is, f(x2) ≥ f(x1)
for all x1, x2 ∈ (a,∞) such that x2 > x1, . If f is bounded above on (a,∞), then limx→∞ f(x)
exists in R.

Proof. Suppose f is bounded above on (a,∞), so there exists some 0 < α < ∞ such that
f(x) ≤ α for all x ∈ (a,∞). Then S = {f(x) : x > a} is a subset of R that is bounded above,
and by the Completeness Axiom there exists some β ∈ R such that sup(S) = β. (That is, S has
a least upper bound in R.)

Let ϵ > 0. Since β is the least upper bound for S, there exists some γ > a such that
f(γ) > β − ϵ. Then, since f is nondecreasing on (a,∞) we find that f(x) ≥ f(γ) > β − ϵ for
all x > γ, and also f(x) ≤ β for all x > γ since β is an upper bound for S. Combining these
results gives |f(x)− β| < ϵ for all x > γ.

Thus for each ϵ > 0 there exists some γ > a such that |f(x) − β| < ϵ whenever x > γ.
Noting that we can always let γ > max{a, 0} to ensure that γ > 0, it follows immediately from
Definition 2.27 that limx→∞ f(x) = β. Because β is a real number we conclude that limx→∞ f(x)
exists in R. ■

Corollary 2.32. Let f be nondecreasing on (a,∞). If limx→∞ f(x) does not exist in R, then
limx→∞ f(x) = ∞.

Proof. Suppose limx→∞ f(x) does not exist in R. Fix α > 0. By the contrapositive of
Proposition 2.31 f is not bounded above, and so there exists some γ > a such that f(γ) > α.
Then, since f is nondecreasing, f(x) > α for all x > γ. Therefore limx→∞ f(x) = ∞. ■
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Aside from vertical and horizontal asymptotes there are also linear asymptotes that have
real slope m ̸= 0. A function f is said to have slant asymptote y = mx+ b if

lim
x→∞

∣∣(mx+ b)− f(x)
∣∣ = 0 or lim

x→−∞

∣∣(mx+ b)− f(x)
∣∣ = 0.

An alternate means of expressing the limit at left is to write f(x) → mx+ b as x→ ∞, while
the limit at right may be written as f(x) → mx+ b as x→ −∞. It is a fact that letting m = 0
in our definition of a slant asymptote would give us an alternate (but equivalent) definition of a
horizontal asymptote. A function can have no more than two asymptotes that are not vertical
asymptotes.

Given a polynomial function p, recall that the degree of p (denoted by deg(p)) is defined to
be the highest power of x in the expression p(x). Thus the degree of 4x− 7x2 is 2, the degree of
3x5 − 2x3 + 9 is 5, and so on.

The following theorem addresses all possible manners in which a rational function, in
particular, may or may not have a horizontal or slant asymptote.

Theorem 2.33. Suppose p and q are polynomial functions, so that p/q is a rational function.

1. If deg(p) < deg(q), then p(x)/q(x) → 0 as x→ ±∞.
2. If deg(p) = deg(q), with A and B being the lead coefficients of p(x) and q(x), then
p(x)/q(x) → A/B as x→ ±∞.

3. If deg(p) = deg(q) + 1, with mx + b being the quotient of the division p(x)/q(x), then
p(x)/q(x) → mx+ b as x→ ±∞.

4. If deg(p) > deg(q) + 1, then p/q has no horizontal or slant asymptote.

Example 2.34. Find all asymptotes of the function

f(x) =
3x3 − 2x2 + 7x+ 1

2x2 − x+ 1
.

x

y

8

8

Figure 8.
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Solution. Since 2x2 − x+ 1 can be rewritten as 2(x− 1
4
)2 + 7

8
, the denominator of f(x) cannot

equal zero for any real x and hence the domain of f is (−∞,∞). In particular this means f
has no vertical asymptotes.

Next we observe that the degree of the polynomial in the numerator of f(x) is 3 while the
degree of the polynomial in the denominator is 2. Since long division gives

3x3 − 2x2 + 7x+ 1

2x2 − x+ 1
=
(
3
2
x− 1

4

)
+

21
4
x+ 5

4

2x2 − x+ 1
,

we conclude by part (3) of Theorem 2.33 that y = 3
2
x− 1

4
is a slant asymptote of the rational

function f , and it is the one and only asymptote that f possesses. The graph of f and its
asymptote is given in Figure 8. ■

The next example features a function that has slant asymptotes (in fact its graph is part of
a hyperbola), but since the function is not rational no use can be made of Theorem 2.33.

Example 2.35. Find all asymptotes of the function

f(x) = 3

…
x2

4
− 1.

Solution. Polynomials have no vertical asymptotes, and since f is the square root of a
polynomial, it too has no vertical asymptotes. However, upon rewriting f(x) as

f(x) =
3

2
|x|
…
1− 4

x2
,

it appears plausible that f(x) → 3|x|/2 as x → ±∞, since
√

1− 4/x2 → 1 as x → ±∞.
Specifically, it appears that the graph of f approaches y = 3

2
x as x → ∞, and y = −3

2
x as

x

y

2−2

8

4

Figure 9.
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x → −∞, and so y = ±3
2
x are likely slant asymptotes for f . This must still be shown by

working with our definition of a slant asymptote. We have

lim
x→∞

∣∣∣∣32x− f(x)

∣∣∣∣ = lim
x→∞

∣∣∣∣∣32x− 3

2
x

…
1− 4

x2

∣∣∣∣∣ = lim
x→∞

3

2
x
∣∣∣1−»1− 4/x2

∣∣∣
= lim

x→∞

3

2
x

∣∣∣∣∣1−
√

1− 4/x2

1
· 1 +

√
1− 4/x2

1 +
√

1− 4/x2

∣∣∣∣∣
= lim

x→∞

Ç
3x

2
· 4/x2

1 +
√
1− 4/x2

å
= lim

x→∞

6/x

1 +
√

1− 4/x2
= 0,

and hence y = 3
2
x is indeed a slant asymptote of f . Similarly, since |x| = −x when x→ −∞,

we have

lim
x→−∞

∣∣∣∣−3

2
x− f(x)

∣∣∣∣ = lim
x→−∞

∣∣∣∣∣−3

2
x+

3

2
x

…
1− 4

x2

∣∣∣∣∣ = 0,

and hence y = −3
2
x is also a slant asymptote of f . There is no horizontal asymptote, since a

function cannot have more than two asymptotes that are not vertical. Therefore the asymptotes
of f are y = ±3

2
x. The graph of f , which has domain (−∞,−2] ∪ [2,∞), is shown along with

its asymptotes in Figure 9. ■
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2.6 – Continuity

The following is the definition of continuity of a real-valued function f of a single real variable
that will be used throughout these notes.

Definition 2.36. Let c ∈ Dom(f). Then f is continuous at c if for all ϵ > 0 there exists
some δ > 0 such that, for any x ∈ Dom(f),

|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

Given a set S, we say f is continuous on S if it is continuous at each x ∈ S. A continuous
function is a function that is continuous on its domain.

If a function is not continuous at some point c in its domain, then we say the function is
discontinuous at c. A careful reading of Definition 2.36 should make clear that a function is
discontinuous at any point that is not in its domain!

Theorem 2.37. Let c be a limit point of Dom(f). Then f is continuous at c if and only if

lim
x→c

f(x) = f(c).

Proof. Suppose f is continuous at c. Then for all ϵ > 0 there exists some δ > 0 such that, for
any x ∈ Dom(f),

|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

Since
0 < |x− c| < δ ⇒ |x− c| < δ,

we now have the following: c is a limit point of Dom(f), and for all ϵ > 0 there exists some
δ > 0 such that, for any x ∈ Dom(f),

0 < |x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

Therefore
lim
x→c

f(x) = f(c)

by Definition 2.3.
For the converse, suppose that f(x) → f(c) as x→ c. This immediately makes clear that

c ∈ Dom(f), and since |f(x)− f(c)| = 0 when x = c, it follows that for all ϵ > 0 there exists
some δ > 0 such that, for any x ∈ Dom(f),

|x− c| < δ ⇒ |f(x)− f(c)| < ϵ.

Therefore f is continuous at c. ■

It is often said that a function is continuous if its graph can be drawn without lifting the pen,
but there are many continuous functions with graphs that consist of two or more disconnected
pieces! This occurs whenever a function is continuous on its domain, but the domain consists of
two or more disjoint intervals of real numbers. Such functions are not hard to come by: consider
f(x) = 1/x.
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Theorem 2.38. Suppose that functions f and g are continuous at c. Then the following
functions are also continuous at c:

1. af for any a ∈ R.
2. f + g, f − g, fg.
3. f/g provided that g(c) ̸= 0.
4. fn for any nonzero integer n, provided that f(c) ̸= 0 if n < 0.

Proof.
Proof of Part (1). Let a ∈ R. Since f is continuous at c we have limx→c f(x) = f(c) ∈ R. By
Theorem 2.12(2)

lim
x→c

(af)(x) = lim
x→c

af(x) = a lim
x→c

f(x) = af(c) = (af)(c),

which shows that af is continuous at c.

Proof of Part (2). We have limx→c f(x) = f(c) ∈ R and limx→c g(x) = g(c) ∈ R. By Theorem
2.12(3)

lim
x→c

(f ± g)(x) = lim
x→c

[f(x)± g(x)] = lim
x→c

f(x)± lim
x→c

g(x) = f(c)± g(c) = (f + g)(c),

which shows that f + g and f − g are continuous at c. The proof that fg is continuous at c is
similar and uses Theorem 2.12(4).

Proof of Part (3). Suppose g(c) ̸= 0. Since limx→c f(x) = f(c) ∈ R and limx→c g(x) = g(c) ∈ R,
by Theorem 2.12(5)

lim
x→c

(f/g)(x) = lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)
=
f(c)

g(c)
= (f/g)(c),

which shows that f/g is continuous at c.

Proof of Part (4). Suppose that n is a positive integer. Since limx→c f(x) = f(c) ∈ R, by
Theorem 2.12(6)

lim
x→c

fn(x) = lim
x→c

[f(x)]n =
[
lim
x→c

f(x)
]n
= [f(c)]n = fn(c),

and so fn is continuous at c if n is positive.
Now suppose that n is a negative integer and f(c) ̸= 0. Then f−n(c) ̸= 0, and so by Theorem

2.12(5) and 2.12(1), along with the observation that −n is a positive integer, we obtain

lim
x→c

fn(x) = lim
x→c

1

f−n(x)
=

lim
x→c

(1)

lim
x→c

f−n(x)
=

1

f−n(c)
= fn(c).

Hence fn is continuous at c if n is negative. ■

Corollary to Theorem 2.38 are similar theorems in which the word “continuous” is replaced
by “continuous from the right” or “continuous from the left”.
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Theorem 2.39. If g is continuous at c and f is continuous at g(c), then f ◦ g is continuous at
c.

Proof. Suppose g is continuous at c and f is continuous at g(c). Fix ϵ > 0. Since f is continuous
at g(c), there exists some γ > 0 such that, for all y ∈ Dom(f),

|y − g(c)| < γ ⇒ |f(y)− f(g(c))| < ϵ. (2.10)

Since g is continuous at c, there exists some δ > 0 such that, for all x ∈ Dom(g),

|x− c| < δ ⇒ |g(x)− g(c)| < γ. (2.11)

Let x ∈ Dom(f ◦ g), so that x ∈ Dom(g) and g(x) ∈ Dom(f). Suppose that |x− c| < δ. Then
|f(x)− f(c)| < γ by (2.11), and since g(x) ∈ Dom(f) it follows from (2.10) that

|f(g(x))− f(g(c))| < ϵ.

That is,

|(f ◦ g)(x)− (f ◦ g)(c)| < ϵ,

and therefore f ◦ g is continuous at c. ■

Lemma 2.40. If f is continuous at b, b is an interior point of Dom(f), and limx→c g(x) = b,
then c is a limit point of Dom(f ◦ g).

Proof. Suppose f is continuous at b ∈ Int(Dom(f)), and g(x) → b as x → c. Let γ > 0 be
arbitrary. Since b is an interior point of the domain of f , there exists some ϵ > 0 such that
Bϵ(b) ⊆ Dom(f). Now, because limx→c g(x) = b, we know that c is a limit point of Dom(g),
and there exists some 0 < δ < γ sufficiently small such that, for all x ∈ Dom(g),

0 < |x− c| < δ ⇒ |g(x)− b| < ϵ.

That is, x ∈ Dom(g) ∩B′
δ(c) implies g(x) ∈ Bϵ(b) ⊆ Dom(f), and hence x ∈ Dom(f ◦ g) since

x ∈ Dom(g) and g(x) ∈ Dom(f). This establishes that

Dom(g) ∩B′
δ(c) ⊆ Dom(f ◦ g).

Observing that B′
δ(c) ⊆ B′

γ(c) since δ < γ, we then obtain

Dom(g) ∩B′
δ(c) ⊆ Dom(f ◦ g) ∩B′

γ(c).

Recalling that c is a limit point of Dom(g), it follows that Dom(g) ∩ B′
δ(c) ̸= ∅, and hence

Dom(f ◦ g) ∩B′
γ(c) ̸= ∅ as well. Since γ > 0 is arbitrary, we conclude that c is a limit point of

Dom(f ◦ g). ■

Proposition 2.41. Suppose that f is continuous at b, where b is an interior point of Dom(f).
If limx→c g(x) = b, then

lim
x→c

(f ◦ g)(x) = f(b). (2.12)
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Proof. Suppose that g(x) → b as x→ c. By Lemma 2.40 it is known that c is a limit point of
Dom(f ◦ g), which is necessary (but not sufficient) in order for the limit (2.12) to exist. Let
ϵ > 0 be arbitrary. Since b is an interior point of Dom(f) and f is continuous at b, there exists
some γ > 0 such that

|x− b| < γ ⇒ |f(x)− f(b)| < ϵ.

Additionally, since limx→c g(x) = b there can be found some δ > 0 such that

0 < |x− c| < δ ⇒ |g(x)− b| < γ.

Now, supposing that x is such that 0 < |x− c| < δ, it follows that |g(x)− b| < γ and hence

|(f ◦ g)(x)− f(b)| = |f(g(x))− f(b)| < ϵ.

This shows that limx→c(f ◦ g)(x) = f(b). ■

The conclusion of Proposition 2.41 can be written more compellingly as

lim
x→c

f(g(x)) = f
(
lim
x→c

g(x)
)
,

so that in effect the proposition provides a means to bring a limit “inside” a function under
certain conditions.

In what follows we define a radical function to be a function f given by f(x) = m
√
x for

some integer m ≥ 2.

Proposition 2.42. For each integer m ≥ 2 the radical function m
√
x is continuous on its

domain.

In the case when m is odd the proof for this proposition is given by Law (7) of limits in
Theorem 2.12, and in the case when m is even the proof is given by Corollary 2.13. To prove
the next proposition we cannot avoid the reality that the trigonometric functions are defined
in geometrical terms in the standard mathematical curriculum. It is an unfortunate reality
because calculus is analytical in essence, not geometrical. In the chapters to come calculus will
be employed to give more analytical—and general—definitions for concepts such as the “length”
of a curve and the “area” of a region enclosed by a curve. Such definitions may then be used to
make the trigonometric functions less dependent on geometrical notions.

Proposition 2.43. The trigonometric functions sin, cos, tan, csc, sec, and cot are continuous
on their domain.

Proof. We begin by showing the sine function is continuous at 0. Recall that for any t ∈ R the
value of sin t is determined to be the y-coordinate of the point p on the unit circle

C1(0, 0) = {(x, y) : x2 + y2 = 1}

that is reached when traveling a distance of |t| units on C1(0, 0) (counterclockwise if t > 0,
clockwise if t < 0) starting at the point (1, 0). Suppose that 0 < t < π/2, so that the point



54

y

xo

1

p

t

a

Figure 10.

p = (x, y) on C1(0, 0) is in the first quadrant as shown in Figure 10, and in particular y > 0.
Letting o = (0, 0) and a = (1, 0), the area of the triangle △aop is

1

2
(base)(height) =

1

2
(1)(y) =

y

2
=

sin t

2
> 0,

while the area of the circular sector bounded by the arc ıap and segments oa and op is

t

2π

(
Area of C1(0, 0)

)
=

t

2π
· π(1)2 = t

2
.

Of course, the area of △aop is less than the area of the sector since the sector circumscribes
the triangle, which implies that

0 <
sin t

2
<
t

2
and therefore 0 < sin t < t for all t ∈ (0, π/2). Since

lim
t→0+

t = lim
t→0+

(0) = 0,

by the Squeeze Theorem we conclude that

lim
t→0+

sin t = 0.

A nearly identical argument will show that sin t→ 0 as t→ 0−, whence we obtain

lim
t→0

sin t = 0 = sin 0

and therefore sin t is continuous at 0.
We now are in a position to show that cosine is continuous at 0. For t ∈ (−π/2, π/2) we have

cos t =
»
1− sin2(t),

and so by Theorems 2.18 and 2.12

lim
t→0

cos t = lim
t→0

√
1− sin2 t =

…
1−
[
lim
t→0

sin t
]2

=
√
1− 02 = 1 = cos 0.

Therefore cos t is continuous at 0.
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Now let c ∈ R. Using Proposition 2.23, the identity

sin(α + β) = sin(α) cos(β) + cos(α) sin(β),

and Theorems 2.18 and 2.12, we obtain

lim
t→c

sin t = lim
h→0

sin(c+ h)

= lim
h→0

(sin c cosh+ cos c sinh)

= sin c lim
h→0

cosh+ cos c lim
h→0

sinh

= sin c cos 0 + cos c sin 0

= sin c · 1 + cos c · 0 = sin c.

Hence sin t is continuous at c, and since c ∈ R = Dom(sin) is arbitrary we conclude that the
sine function is continuous on its domain.

Again let c ∈ R. Using Proposition 2.23, the identity

cos(α + β) = cos(α) cos(β)− sin(α) sin(β),

and Theorems 2.18 and 2.12, we find that

lim
t→c

cos t = lim
h→0

cos(c+ h)

= lim
h→0

(cos c cosh− sin c sinh)

= cos c lim
h→0

cosh− sin c lim
h→0

sinh

= cos c cos 0− sin c sin 0

= cos c · 1− sin c · 0 = cos c,

and thus cos t is continuous at c. From this we conclude that the cosine function is continuous
on its domain.

To show the other four trigonometric functions are continuous on their domain is straightfor-
ward. For instance let c ∈ Dom(tan). Since Dom(tan) is an open set there exists some γ > 0
such that I = (c− γ, c+ γ) ⊆ Dom(tan). Observing that cos c ̸= 0 (otherwise c can’t be in the
domain of the tangent function) and tan t = sin t/ cos t for all t ∈ I, we have by Theorems 2.18
and 2.12(5)

lim
t→c

tan t = lim
t→c

sin t

cos t
=

lim
t→c

sin t

lim
t→c

cos t
=

sin c

cos c
= tan(c).

This shows that tan t is continuous at c, and therefore the tangent function is continuous on its
domain.

The verification that the cosecant, secant, and cotangent functions are continuous on their
domain is left to the exercises. ■
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A careful examination of Proposition 2.16 should make it clear that polynomial and rational
functions are continuous on their domain. Combining Propositions 2.16, 2.42, and 2.43, we have
the following comprehensive theorem.

Theorem 2.44. Polynomial, rational, radical, and trigonometric functions are continuous on
their domain.

This theorem, together with Theorems 2.38 and 2.39, can be used to show that almost all of
the functions dealt with in the study and application of calculus are continuous on their domain.
The foremost exceptions are piecewise-defined functions, as demonstrated in the following
example.

Example 2.45. Determine where the function φ given by

φ(x) =

®
3
√
2x− 1, if x <

√
π

sin(x2), if x ≥
√
π

is continuous.

Solution. First note that Dom(φ) = (−∞,∞). Since by Theorem 2.44 the polynomial function
g(x) = 2x − 1 is continuous at

√
π, and the radical function f(x) = 3

√
x is continuous at

g(
√
π) = 2

√
π − 1, by Theorem 2.39 the function

(f ◦ g)(x) = 3
√
2x− 1

is continuous at
√
π, and so

lim
x→

√
π

3
√
2x− 1 =

3
»

2
√
π − 1

by Theorem 2.37. Now,

lim
x→

√
π
−
φ(x) = lim

x→
√
π
−

3
√
2x− 1 =

3
»
2
√
π − 1 ̸= 0 = sin(π) = φ(

√
π)

shows that
lim
x→

√
π
φ(x) ̸= φ(

√
π),

and therefore φ is discontinuous at
√
π by Theorem 2.37.

Next, for any c <
√
π we have g(x) = 2x− 1 is continuous at c and f(x) = 3

√
x is continuous

at g(c) = 2c − 1, and so by Theorem 2.39 (f ◦ g)(x) = 3
√
2x− 1 is continuous at c. Since

φ(x) = (f ◦ g)(x) for all x <
√
π, we conclude that φ is likewise continuous at c. That is, φ is

continuous on (−∞,
√
π).

Finally, for any c >
√
π we have g(x) = x2 is continuous at c and f(x) = sinx is continuous at

g(c) = c2, and so by Theorem 2.39 (f ◦g)(x) = sin(x2) is continuous at c. Since φ(x) = (f ◦g)(x)
for all x >

√
π, we conclude that φ is likewise continuous at c. That is, φ is continuous on

(
√
π,∞).
Therefore φ is continuous on (−∞,

√
π) ∪ (

√
π,∞), and discontinuous at

√
π. In particular

φ is not continuous on its domain! ■

Theorem 2.46 (Intermediate Value Theorem). Suppose f is continuous on [a, b] and
L ∈ R lies between f(a) and f(b). Then there exists some c ∈ (a, b) such that f(c) = L.



57

Proof. Without loss of generality it can be assumed that f(a) < L < f(b). Define the set

S = {x ∈ [a, b] : f(x) ≤ L}.

Since a ∈ S we have S ̸= ∅, and so since b is an upper bound for S the Completeness Axiom
implies that there exists some c ∈ R such that sup(S) = c.

Clearly c ≥ a, since a ∈ S and c is an upper bound for S. Also c ≤ b, since b is an upper
bound and c is a least upper bound for S. Therefore c ∈ [a, b] and f(c) is defined. What remains
to show is that f(c) = L.

Suppose that f(c) > L. Then c ∈ (a, b], and since f is continuous at c there exists some
sufficiently small ϵ > 0 such that f(x) > L for all x ∈ (c−ϵ, c]. Hence x /∈ S for all c−ϵ < x ≤ c,
whereas c = sup(S) implies there should exist some x0 ∈ S such that c− ϵ < x0 ≤ c. Given this
contradiction, we conclude that f(c) ≯ L.

Now suppose that f(c) < L. Then c ∈ [a, b), and since f is continuous at c there exists some
ϵ > 0 such that f(x) < L for all x ∈ [c, c+ ϵ). Hence f(c+ ϵ/2) < L, so that c+ ϵ/2 ∈ S and
thus c cannot be an upper bound for S as indicated by c = sup(S). Given this contradiction,
we conclude that f(c) ≮ L.

Therefore f(c) = L, and since L ̸= f(a), f(b) it is clear that c ̸= a, b and thus c ∈ (a, b). If
we assume that f(b) < L < f(a), then −f(a) < −L < −f(b), and since −f is continuous on
[a, b] we may employ the same argument as above to show that there exists some c ∈ (a, b) such
that −f(c) = −L, and thus f(c) = L obtains once more. ■

Example 2.47. Does there exist a real number that is exactly 1 more than its cube?

Solution. The question is whether there exists some x ∈ R such that x = x3 + 1. If we let
f(x) = x3 − x + 1, then the question becomes whether there exists some x ∈ R such that
f(x) = 0. Since f is a polynomial function it is continuous everywhere, and so in particular is
continuous on [−2, 0]. Now, since f(−2) = −5 and f(0) = 1, we see that 0 lies between f(−2)
and f(0), and so by the Intermediate Value Theorem there exists some c ∈ (−2, 0) for which
f(c) = 0. That is, c is a real number and c = c3 + 1. ■

In the example above we see that the Intermediate Value Theorem can tell us that there
is indeed a real number that is 1 more than its cube, but it cannot tell us what exactly that
number is, or even if it is unique. But knowing that such a number lies somewhere in the
interval (−2, 0) should be enough to enable a computer algebra system to determine its value to
whatever degree of accuracy is desired.

Much of the remainder of this section is concerned with the development of theoretical
results that will be employed much later in the text.

Definition 2.48. Given functions f, g : S → R, define f ∨ g : S → R by

(f ∨ g)(x) = max{f(x), g(x)}
and f ∧ g : S → R by

(f ∧ g)(x) = min{f(x), g(x)}.

Given a function f , observe that if f(x) ≥ 0 then

(f ∨ 0)(x) = max{f(x), 0} = f(x) and (−f ∨ 0)(x) = max{−f(x), 0} = 0,
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and so
(f ∨ 0)(x)− (−f ∨ 0) = f(x)− 0 = f(x);

and if f(x) < 0 then

(f ∨ 0)(x) = max{f(x), 0} = 0 and (−f ∨ 0)(x) = max{−f(x), 0} = −f(x),
and so

(f ∨ 0)(x)− (−f ∨ 0) = 0− [−f(x)] = f(x).

Hence
f = (f ∨ 0)− (−f ∨ 0), (2.13)

which expresses f as a difference of two nonnegative functions and so will have great utility in
later mathematical developments.

Proposition 2.49. If f and g are continuous at c, then f ∨ g and f ∧ g are continuous at c.

Proof. Suppose that f and g are continuous at c. We will assume that c ∈ Int(I), since if c is
an endpoint of I the proof will be the same except that two-sided limits will become one-sided.
Let ϵ > 0. Then there exists δ1, δ2 > 0 such that

|x− c| < δ1 ⇒ |f(x)− f(c)| < ϵ,

and
|x− c| < δ2 ⇒ |g(x)− g(c)| < ϵ

Suppose that f(c) > g(c), so that (f ∨ g)(c) = f(c). The continuity of f at c implies that
there is some δ3 > 0 such that

|x− c| < δ3 ⇒ f(x) > g(x),

which is to say for all x such that c − δ3 < x < c + δ3 we have (f ∨ g)(x) = f(x). Choose
δ = min{δ1, δ3}, and suppose that |x − c| < δ. Since |x − c| < δ3 we have (f ∨ g)(x) = f(x),
and since |x− c| < δ1 we have |f(x)− f(c)| < ϵ. Now,

|(f ∨ g)(x)− (f ∨ g)(c)| = |f(x)− f(c)| < ϵ.

Supposing that f(c) < g(c), a similar argument to that above will show that

|(f ∨ g)(x)− (f ∨ g)(c)| = |g(x)− g(c)| < ϵ.

Finally, suppose f(c) = g(c), so that (f ∨ g)(c) = f(c) = g(c). Choose δ = min{δ1, δ2}, and
suppose |x− c| < δ. If f(x) ≥ g(x), then

|(f ∨ g)(x)− (f ∨ g)(c)| = |f(x)− f(c)| < ϵ

since |x− c| < δ1. If f(x) < g(x), then

|(f ∨ g)(x)− (f ∨ g)(c)| = |g(x)− g(c)| < ϵ

since |x− c| < δ2.
We have now shown that for every ϵ > 0 there exists some δ > 0 such that

|x− c| < δ ⇒ |(f ∨ g)(x)− (f ∨ g)(c)| < ϵ,
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and therefore f ∨ g is continuous at c. The proof that f ∧ g is continuous at c is similar. ■

Corollary 2.50. If f is continuous at c, then |f | is continuous at c.

Proof. Suppose that f is continuous at c. If f(x) ≥ 0, then

(−f ∨ f)(x) = max{−f(x), f(x)} = f(x) = |f(x)|;

and if f(x) < 0, then

(−f ∨ f)(x) = max{−f(x), f(x)} = −f(x) = |f(x)|.

Thus we have |f | = −f ∨ f , and since f and −f are continuous at c, it follows by Proposition
2.49 that |f | is also continuous at c. ■
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2.7 – One-Sided Continuity

If a function f is not continuous at some point c in its domain, it may still be valuable to
know that it is continuous in a one-sided sense. One-sided continuity at c refers to continuity
at c from either the left or the right of c, which we now define.

Definition 2.51. A function f is continuous from the left at c if limx→c− f(x) = f(c), and
continuous from the right at c if limx→c+ f(x) = f(c).
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3
Differentiation Theory

3.1 – The Derivative of a Function

Motivated historically by the slope problem that is discussed a little later, there is the
following definition.

Definition 3.1. Let c be an interior point of Dom(f). Then the derivative of f at c is

f ′(c) = lim
x→c

f(x)− f(c)

x− c
,

provided the limit exists. If f ′(c) exists, then f is said to be differentiable at c. If f ′(x) exists
for all x ∈ I, then f is differentiable on I. Finally, if f ′(x) exists for all x ∈ Dom(f), then
f is a differentiable function.

The following proposition offers up an alternative but entirely equivalent means of finding
f ′(c) which sometimes is more convenient.

Proposition 3.2. Let L ∈ R. Then f ′(c) = L if and only if

lim
h→0

f(c+ h)− f(c)

h
= L, (3.1)

and therefore

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
provided that the limit exists.

Proof. Suppose that f ′(c) = L. Let ϵ > 0 be arbitrary. By Definition 3.1 there exists some
δ > 0 such that 0 < |x− c| < δ implies that∣∣∣∣f(x)− f(c)

x− c
− L

∣∣∣∣ < ϵ. (3.2)

Suppose h is such that 0 < |h| < δ. Then 0 < |(c+ h)− c| < δ and so, substituting c+ h for x
in (3.2), we obtain ∣∣∣∣f(c+ h)− f(c)

(c+ h)− c
− L

∣∣∣∣ < ϵ,
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and thus ∣∣∣∣f(c+ h)− f(c)

h
− L

∣∣∣∣ < ϵ.

This verifies equation (3.1) and thus completes the first part of the proof.
For the converse, suppose that (3.1) is true. Again let ϵ > 0 be arbitrary. Then there exists

some δ > 0 such that 0 < |h| < δ implies that∣∣∣∣f(c+ h)− f(c)

h
− L

∣∣∣∣ < ϵ. (3.3)

Suppose that x is such that 0 < |x− c| < δ. Then, substituting x− c for h in (3.3), we obtain∣∣∣∣f(c+ (x− c))− f(c)

x− c
− L

∣∣∣∣ < ϵ,

and thus ∣∣∣∣f(x)− f(c)

x− c
− L

∣∣∣∣ < ϵ.

This demonstrates that f ′(c) = L, and so the proof is complete. ■

From a function f , then, we “derive” a new function f ′ whose domain consists of all
x ∈ Dom(f) for which f ′(x) exists in R. This is why the term “derivative” is used. The process
of finding the derivative of a function is known as differentiation.

Definition 3.3. For a function f , the derivative of f is the function f ′ given by

f ′(x) = lim
t→x

f(t)− f(x)

t− x

for all x for which f ′(x) ∈ R.

It is customary to let f ′
−(x) and f

′
+(x) denote the left-hand and right-hand derivative limit,

which is to say

f ′
−(x) = lim

t→x−

f(t)− f(x)

t− x
and f ′

+(x) = lim
t→x+

f(t)− f(x)

t− x
.

This notation will be used now and again, and more will be said about so-called one-sided
derivatives at the end of the section.

In addition to the “prime notation” that denotes the derivative of f by f ′, there is “Leibniz
notation” df/dx and “operator notation” ∂xf . Moreover, if we set y = f(x) then we can also
represent f ′ by either y′ in the prime notation or dy/dx in the Leibniz notation. All of the
symbols

f ′, y′,
df

dx
,

dy

dx
, ∂xf

are used to represent the derivative of f , which is a function. To represent the value of the
function f ′ at x, where x is considered to be a variable, there are prime notation symbols such
as

f ′(x), [f(x)]′, y′(x), [y(x)]′,
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as well as Leibniz and operator notation symbols such as

df

dx
(x),

d

dx
[f(x)],

dy

dx
(x),

d

dx
[y(x)], ∂xf(x), ∂x[f(x)].

If we wish to indicate specifically the value of f ′ when x = c, in addition to the symbols f ′(c)
and y′(c) there are

df

dx
(c),

df

dx

∣∣∣∣
x=c

,
dy

dx
(c),

dy

dx

∣∣∣∣
x=c

, ∂xf(c).

One other matter to bear in mind is that in practice (and especially in the study of differential
equations) the symbols y′ and dy/dx are often used to denote f ′(x) in the interests of brevity.
Thus the symbols y′ and dy/dx have two possible interpretations: they can represent f ′ or f ′(x),
and only context makes clear which is intended.

Example 3.4. Given f(x) = x3, find f ′ and its domain.

Solution. Using the limit in Proposition 3.2,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)3 − x3

h

= lim
h→0

(x3 + 3hx2 + 3h2x+ h3)− x3

h
= lim

h→0

3hx2 + 3h2x+ h3

h

= lim
h→0

(3x2 + 3hx+ h2) = 3x2 + 3(0)x+ (0)2 = 3x2.

The steps taken to evaluate the limit are valid for any x ∈ R, and the result is the real
number 3x2. That is, f ′(x) is defined to be a real number for each x ∈ R, and therefore
Dom(f ′) = (−∞,∞). ■

In Example 3.4, to indicate that the derivative of the function f given by f(x) = x3 is the
function f ′ given by f ′(x) = 3x2, we may simply write

(x3)′ = 3x2 or
d

dx
(x3) = 3x2.

That is, to write (x3)′ = 3x2 is to state that the derivative of the function x 7→ x3 is the function
x 7→ 3x2. This practice is especially convenient when we are finding the derivative of a function
to which we have not given a name such as f .

Example 3.5. Given f(x) =
√
3x+ 1, find f ′ and its domain.

Solution. Using the limit in Proposition 3.2,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
3(x+ h) + 1−

√
3x+ 1

h

= lim
h→0

√
3(x+ h) + 1−

√
3x+ 1

h
·
√

3(x+ h) + 1 +
√
3x+ 1√

3(x+ h) + 1 +
√
3x+ 1

= lim
h→0

3h

h
Ä√

3(x+ h) + 1 +
√
3x+ 1

ä = lim
h→0

3√
3(x+ h) + 1 +

√
3x+ 1
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=
3√

3(x+ 0) + 1 +
√
3x+ 1

=
3

2
√
3x+ 1

.

So f ′ is seen to be a function with domain given by

Dom(f ′) =

ß
x :

3

2
√
3x+ 1

∈ R
™
= {x : 3x+ 1 > 0} =

(
− 1

3
,∞
)
.

Contrast this with Dom(f) = [−1/3,∞) to see that, though −1/3 is in the domain of f , the
function is not differentiable there. ■

One of the questions that motivated the discovery (some would say invention) of calculus
was the so-called “slope problem.” The question is, given a curve in R2 defined by the function
y = f(x), what is the “slope” of the curve at any one of its points (x, f(x))? Equivalently one
might ask what angle the curve makes with the positive x-axis at (x, f(x)), but in any case the
problem is that unless the curve is a line (to say “straight line” is redundant) we should expect
the answer to vary from one point to the next. The issue is not entirely academic. If s = s(t)
gives the position s of an object at time t, we shall see in the exercises that the question of the
velocity of the particle at some particular instant in time t0 amounts to asking for the slope of
the curve defined by s = s(t) at the point (t0, s(t0)). The following definition settles the matter
with the use of derivatives.

Definition 3.6. Let C be a curve given by y = f(x). The slope of C at a point (c, f(c)) is
f ′(c) provided that f is differentiable at c, in which case the tangent line to C at (c, f(c)) is
given by

y − f(c) = f ′(c)(x− c).

If |f ′
−(c)| = ∞ and |f ′

+(c)| = ∞, then C has no slope at (c, f(c)), and the vertical line x = c is
designated to be the tangent line.

As we might have guessed, a curve y = f(x) has a horizontal tangent line at any point where
f ′(c) = 0. If f ′(c) does not exist in R and either |f ′

−(c)| ≠ ∞ or |f ′
+(c)| ≠ ∞, then there is no

tangent line at (c, f(c)) whatsoever.

Example 3.7. Find all points, if any, where the curve C given by y =
√
3x+ 1 has a slope of

1. At each such point find the equation of the tangent line.

x

y

2

−1
3

5
12

1 2 3

f

Figure 11. The tangent line to y =
√
3x+ 1 at

(
5
12
, 3
2

)
.
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Solution. Setting y = f(x), in Example 3.5 it was found that

f ′(x) =
3

2
√
3x+ 1

.

What must be done is to find all x ∈ Dom(f ′) = (−1/3,∞) for which f ′(x) = 1. This is a
simple matter of algebra:

3

2
√
3x+ 1

= 1 ⇒ 2
√
3x+ 1 = 3 ⇒ 4(3x+ 1) = 9 ⇒ x =

5

12
.

Hence C has a slope of 1 only at the point (5/12, f(5/12)) = (5/12, 3/2), and nowhere else. The
tangent line to C at (5/12, 3/2) is given by the equation

y − 3

2
= 1 ·

Å
x− 5

12

ã
,

which simplifies to become y = x+ 13/12. See Figure 11. ■

There are many ways that a function f can fail to be differentiable at some point c in its
domain, a few of which will now be discussed. Not uncommon is for a function to have a corner,
which is a point c ∈ Dom(f) where f is continuous and f ′

−(c) and f
′
+(c) are real numbers, but

f ′
−(c) ̸= f ′

+(c). Clearly f ′
−(c) ̸= f ′

+(c) implies that f ′(c) cannot exist. Figure 12(a) depicts a
corner, and Example 3.8 shows that f(x) = |x− 2| has a corner at x = 2.

x

y

c

f

(a) Corner

x

y

c

f

(b) Cusp

x

y

c

f

(c) Jump Discontinuity

x

y
f

c

(d) Vertical Tangent Line

Figure 12. Some common scenarios in which differentiability fails.
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Another kind of point where differentiability can fail is a cusp, which is defined to be a
point c ∈ Dom(f) where f is continuous, and yet the one-sided derivative limits go to opposite
infinities: either f−(c) = +∞ and f+(c) = −∞ as in Figure 12(b), or f−(c) = −∞ and
f+(c) = +∞ as in Example 3.9. Notice that this means f has a vertical tangent line at (c, f(c)).

Next there is the classic jump discontinuity, as in Figures 12(c) and 14, which defeats
differentiability as surely as any other kind of discontinuity.

A more subtle scenario where the derivative of a function f fails to exist is at a point (c, f(c))
that is not an extreme point and yet the function has a vertical tangent line there. Of course, in
light of the old Vertical Line Test no relation that is a function can have a graph that intersects
a vertical line at more than one point, so the only way a function can have a vertical tangent line
and still remain a function is for it to have vertical tangent lines at isolated points. See Figure
12(d). Are such functions as these very unusual? Not really. In Example 3.11 the familiar cube
root function f(x) = 3

√
x is discovered to have a vertical tangent line at the origin.

Example 3.8. Show that f(x) = |x− 2| is not differentiable at x = 2.

Solution. By Proposition 3.2

f ′(2) = lim
h→0

f(2 + h)− f(2)

h
,

so to show f is not differentiable at 2 means to show that the above limit does not exist. We can
do this by showing that the corresponding one-sided limits do not agree. On one hand we have

lim
h→0−

f(2 + h)− f(2)

h
= lim

h→0−

|(2 + h)− 2| − |2− 2|
h

= lim
h→0−

|h|
h

= lim
h→0−

−h
h

= lim
h→0−

(−1) = −1,

where |h| = −h since h is approaching 0 from the left and therefore h < 0; on the other hand
we have

lim
h→0+

f(2 + h)− f(2)

h
= lim

h→0+

|(2 + h)− 2| − |2− 2|
h

x

y

1 2 3−1

1

2

f

f ′

Figure 13. The graph of |x− 2| and its derivative.
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x

y

−2

2

−3

3

f

f ′

Figure 14. The graph of x2/3 and its derivative.

= lim
h→0+

|h|
h

= lim
h→0+

h

h
= lim

h→0+
(1) = 1,

where |h| = h since h is approaching 0 from the right and therefore h > 0. Since limh→0− =
−1 ̸= 1 = limh→0+ , it follows that limh→0 does not exist. Therefore f is not differentiable at 2.

Figure 13 shows the graph of both f and f ′. Note the corner in the graph of f at x = 2,
and the corresponding jump discontinuity in the graph of f ′. It can be seen that

f ′(x) =

®
−1, if x < 2

1, if x > 2

so while Dom(f) = (−∞,∞), we have Dom(f ′) = (−∞, 0) ∪ (0,∞). That is, f is differentiable
everywhere except at 2. ■

Example 3.9. Show that f(x) = x2/3 is not differentiable at x = 0.

Solution. By definition

f ′(0) = lim
t→0

f(t)− f(0)

t− 0
= lim

t→0

t2/3

t
= lim

t→0

1
3
√
t
,

which clearly does not exist. In fact f ′
−(0) = −∞ and f ′

+(0) = +∞, so f has a cusp (and hence
a vertical tangent line) at the point (0, 0). See Figure 14. ■

Example 3.10. Show that

f(x) =

®
x, if x ≤ 2

x+ 1, if x > 2

is not differentiable at x = 2.

Solution. The function was engineered to be devious. A glance at Figure 15 would seem to
suggest that the slope of the curve given by f must equal 1 at every point on the curve, including
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x

y

1 2 3

2

4
f

f ′

Figure 15.

the point (2, f(2)) = (2, 2). So shouldn’t f ′(x) = 1 for all x ∈ (−∞,∞)? Alas, not quite. We
do have

lim
h→0−

f(2 + h)− f(2)

h
= lim

h→0−

(2 + h)− 2

h
= lim

h→0−

h

h
= lim

h→0−
(1) = 1,

however

lim
h→0+

f(2 + h)− f(2)

h
= lim

h→0+

[(2 + h) + 1]− 2

h
= lim

h→0+

h+ 1

h
= lim

h→0+

Å
1 +

1

h

ã
= ∞

demonstrates that f ′(2) not only fails to equal 1, it fails to exist at all. ■

Example 3.11. Show that f(x) = 3
√
x is not differentiable at x = 0, and find f ′,

Solution. By definition

f ′(0) = lim
t→0

f(t)− f(0)

t− 0
= lim

t→0

3
√
t

t
= lim

t→0

1
3
√
t2

= ∞,

so f ′(0) /∈ R and it’s concluded that f ′ is not differentiable at 0. (However, the curve y = f(x)
is seen to have x = 0 as a vertical tangent line at (0, 0).)

Next, for any x ̸= 0 we have

f ′(x) = lim
t→x

f(x)− f(t)

x− t
= lim

t→x

3
√
x− 3

√
t

x− t
= lim

t→x

3
√
x− 3

√
t(

3
√
x
)3 −( 3

√
t
)3

= lim
t→x

3
√
x− 3

√
t(

3
√
x− 3

√
t
)î(

3
√
x
)2
+ 3

√
x 3
√
t+
(

3
√
t
)2ó

= lim
t→x

1(
3
√
x
)2
+ 3

√
x 3
√
t+
(

3
√
t
)2

=
1(

3
√
x
)2

+ 3
√
x 3
√
x+

(
3
√
x
)2 =

1

3x2/3
=

1

3
x−2/3,
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x

y

f

f ′

1−1

Figure 16. The graph of 3
√
x and its derivative.

recalling the factoring formula u3 − v3 = (u − v)(u2 + uv + v2). Thus it’s seen that f is
differentiable for all x ̸= 0. See Figure 16. ■

Any discontinuity at a point in the domain of a function f will preclude differentiability of f
at that point, as the contrapositive of the next proposition makes clear.

Proposition 3.12. If f is differentiable at x, then f is continuous at x.

Proof. Suppose that f is differentiable at x, so x is an interior point of Dom(f), and the limit

f ′(x) = lim
t→x

f(t)− f(x)

t− x

exists in R. Now, using limit laws established in §2.3, we obtain

lim
t→x

f(t) = lim
t→x

[f(t)− f(x) + f(x)] = lim
t→x

ï
f(t)− f(x)

t− x
· (t− x) + f(x)

ò
= lim

t→x

ï
f(t)− f(x)

t− x
· (t− x)

ò
+ lim

t→x
f(x)

= lim
t→x

ï
f(t)− f(x)

t− x

ò
· lim
t→x

(t− x) + f(x)

= f ′(x) · (x− x) + f(x) = f(x).

Therefore f is continuous at x. ■

The converse of Proposition 3.12 is not true in general. That is, if f is continuous at x,
it does not necessarily follow that f is differentiable at x. For proof of this one need look no
further than Example 3.8.
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3.2 – Rules of Differentiation

Finding derivatives of functions using Definition 3.1 or the limit in Proposition 3.2 can be
tedious at best and nearly impossible at worst. Fortunately there are properties that may be
employed under most circumstances that reduce the process to a routine calculation.

Theorem 3.13 (Rules of Differentiation). Suppose f and g are differentiable functions at x,
and let c ∈ R. Then the following hold.

1. Constant Multiple Rule: cf is differentiable at x, with

(cf)′(x) = cf ′(x).

2. Sum/Difference Rule: f ± g is differentiable at x, with

(f ± g)′(x) = f ′(x)± g′(x).

3. Product Rule: fg is differentiable at x, with

(fg)′(x) = f(x)g′(x) + f ′(x)g(x).

4. Quotient Rule: If g(x) ̸= 0, then f/g is differentiable with

(f/g)′(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

Proof. The differentiability of f and g at x implies that the limits

lim
t→x

f(t)− f(x)

t− x
and lim

t→x

g(t)− g(x)

t− x
(3.4)

exist. It also implies x is an interior point of both Dom(f) and Dom(g), so there exists some
γ > 0 such that t ∈ Dom(f) ∩ Dom(g) for all t ∈ (x − γ, x + γ), and hence f(t) and g(t) are
defined for all t sufficiently close to x. We use these facts in what follows.

Proof of Part 3. First observe that since g is differentiable at x, by Proposition 3.12 it is also
continuous at x and so

lim
t→x

g(t) = g(x).

Now, recalling the existence of the limits in (3.4) and employing usual limit laws, we have

(fg)′(x) = lim
t→x

(fg)(t)− (fg)(x)

t− x
= lim

t→x

f(t)g(t)− f(x)g(x)

t− x

= lim
t→x

f(t)g(t)− f(x)g(t) + f(x)g(t)− f(x)g(x)

t− x

= lim
t→x

ï
f(t)− f(x)

t− x
g(t) +

g(t)− g(x)

t− x
f(x)

ò
= lim

t→x

ï
f(t)− f(x)

t− x
g(t)

ò
+ lim

t→x

ï
g(t)− g(x)

t− x
f(x)

ò
= lim

t→x

f(t)− f(x)

t− x
· lim
t→x

g(t) + f(x) lim
t→x

g(t)− g(x)

t− x

= f ′(x)g(x) + f(x)g′(x),
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as was to be shown.

Proof of Part 4. Suppose that g(x) ̸= 0. In Part (3) we established that g is continuous at x,
and so

lim
t→x

1

g(t)
=

1

lim
t→x

g(t)
=

1

g(x)
. (3.5)

Now,

(f/g)′(x) = lim
t→x

(f/g)(t)− (f/g)(x)

t− x
= lim

t→x

f(t)/g(t)− f(x)/g(x)

t− x

= lim
t→x

f(t)g(x)− f(x)g(t)

(t− x)g(t)g(x)
= lim

t→x

ï
f(t)g(x)− f(x)g(t)

t− x
· 1

g(t)g(x)

ò
= lim

t→x

ï
f(t)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(t)

t− x
· 1

g(t)g(x)

ò
= lim

t→x

ïÅ
f(t)− f(x)

t− x
g(x)− g(t)− g(x)

t− x
f(x)

ã
· 1

g(t)g(x)

ò
,

and since the limits in (3.4) and (3.5) exist we obtain, via usual limit laws,

(f/g)′(x) =

ï
lim
t→x

Å
f(t)− f(x)

t− x
g(x)

ã
− lim

t→x

Å
g(t)− g(x)

t− x
f(x)

ãò
· lim
t→x

1

g(t)g(x)

=

ï
g(x) lim

t→x

Å
f(t)− f(x)

t− x

ã
− f(x) lim

t→x

Å
g(t)− g(x)

t− x
f(x)

ãò
· 1

g(x)
lim
t→x

1

g(t)

=
[
g(x) · f ′(x)− f(x) · g′(x)

]
· 1

g(x)
· 1

g(x)

=
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

This completes the proof. ■

Theorem 3.13 gives derivatives of new functions in terms of the derivatives of old functions,
whereas the next theorems give explicit formulas for the derivatives of constant and monomial
functions.

Theorem 3.14 (Constant Rule). For any constant c ∈ R, if f ≡ c then f ′ ≡ 0.

Proof. Suppose f ≡ c, which is to say f(x) = c for all x. For any x we use the definition of
derivative to obtain

f ′(x) = lim
t→x

f(t)− f(x)

t− x
= lim

t→x

c− c

t− x
= lim

t→x

0

t− x
= lim

t→x
(0) = 0;

that is, f ′(x) = 0 for any x, and therefore f ′ ≡ 0. ■

Letting the symbol c itself represent the constant function f ≡ c, as is typical, the Constant
Rule can be written as (c)′ = 0 or

d

dx
(c) = 0.
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Theorem 3.15 (Power Rule). For any nonzero constant r ∈ R,
(xr)′ = rxr−1.

Here we shall prove the Power Rule when r is any nonzero integer, and then in §3.5 the
proof will be extended to include any nonzero rational number r. The treatment in the case
when r is irrational must wait until Chapter 7. Whenever r = 0 we will regard xr to be the
constant function 1, in which case (x0)′ = (1)′ = 0 according to Theorem 3.14.

Proof for Integer Powers. First we consider the case when r = 1, so that xr = x1 = x. Let
f(x) = x. Then

(xr)′ = f ′(x) = lim
t→x

f(t)− f(x)

t− x
= lim

t→x

t− x

t− x
= lim

t→x
(1) = 1 = 1 · x0 = rxr−1,

or more concisely (x)′ = 1. This establishes the base case of an inductive argument.
Now let r be any positive integer, and suppose that (xr)′ = rxr−1. Using the Product Rule

of Theorem 3.13, and the fact that (x)′ = 1, we obtain

(xr+1)′ = (x · xr)′ = x(xr)′ + (x)′xr = x · rxr−1 + 1 · xr = rxr + xr = (r + 1)xr.

By the Principle of Induction it follows that (xr)′ = rxr−1 holds for any positive integer r. ■

We now have enough established to be able to find the derivative of any polynomial or
rational function with relative ease. Moreover, though the proof of Theorem 3.15 is not yet
complete, we shall nonetheless make full use of the result whilst cleaving fast to our faith that it
shall someday be proven for any r ∈ R.

Example 3.16. Find the derivative of each function.

(a) f(x) =
√
x.

(b) g(x) = 3x8 − 4x3 + 7.

(c) h(x) =

√
x

3x8 − 4x3 + 7

Solution.
(a) Observing that

√
x = x1/2, we use the Power Rule to obtain

f ′(x) =
d

dx
(x1/2) = 1

2
x−1/2 =

1

2
√
x
.

(b) Using the Sum/Difference Rule, then the Constant Multiple Rule and Constant Rule, and
finally the Power Rule, we obtain

g′(x) =
d

dx
(3x8)− d

dx
(4x3) +

d

dx
(7) = 3

d

dx
(x8)− 4

d

dx
(x3)

= 3 · 8x7 − 4 · 3x2 = 24x7 − 12x2.

(c) Since h = f/g, we employ the Quotient Rule to find that

h′(x) = (f/g)′(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)
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=

1

2
√
x
· (3x8 − 4x3 + 7)−

√
x · (24x7 − 12x2)

(24x7 − 12x2)2

=
3x8 − 48x7 − 4x3 + 24x2 + 7

2
√
x(24x7 − 12x2)2

.

■

Example 3.17. Find the derivative of

h(x) =


x− 1

x+ 1
, if x ≤ 1

1
2
x− 1

2
, if x > 1

Solution. For any x ∈ (−∞, 1) with x ̸= −1 there is an open neighborhood N of x such that

h(t) =
t− 1

t+ 1

for all t ∈ N , and so the Quotient Rule can be applied to obtain

h′(x) =
2

(x+ 1)2

for all x ∈ (−∞,−1) ∪ (−1, 1). Note that h′(−1) does not exist since h(−1) is undefined.
For any x ∈ (1,∞) there is an open neighborhood N of x such that

h(t) =
1

2
t− 1

2
for all t ∈ N , and so the Sum/Difference, Constant Multiple, Power, and Constant Rules can be
used to find that h′(x) = 1

2
for all x ∈ (1,∞).

At x = 1 there is an obstacle to using any rules of differentiation to find the derivative: any
open neighborhood N of 1 necessarily contains values of t for which h(t) is (t− 1)/(t+ 1), and
other values of t for which h(t) is t/2− 1/2. This leaves us with no option other than to evaluate
h′(1) by using the definition of derivative. In particular we will need to evaluate the one-sided
limits h′−(1) and h

′
+(1) and see whether they have the same value. We have

h′−(1) = lim
t→1−

h(t)− h(1)

t− 1
= lim

t→1−

t− 1

t+ 1
− 0

t− 1
= lim

t→1−

1

t+ 1
=

1

2
,

and

h′+(1) = lim
t→1+

h(t)− h(1)

t− 1
= lim

t→1+

1
2
t− 1

2
− 0

t− 1
= lim

t→1+

1

2
=

1

2
.

Therefore h′(1) = 1
2
, and we can write

h′(x) =


2

(x+ 1)2
, if x < 1

1
2
, if x ≥ 1

Note that writing x ≤ 1 and x > 1 instead of x < 1 and x ≥ 1 would also be correct. ■
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3.3 – Derivatives of Trigonometric Functions

To determine the derivatives of the trigonometric functions, we first need to evaluate two
special limits.

Lemma 3.18.

lim
t→0

sin t

t
= 1 and lim

t→0

1− cos t

t
= 0

Proof. For the first limit, suppose that t ∈ (0, π/2). Proceeding counterclockwise a distance of
t units from the point a = (1, 0) on the unit circle C1(0, 0), we arrive at the point p = (x, y) in
the first quadrant as shown at left in Figure 17, and thereby obtain sin t = y by the definition
of the sine function. As shown in the proof of Proposition 2.43 the area of △aop is A1 = sin t/2,
and the area of the circular sector with vertices a, o, and p is A2 = t/2.

Let q be the point where the vertical line x = 1 (i.e. the vertical line containing the point a)
intersects the ray #„op. If we let q = (1, z), then the triangle △aoq shown at right in Figure 17
has a base of length 1 and a height of length z. We know that tan t = y/x, and since △xop and
△aoq are similar triangles we obtain

y

x
=
z

1
,

and thus z = tan t. The area of △aoq is therefore A3 = tan t/2.
Now, since 0 < A1 < A2 < A3 we obtain

0 <
sin t

2
<
t

2
<

tan t

2
.

Multiplying this by 2/ sin t gives

1 <
t

sin t
<

1

cos t
,

and finally

cos t <
sin t

t
< 1

for all t ∈ (0, π/2). From limt→0+ cos t = cos 0 = 1 and limt→0+(1) = 1, it follows by the Squeeze
Theorem that

lim
t→0+

sin t

t
= 1 (3.6)

y

xo

1

p

t

a

y

x

z

o

1

p

t

a

q

Figure 17.
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as well.
In the case when t ∈ (−π/2, 0) we proceed a distance of |t| units clockwise on C1(0, 0) from

a = (1, 0) to a point p = (x, y) in the fourth quadrant, so that x > 0 and y < 0. Once again
sin t = y, and the situation is as shown at left in Figure 18. Let q = (1, z) be the point of
intersection of the ray #„op and the line x = 1, so that z < 0, shown at right in Figure 18. Note
that z < 0. We have

A1 = Area of △aop = 1

2
|y| = | sin t|

2
= −sin t

2
,

A2 = Area of circular sector =
|t|
2

= − t

2
,

A3 = Area of △aoq = 1

2
|z| = | tan t|

2
= −tan t

2
,

where |z| = |y|/x = | tan t| by similar triangles. From 0 < A1 < A2 < A3 comes

0 < −sin t

2
< − t

2
< −tan t

2
,

which when multiplied by −2/ sin t (a positive quantity) yields

0 < 1 <
t

sin t
<

1

cos t
,

and finally

cos t <
sin t

t
< 1

as before. This inequality holds for all −π/2 < t < 0 and since cos t→ 1 as t→ 0−, the Squeeze
Theorem implies that

lim
t→0−

sin t

t
= 1. (3.7)

Combining (3.6) and (3.7), we conclude that

lim
t→0

sin t

t
= 1,

y

xo

1

p

|t|

a

y

x

z

o

1

p
|t|

a

|z|

q

Figure 18.
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which verifies the first limit in the lemma. As for the second limit, a straightforward calculation
is all that is required:

lim
t→0

1− cos t

t
= lim

t→0

ï
1− cos t

t
· 1 + cos t

1 + cos t

ò
= lim

t→0

1− cos2 t

t(1 + cos t)

= lim
t→0

sin2 t

t(1 + cos t)
= lim

t→0

sin t

t
· lim
t→0

sin t

1 + cos t

= 1 · sin 0

1 + cos 0
= 1 · 0 = 0.

This completes the proof. ■

Theorem 3.19. For each t in the domain of each function,

1. sin′ t = cos t 2. cos′ t = − sin t 3. tan′ t = sec2 t

4. csc′ t = − csc t cot t 5. sec′ t = sec t tan t 6. cot′ t = − csc2 t

Proof.
Proof of Part (1). For any t ∈ R, using the identity

sin(α + β) = sinα cos β + cosα sin β,

we have

sin′ t = lim
h→0

sin(t+ h)− sin t

h
= lim

h→0

sin t cosh+ cos t sinh− sin t

h

= lim
h→0

ï
cos t

Å
sinh

h

ã
− sin t

Å
1− cosh

h

ãò
= cos t · lim

h→0

sinh

h
− sin t · lim

h→0

1− cosh

h

= cos t · 1− sin t · 0 = cos t

by Lemma 3.18.

Proof of Part (2). For any t ∈ R, using the identity

cos(α + β) = cosα cos β − sinα sin β,

we have

cos′ t = lim
h→0

cos(t+ h)− cos t

h
= lim

h→0

cos t cosh− cos t cosh− cos t

h

= lim
h→0

ï
cos t

Å
cosh− 1

h

ã
− sin t

Å
sinh

h

ãò
= cos t · lim

h→0

cosh− 1

h
− sin t · lim

h→0

sinh

h

= cos t · 0− sin t · 1 = − sin t

by Lemma 3.18.
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Proof of Part (3). For any t ∈ Dom(tan), by the Quotient Rule together with parts (1) and (2),

tan′ t =

Å
sin t

cos t

ã′
=

cos t sin′ t− cos′ t sin t

cos2 t
=

cos t cos t+ sin t sin t

cos2 t

=
cos2 t+ sin2 t

cos2 t
=

1

cos2 t
= sec2 t.

■

As with the tangent function, since csc = 1/ sin, sec = 1/ cos, and cot = 1/ tan, the proofs
of the last three parts of Theorem 3.19 may also be done using the Quotient Rule.

Example 3.20. Find y′ for

y =
2 cosx

1 + sin x
.

Solution. By the Quotient Rule,

y′ =
(1 + sin x)(2 cosx)′ − (2 cosx)(1 + sin x)′

(1 + sin x)2
=

(1 + sin x)(−2 sinx)− (2 cosx)(cosx)

(1 + sin x)2
,

which becomes

y′ = − 2

sinx+ 1
after some algebraic simplification. ■
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3.4 – The Chain Rule

We have seen rules for finding the derivatives of sums, differences, products, and quotients of
functions. Now we establish a rule for finding the derivative of a composition of two functions.

Theorem 3.21 (Chain Rule). If g is differentiable at c and f is differentiable at g(c), then
f ◦ g is differentiable at c, and

(f ◦ g)′(c) = f ′(g(c))g′(c).

Proof. Suppose that g is differentiable at c and f is differentiable at g(c). Then c is in the
interior of Dom(g), g(c) is in the interior of Dom(f), and since g is continuous at c there exists
some γ > 0 such that g(c− γ, c+ γ) ⊆ Dom(f). Thus c is in the interior of Dom(f ◦ g) and it
is legitimate to investigate the differentiability of f ◦ g at c. Define the function ρ by

ρ(y) =


f(y)− f(g(c))

y − g(c)
− f ′(g(c)), if y ̸= g(c)

0, if y = g(c)

and observe that g(c) is in the interior of Dom(ρ). Now, by the differentiability of f at g(c),

lim
y→g(c)

ρ(y) = lim
y→g(c)

ï
f(y)− f(g(c))

y − g(c)
− f ′(g(c))

ò
= lim

y→g(c)

f(y)− f(g(c))

y − g(c)
− lim

y→g(c)
f ′(g(c))

= f ′(g(c))− f ′(g(c)) = 0 = ρ(g(c)),

which shows that ρ is continuous at g(c).
Since g(x) → g(c) as x→ c, g(c) ∈ Int(Dom(ρ)), and ρ is continuous at g(c), by Proposition

2.41 we obtain

lim
x→c

ρ(g(x)) = ρ
(
lim
x→c

g(x)
)
= ρ(g(c)) = 0.

Now, for any g(x) ∈ Dom(ρ) such that g(x) ̸= g(c), we find that

ρ(g(x)) =
f(g(x))− f(g(c))

g(x)− g(c)
− f ′(g(c))

and hence

f(g(x))− f(g(c)) = [f ′(g(c)) + ρ(g(x))][g(x)− g(c)]. (3.8)

Since (3.8) also holds whenever g(x) = g(c), we conclude that it holds for all x ∈ (c− γ, c+ γ)
and so

(f ◦ g)′(c) = lim
x→c

(f ◦ g)(x)− (f ◦ g)(c)
x− c

= lim
x→c

f(g(x))− f(g(c))

x− c

= lim
x→c

[f ′(g(c)) + ρ(g(x))][g(x)− g(c)]

x− c

= lim
x→c

[f ′(g(c)) + ρ(g(x))] · lim
x→c

g(x)− g(c)

x− c
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= [f ′(g(c)) + 0] · g′(c) = f ′(g(c))g′(c),

which completes the proof. ■

The reason for the Chain Rule’s name becomes evident when we consider the derivative of a
composition of three or more functions. If h is differentiable at c, g is differentiable at h(c), and
f is differentiable at g(h(c)), then

(f ◦ g ◦ h)′(c) = f ′((g ◦ h)(c))g′(h(c))h′(c) = f ′(g(h(c))) · g′(h(c)) · h′(c). (3.9)

We show this as follows. Let φ = g ◦ h, and note that φ is differentiable at c by Theorem 3.21,
and by the same theorem we obtain

φ′(c) = (g ◦ h)′(c) = g′(h(c))h′(c).

Now, since φ is differentiable at c and f is differentiable at g(h(c)) = φ(c), by Theorem 3.21
again we obtain

(f ◦ φ)′(c) = f ′(φ(c))φ′(c),

and hence

(f ◦ φ)′(c) = f ′(φ(c))g′(h(c))h′(c).

Substituting g ◦ h for φ in this equation then yields (3.9). More generally a proof by induction
gives

(f1 ◦ · · · ◦ fn)′(x) =
[
f ′
1((f2 ◦ · · · ◦ fn)(x))

][
f ′
2((f3 ◦ · · · ◦ fn)(x))

]
· · ·
[
f ′
n−1(fn(x))

][
f ′
n(x)

]
.

Example 3.22. Find the derivative of

H(x) = sin
(
tan
(√

cosx
))
.

Solution. Here H = f ◦ g ◦ h ◦ p with

f(x) = sin x, g(x) = tan x, h(x) =
√
x = x1/2, p(x) = cos x.

We obtain

H ′(x) = f ′(g(h(p(x)))) · g′(h(p(x))) · h′(p(x)) · p′(x)

= cos
(
tan
(√

cosx
))

· sec2
(√

cosx
)
· 1
2
(cosx)−1/2 · (− sinx)

= −cos (tan (
√
cosx )) sec2 (

√
cosx ) sinx

2
√
cosx

for all x ∈ Int(Dom(H)) where the differentiability conditions are satisfied. ■

With the Chain Rule we now have the tools needed to consider the example that is often
given to demonstrate that the derivative of a function is not necessarily continuous on its
domain.
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Example 3.23. The function

f(x) =

®
x2 sin(1/x), if x ̸= 0

0, if x = 0

is differentiable on (−∞,∞), and yet f ′ has a discontinuity at 0! To see this we must find f ′(x)
for all x.

When x ̸= 0 the function f is simply given by f(x) = x2 sin(1/x). Since 1/x, sin(x), and x2

are each clearly differentiable on I = (−∞, 0) ∪ (0,∞), we can employ the usual differentiation
laws to f on I to obtain

f ′(x) = 2x sin

Å
1

x

ã
+ x2 · cos

Å
1

x

ã
· −1

x2
= 2x sin

Å
1

x

ã
− cos

Å
1

x

ã
. (3.10)

Because 1/x is not differentiable at x = 0 we cannot use differentiation laws to find f ′(0), and
anyway (3.10) fails when x = 0. This does not necessarily mean that f itself is not differentiable
at 0, however. To find f ′(0) the only recourse is to use the definition of derivative:

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin(1/x)

x
= lim

x→0
x sin

Å
1

x

ã
= 0,

where the last equality follows from an example of the Squeeze Theorem in §2.3. So f ′(0) = 0,
and to show that f ′ is not continuous at 0 we need only that limx→0 f

′(x) ̸= f ′(0). Employing
(3.10), we obtain

lim
x→0

f ′(x) = lim
x→0

ï
2x sin

Å
1

x

ã
− cos

Å
1

x

ãò
.

Suppose this limit exists and equals L ∈ R. Since

lim
x→0

2x sin

Å
1

x

ã
= 2 lim

x→0
x sin

Å
1

x

ã
= 2 · 0 = 0,

a law of limits gives

lim
x→0

− cos

Å
1

x

ã
= lim

x→0

ï
2x sin

Å
1

x

ã
− cos

Å
1

x

ã
− 2x sin

Å
1

x

ãò
= lim

x→0

ï
2x sin

Å
1

x

ã
− cos

Å
1

x

ãò
− lim

x→0
2x sin

Å
1

x

ã
= L− 0 = L,

and thus

lim
x→0

cos

Å
1

x

ã
= −L ∈ R.

But this is impossible, since it was shown in §2.2 that this limit does not exist! Hence limx→0 f
′(x)

does not exist, and in particular limx→0 f
′(x) ̸= 0 = f ′(0). Therefore f ′ is not continuous at

x = 0.
What we have found is that

f ′(x) =

®
2x sin(1/x)− cos(1/x), if x ̸= 0

0, if x = 0
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So Dom(f) = Dom(f ′) = (−∞,∞), with f continuous on (−∞,∞)6 and f ′ continuous on
(−∞, 0) ∪ (0,∞). ■

6Note that limx→0 f(x) = limx→0 x
2 sin(1/x) = limx→0 x · limx→0 x sin(1/x) = 0 · 0 = 0 = f(0).
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3.5 – Implicit Differentiation

An equation containing two variables x and y, with the y not isolated on one side, may be
looked upon as (at least potentially) implicitly defining y as a function of x in one or more
ways. For example, x2 + y2 = 9 results in two functions that cast x as the independent variable
and y as the dependent variable:

y =
√
9− x2 and y = −

√
9− x2.

Thus the equation x2 + y2 = 9 implicitly defines y = f(x) for two choices of f : namely,
f(x) = ±

√
9− x2. The domain of both possible functions f is [−3, 3], and from x2 + y2 = 9

we find that x2 + [f(x)]2 = 9 for all x ∈ [−3, 3]. Noting that f is differentiable on (−3, 3), it
follows that

d

dx

(
x2 + [f(x)]2

)
=

d

dx
(9)

for all x ∈ (−3, 3), and then by various differentiation rules (including the Chain Rule) we
obtain

2x+ 2f(x)f ′(x) = 0,

or equivalently x+ yy′ = 0 if we let y′ = f ′(x). Now we can solve for y′ in term of x and y to get

y′ = −x
y
,

at least whenever y ̸= 0.
Implicit differentiation is the operation of identifying an equation with two variables (such

as x2 + y2 = 9) as implicitly defining y as a differentiable function of x, and then differentiating
both sides of the equation with respect to x so as to obtain a new equation featuring x, y, and
y′ (such as x+ yy′ = 0). One of the great advantages of implicit differentiation is that it allows
for finding dy/dx in situations when it would be quite difficult or outright impossible to isolate
y in an equation involving both x and y; situations, that is, in which putting the equation into
the form y = f(x) for some suitable function f is simply not practical.

Example 3.24. Assume that
x4 + 2x2y2 + y4 = 25

4
xy2. (3.11)

implicitly defines y as a function of x.

(a) Use implicit differentiation to find dy/dx.
(b) Determine an equation of the tangent line to the curve at the point (1, 2).

Solution.
(a) Let the symbol ′ signify differentiation with respect to the variable x. Since y = f(x) for
some (unknown) function f , we have in particular

(y2)′ =
d

dx
(y2) =

d

dx
[f(x)]2 = 2f(x)f ′(x) = 2yy′

by the Chain Rule. Similarly (y4)′ = 4y3y′, and so on. Differentiating both sides of (3.11) with
respect to x, then, we find that

4x3 + 4xy2 + 4x2yy′ + 4y3y′ =
25

4
y2 +

25

2
xyy′.
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Solving for y′ gives

y′ =
25y2 − 16xy2 − 16x3

16x2y + 16y3 − 50xy
. (3.12)

Of course dy/dx = y′, so we are done.

(b) At (x, y) = (1, 2) we obtain y′ = 1
3
from (3.12), and so the tangent line has point (1, 2) and

slope 1
3
. Using the point-slope formula, the equation of the tangent line is y − 2 = 1

3
(x− 1), or

y = 1
3
x+ 5

3

in slope-intercept form. ■

As something of an aside, it is possible to isolate y in the equation (3.11). Multiplying by 4
and collecting terms, we may write (3.11) as

4y4 + (8x2 − 25x)y2 + 4x4 = 0,

from which the quadratic formula gives

y2 =
(25x− 8x2)±

√
(8x2 − 25x)2 − 64x4

8
,

and hence

y = ±

 
(25x− 8x2) + 5

√
25x2 − 8x3

8
or y = ±

 
(25x− 8x2)− 5

√
25x2 − 8x3

8
.

That is, y can equal any one of four different functions, none of which would have a particularly
nice derivative. Thus, even when it’s possible to isolate y as a function of x, applying implicit
differentiation may still be the better strategy.

In the next example there is no reasonable way to isolate y in the given equation, and so
implicit differentiation is the only game in town.

Example 3.25. Find the value of y′′ at the point on the curve

xy + y3 = 1

where x = 0.

Solution. The equation xy + y3 = 1 implicitly defines y as a function of x, and so we proceed
to first find y′ = dy/dx using implicit differentiation:

xy + y3 = 1 ⇒ d

dx
(xy + y3) =

d

dx
(1) ⇒ xy′ + y + 3y2y′ = 0 ⇒ y′ = − y

x+ 3y2
.

When x = 0 the original equation becomes y3 = 1, for which y = 1 is the only real-valued
solution, and thus (0, 1) is the only point on the curve where x = 0. At this point we find that

y′ = − 1

0 + 3(1)2
= −1

3
.

Next, using the Quotient Rule we have

y′′ =
d

dx

Å
− y

x+ 3y2

ã
= −(x+ 3y2)y′ − (1 + 6yy′)y

(x+ 3y2)2
.
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Since y′ = −1
3
when (x, y) = (0, 1), we find that

y′′ = −
[
0 + 3(1)2

](
− 1

3

)
−
[
1 + 6(1)

(
− 1

3

)]
(1)

[0 + 3(1)2]2
= 0

at the point where x = 0. ■

In §3.2 the Power Rule of differentiation was proven for integer exponents. Now, with implicit
differentiation, we are in a position to expand the proof to include rational exponents. For
convenience we restate the Power Rule here.

Theorem 3.26 (Power Rule). For any nonzero constant r ∈ R,
(xr)′ = rxr−1.

Proof for Rational Powers. Let r be any nonzero rational number, so r = m/n for some
integers m ̸= 0 and n ≥ 1. Set y = xr = xm/n, so y is a function of x. From this we find that

yn = (xm/n)n = xm,

which is an equation suitable for implicit differentiation. Since the Power Rule has already been
proven to work for integer exponents, it follows that

yn = xm ⇒ d

dx
(yn) =

d

dx
(xm) ⇒ nyn−1y′ = mxm−1,

and therefore

y′ =
mxm−1

nyn−1
=
m

n
xm−1(xm/n)1−n =

m

n
x(m−1)+(m/n−m) =

m

n
xm/n−1 = rxr−1.

That is, (xr)′ = rxr−1, and the Power Rule is now proven for any rational exponent r. ■
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3.6 – Rates of Change

Example 3.27. A rope passing through a capstan on a dock is tied at water level to a boat
offshore. If the capstan is 5 ft above the water and Barnacle Bill the Sailor turns the capstan so
as to pull the rope in at a constant rate of 3 ft/s, how fast is the boat traveling when it is 10 ft
from the dock?

Solution. Let x be the distance between the boat and the dock, and r the length of the rope.
As seen in Figure 19 there is a right triangle involved so that x2 + 52 = r2 by the Pythagorean
Theorem. Solving this for x gives

x =
√
r2 − 25. (3.13)

Here x and r are implicitly functions of time, which is simply to say they change as time changes,
and so we differentiate (3.13) with respect to time to obtain

x′(t) =
r(t)r′(t)√
r2(t)− 25

. (3.14)

Now, we’re given that r′(t) = −3 ft/s. Moreover, at the time t when x(t) = 10 feet we have
r(t) = 5

√
5 feet by (3.13). Putting these facts into (3.14) gives

x′(t) =
(5
√
5 )(−3)√Ä

5
√
5
ä2

− 25
= −3

√
5

2
ft/s.

This tells us that the distance between the boat and the dock is decreasing at a rate of 3
√
5/2

ft/s at the instant when the boat is 10 ft from the dock. Thus, when the boat is 10 ft from the
dock it is traveling at a speed of 3

√
5/2 ft/s. ■

Example 3.28. A 2-meter-tall man walks at 1 m/s toward a street light that is 7 meters above
the ground. What is the rate of change of the length of his shadow when he is 5 meters from
the street light? At what rate is the tip of his shadow moving?

Solution. Let x be the distance between the man and the base of the street light, and let ℓ be
the length of the man’s shadow. The triangles △ABC and △OBD in Figure 20 are similar,
and so we have

ℓ+ x

7
=
ℓ

2
.

x

5
r

capstan

boat

Figure 19.
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O

7

D

BA

2

C

x ℓ

Figure 20.

Solving this for ℓ and observing that ℓ and x are both functions of time t, we obtain

ℓ(t) =
2

5
x(t).

Differentiating both sides with respect to t gives

ℓ′(t) =
2

5
x′(t) =

2

5
· (−1) = −2

5
m/s.

Thus at any time t the length of the shadow is growing shorter at a rate of 2
5
m/s, which includes

the time when the man is 5 meters from the street light!
Regarding the rate at which the tip of the shadow is moving, since point B in Figure

20—which is the tip of the shadow—is moving toward A at −2
5
m/s, and A is moving toward O

at −1 m/s, is follows that B is moving toward O at −12
5
m/s. ■
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4
Applications of Differentiation

4.1 – Extrema of Functions

Definition 4.1. Let f be a real-valued function, S ⊆ Dom(f) ⊆ R, and c ∈ S.
If f(c) ≥ f(x) for all x ∈ S, then we say f has a maximum on S at c and call f(c) the

maximum value of f on S. In the event that S = Dom(f) we say f has a global maximum
at c and call f(c) the global maximum value of f (or simply the maximum value of f).

If f(c) ≤ f(x) for all x ∈ S, then we say f has a minimum on S at c and call f(c) the
minimum value of f on S. In the event that S = Dom(f) we say f has a global minimum
at c and call f(c) the global minimum value of f (or simply the minimum value of f).

The maxima and minima (or maximums and minimums) of a function are collectively referred
to as the function’s extrema (or extremums), with the maximum and minimum values being
called the extreme values. The next theorem makes clear that any function that is continuous
on a closed, bounded interval I will attain both a maximum value and a minimum value on I.

Theorem 4.2 (Extreme Value Theorem). If f is continuous on a closed interval I = [a, b],
then there exist x1, x2 ∈ I such that f(x1) is a maximum value of f on I and f(x2) is a minimum
value of f on I.

The proof of this theorem is beyond the scope of this text, but can be found in advanced
calculus or mathematical analysis texts.

Definition 4.3. Suppose c is a point in the interior of Dom(f). Then f has a local maximum
at c if there exists some γ > 0 such that f(c) ≥ f(x) for all x ∈ (c− γ, c+ γ), in which case
f(c) is called a local maximum value of f. Similarly, f has a local minimum at c if there
exists some γ > 0 such that f(c) ≤ f(x) for all x ∈ (c− γ, c+ γ), in which case f(c) is called a
local minimum value of f.

The local maxima and minima of a function are collectively called the function’s local
extrema. Comparing Definitions 4.1 and 4.3, we see that a global extremum for f at c is
necessarily also a local extremum provided that c lies in the interior of Dom(f).
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The following proposition, like the Squeeze Theorem, gives some inequality results for limits
of functions; and like the Squeeze Theorem it will be used occasionally in certain proofs.

Proposition 4.4.

1. Let c ∈ R, and suppose there exists some γ > 0 such that f(x) ≤ g(x) for all x ∈ B′
γ(c). If

limx→c f(x) and limx→c g(x) exist, then

lim
x→c

f(x) ≤ lim
x→c

g(x).

2. Let c ∈ (−∞,∞]. If limx→c− f(x) and limx→c− g(x) exist, and there is some γ > 0 such that
f(x) ≤ g(x) for all x ∈ (c− γ, c), then

lim
x→c−

f(x) ≤ lim
x→c−

g(x).

3. Let c ∈ [−∞,∞). If limx→c+ f(x) and limx→c+ g(x) exist, and there is some γ > 0 such that
f(x) ≤ g(x) for all x ∈ (c, c+ γ), then

lim
x→c+

f(x) ≤ lim
x→c+

g(x).

Proof. We prove only the first part here, since the proofs of the other two parts would run
along similar lines.

Suppose that limx→c f(x) = L ∈ R and limx→c g(x) = M ∈ R. Assume L > M . Let
ϵ = (L−M)/2, so that ϵ > 0. Now, there exists some δ1 > 0 such that

0 < |x− c| < δ1 ⇒ |f(x)− L| < ϵ,

and there exists some δ2 > 0 such that

0 < |x− c| < δ2 ⇒ |g(x)−M | < ϵ.

Choosing δ = min{δ1, δ2, γ}, suppose that x is such that 0 < |x− c| < δ. Then we obtain

|f(x)− L| < L−M

2
and |g(x)−M | < L−M

2
,

with the first inequality yielding

f(x) >
L+M

2
and the second inequality yielding

g(x) <
L+M

2
,

and hence

f(x) >
L+M

2
> g(x). (4.1)

But 0 < |x − c| < δ implies that 0 < |x − c| < γ, which is to say x ∈ B′
γ(c) and so we must

have f(x) ≤ g(x) by hypothesis. Since (4.1) contradicts this hypothesis, we conclude that
L ≤M . ■

Theorem 4.5 (Fermat’s Theorem). If f has a local extremum at c and f ′(c) exists, then
f ′(c) = 0.
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Proof. Suppose f has a local maximum at c, so there is some γ > 0 such that f(c) ≥ f(x) for
all x ∈ (c− γ, c+ γ). Suppose f ′(c) exists, so that

f ′(c) = lim
x→c−

f(x)− f(c)

x− c
= lim

x→c+

f(x)− f(c)

x− c
∈ R.

Now, for all x ∈ (c− γ, c) we have f(x)− f(c) ≤ 0 and x− c < 0, which implies

f(x)− f(c)

x− c
≥ 0

and thus by Proposition 4.4(2)

f ′(c) = lim
x→c−

f(x)− f(c)

x− c
≥ lim

x→c−
(0) = 0.

Also for all x ∈ (c, c+ γ) we have f(x)− f(c) ≤ 0 and x− c > 0, which implies

f(x)− f(c)

x− c
≤ 0

and thus by Proposition 4.4(3)

f ′(c) = lim
x→c+

f(x)− f(c)

x− c
≤ lim

x→c−
(0) = 0.

Since f ′(c) ≥ 0 and f ′(c) ≤ 0, we conclude that f ′(c) = 0.
The proof is similar when supposing that f has a local minimum at c. ■

Corollary 4.6. If f has a local extremum at c, then either f ′(c) = 0 or f ′(c) does not exist.

The corollary makes it clear where we should focus our attention when searching for local
extrema of a function f : only those points c ∈ Dom(f) where f ′(c) is zero or does not exist.
Finding the global extrema of f , if any, is often more challenging, but with the help of the
Extreme Value Theorem we will devise a method for locating global extrema at least in situations
when the domain of f is restricted to a closed, bounded interval.

Definition 4.7. A critical point of a function f is any point c in the interior of Dom(f) for
which either f ′(c) = 0 or f ′(c) does not exist.

Theorem 4.8 (Closed Interval Method). Suppose f : [a, b] → R is continuous and K ⊆ [a, b]
is the set of critical points of f . Let c ∈ K.

1. If f has a maximum on K at c, then f has a maximum on [a, b] at c.
2. If f has a minimum on K at c, then f has a minimum on [a, b] at c.

Proof.
Proof of Part (1). Suppose that f has a maximum on K at c. Now, by the Extreme Value
Theorem there is some ĉ ∈ [a, b] such that f(ĉ) is a maximum value of f on [a, b], and so f has
a local maximum at ĉ. By Corollary 4.6 either f ′(ĉ) = 0 or f ′(ĉ) does not exist, which is to
say that ĉ is a critical point of f and thus ĉ ∈ K. Since f has a maximum on K at c we have
f(c) ≥ f(ĉ). Since f(ĉ) is a maximum of f on [a, b] we have f(c) ≤ f(ĉ). Therefore f(c) = f(ĉ),
which shows that f has a maximum on [a, b] at c.

Proof of Part (2). Left as an exercise. ■
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In practice the following procedure is what is often referred to as the Closed Interval Method,
and it follows directly from the preceding theorem.

Procedure. To find the extreme values of a continuous function f : [a, b] → R:
• Step 1. Find the critical points of f on (a, b);

• Step 2. Evaluate f at all critical points on (a, b);

• Step 3. Evaluate f at the endpoints a and b.

The greatest and least values obtained in Steps (2) and (3) are the maximum and minimum
values of f on [a, b], respectively. ■

Example 4.9. Find the global extrema of the function f(x) = x
√
x− x2.

Solution. First we observe that the domain of f is the set

Dom(f) = {x : x− x2 ≥ 0} = {x : x(1− x) ≥ 0} = [0, 1],

a closed and bounded interval. Since f is continuous on [0, 1], we employ the Closed Interval
Method. To start, we find any critical points of f that lie on (0, 1); that is, we find all 0 < x < 1
for which f ′(x) is zero or does not exist.

Setting f ′(x) = 0 we obtain

f ′(x) = 0 ⇒ x(1− 2x)

2
√
x− x2

+
√
x− x2 = 0 ⇒

√
x− x2 = −x(1− 2x)

2
√
x− x2

⇒ 2(x− x2) = −x(1− 2x) ⇒ 4x2 − 3x = 0

⇒ x(4x− 3) = 0 ⇒ x = 3/4.

(Of course x(4x− 3) = 0 by itself implies x = 0 is also a solution, but not only does this not
lie in (0, 1), it is also an extraneous solution since it results in division by zero in the original
equation f ′(x) = 0.) There is no x ∈ (0, 1) for which f ′(x) does not exist.

We now evaluate f at the critical point 3/4 ∈ (0, 1), and also at the endpoints 0 and 1:

f(0) = 0 ·
√
0− 02 = 0

f(3/4) =
3

4

…
3

4
− 9

16
=

3
√
3

16

x

y

13
4

1
3

Figure 21.
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f(1) = 1 ·
√
1− 12 = 0

Thus f(3/4) = 3
√
3/16 is the maximum value of f on [0, 1], and f(0) = f(1) = 0 is the minimum

value of f on [0, 1]. Because Dom(f) = [0, 1], it follows that we have found the global extrema
of f . See Figure 21. ■

Example 4.10. Find the global extrema of the function f(x) = |x+ x2|, x ∈ [−1.5, 0.8].

Solution. Because the functions g(x) = x+ x2 and h(x) = |x| are each continuous everywhere,
by Theorem 2.39 it follows that (h ◦ g)(x) = |x+ x2| is also continuous everywhere, and hence f
is continuous on its given domain [−1.5, 0.8] in particular.

Now, the equation g(x) = 0, or equivalently x(1 + x) = 0, has solutions x = −1, 0. Since
g(−2) > 0 we conclude that g > 0 on (−∞,−1). Indeed, if there were some c ∈ (−∞,−1) such
that g(c) < 0, then the Intermediate Value Theorem would imply that there is some number a
between −1.25 and c, and hence in (−∞,−1), such that g(a) = 0, which is a contradiction. By
the same reasoning, since g(−0.5) < 0 we have g < 0 on (−1, 0), and since g(1) > 0 we have
g > 0 on (0,∞). Noting that f(x) = |g(x)| on [−1.5, 0.8], we obtain

f(x) =


x+ x2, if −1.5 ≤ x ≤ −1

−x− x2, if −1 < x < 0

x+ x2, if 0 ≤ x ≤ 0.8

(4.2)

We now begin the Closed Interval Method by finding any critical points of f that lie on
(−1.5, 0.8). From (4.2) we obtain

f ′(x) =


1 + 2x, if −1.5 < x < −1

−1− 2x, if −1 < x < 0

1 + 2x, if 0 < x < 0.8,

from which f ′(−1) and f ′(0) are readily found to not exist by using the definition of derivative,
and so −1 and 0 are critical points.

Setting f ′(x) = 0 gives rise to the equation 1 + 2x = 0 on I1 = (−1.5,−1) ∪ (0, 0.8), which
has no solution belonging to I1. However f

′(x) = 0 is the equation −1− 2x = 0 on I2 = (−1, 0),
which has a solution x = −0.5 ∈ I2. That is, f

′(−0.5) = 0 and so −0.5 is a critical point.

x

y

−1.5 0.8−1

1

Figure 22.



92

We now evaluate f at the critical points −1.5, −1, −0.5, 0, and 0.8:

f(−1.5) = | − 1.5 + (−1.5)2| = 0.75

f(−1) = | − 1 + (−1)2| = 0

f(−0.5) = | − 0.5 + (−0.5)2| = 0.25

f(0) = |0 + 02| = 0

f(0.8) = |0.8 + 0.82| = 1.44

Therefore f(0.8) = 1.44 is the maximum value of f on [−1.5, 0.8], and f(−1) = f(0) = 0 is
the minimum value of f on [−1.5, 0.8]. Since Dom(f) = [−1.5, 0.8] we have found the global
extrema of f . See Figure 22. ■
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4.2 – The Mean Value Theorem

We start with Rolle’s Theorem, which is a special instance of the Mean Value Theorem and
in fact will be used to prove it.

Theorem 4.11 (Rolle’s Theorem). Let f be differentiable on (a, b) and continuous on [a, b].
If f(a) = f(b), then there exists some c ∈ (a, b) such that f ′(c) = 0

Proof. Suppose f(a) = f(b). Since f is continuous on [a, b], the Extreme Value Theorem
implies that f has both a maximum and a minimum on [a, b]. There are two mutually exclusive
possibilities: (i) At least one extremum lies in (a, b); and (ii) No extremum lies in (a, b).

Assume (i) is the case. Then there exists some c ∈ (a, b) at which f has an extremum on
[a, b], which implies that f has a local extremum at c. Now, f ′(c) exists since f is differentiable
on (a, b), and therefore f ′(c) = 0 by Theorem 4.5.

Assume (ii) is the case. Then the extrema of f lie at the endpoints a and b. From f(a) = f(b)
it follows that the minimum of f on [a, b] equals the maximum, and thus f(a) is simultaneously
the maximum value and minimum value attained by f on [a, b]. So, for any x ∈ [a, b] we find
that f(x) ≤ f(a) and f(x) ≥ f(a) are both true, which implies that f(x) = f(a) and therefore
f is in fact a constant function; that is, f(x) = f(a) for all x ∈ [a, b], which immediately leads
to the conclusion that f ′(c) = 0 for any c ∈ (a, b). ■

Rolle’s Theorem in conjunction with the Intermediate Value Theorem can be used to uncover
a surprising assortment of things about the solution sets of many equations that do not readily
lend themselves to being solved by algebraic means.

Example 4.12. Show that

x3 − 2x2 + 4x− 2 = 0 (4.3)

has exactly one real root.

Solution. We first set about showing that the equation has at least one real root. Let

f(x) = x3 − 2x2 + 4x− 2.

Now, f(0) = −2 < 0 and f(1) = 1 > 0, and since f is a polynomial function it is continuous on
[0, 1]. So, since 0 lies between f(0) and f(1), by the Intermediate Value Theorem there exists
some r ∈ (0, 1) such that f(r) = 0. This demonstrates that r is a real root of (4.3).

Now that it’s been shown that the equation has one real root, it must next be shown that
it cannot have more than one real root. Toward that end, suppose the equation has two real
roots a and b with a < b, so that f(a) = f(b) = 0. Since f is differentiable, it follows from
Rolle’s Theorem that there is some real number c ∈ (a, b) such that f ′(c) = 0. Thus, because
f ′(x) = 3x2 − 4x+ 4, we conclude that c is a real number for which 3c2 − 4c+ 4 = 0. However,
when we apply the quadratic formula to solve

3x2 − 4x+ 4 = 0, (4.4)
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we find only the complex-valued solutions

2

3
± 2

√
2

3
i.

We have arrived at a contradiction: c is a real-valued root for (4.4), and yet (4.4) has no
real-valued roots! It follows that (4.3) cannot have more than one real root. Therefore (4.3) has
exactly one real root. ■

Example 4.13. Show that
x4 + 4x+ k = 0 (4.5)

has at most two real roots, where k ∈ R is any constant.

Solution. When k = 0 the equation (4.5) becomes x4 + 4x = 0, or equivalently x(x3 + 4) = 0,
and thus there are two real roots: x = 0 and x = 3

√
−4. So there exists a real number k for

which (4.5) has two real roots. It remains to show that no matter what k equals, (4.5) cannot
have more than two real roots.

Suppose there exists some real number k such that (4.5) has more than two real roots.
Denote three of these roots by r1, r2 and r3, where r1 < r2 < r3. Let

f(x) = x4 + 4x+ k,

so we have f(r1) = f(r2) = f(r3) = 0. Since f is a polynomial function it is continuous
and differentiable everywhere. By Rolle’s Theorem, then, there exists some c1 ∈ (r1, r2) such
that f ′(c1) = 0, and there exists some c2 ∈ (r2, r3) such that f ′(c2) = 0. Note that we have
r1 < c1 < r2 < c2 < r3.

Now, f ′(x) = 4x3 + 4, so f ′(c1) = 0 implies 4c31 = −4 and thus c1 = −1; and f ′(c2) = 0
implies c2 = −1 as well. We now have r1 < −1 < r2 < −1 < r3, which leads to the conclusion
that −1 < −1. Since this is a contradiction, it follows that (4.5) cannot have more than two
real roots no matter what k is. Therefore (4.5) has at most two real roots. ■

We now employ Rolle’s Theorem for the purpose of proving a more general result called the
Mean Value Theorem, which in turn will later be used to prove the Fundamental Theorem of
Calculus.

Theorem 4.14 (Mean Value Theorem). Let f be differentiable on (a, b) and continuous on
[a, b]. Then there exists some c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Proof. Define the function g by

g(x) =
f(b)− f(a)

b− a
(a− x) + f(x),

so g is continuous on [a, b] and differentiable on (a, b) since f has these properties, and g(a) =
f(a) = g(b). By Rolle’s Theorem there exists some c ∈ (a, b) such that g′(c) = 0, and since

g′(x) = −f(b)− f(a)

b− a
+ f ′(x),
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it follows that

−f(b)− f(a)

b− a
+ f ′(c) = 0.

Therefore

f ′(c) =
f(b)− f(a)

b− a
,

as was to be shown. ■

Example 4.15. Let

f(x) =
x+ 1

x− 1
.

Show there’s no c ∈ [0, 2] such that f ′(c) = (f(2)− f(0))/2. Why does this not contradict the
Mean Value Theorem?

Solution. Differentiating f , we obtain

f ′(x) = − 2

(x− 1)2
.

We attempt to find some 0 ≤ c ≤ 2 such that

− 2

(c− 1)2
= f ′(c) =

f(2)− f(0)

2
=

3− (−1)

2
= 2,

However, a little algebra leads to (c− 1)2 = −1, which clearly has no real solution whatsoever,
much less a solution in the interval [0, 2]. The reason that this outcome does not dethrone the
kingly Mean Value Theorem is that f is not differentiable (or even continuous) on the interval
(0, 2), since 1 /∈ Dom(f). ■

Example 4.16. A function f is a Lipschitz function if there exists some constant M ∈ R
such that

|f(x2)− f(x1)| ≤M |x2 − x1| (4.6)

for all x1, x2 ∈ Dom(f). Show that if f : (a, b) → R satisfies |f ′(x)| ≤M for all x ∈ (a, b), then
f is a Lipschitz function.

Solution. Suppose |f ′(x)| ≤ M for all x ∈ (a, b). Let x1, x2 ∈ (a, b), and let α = min{x1, x2}
and β = max{x1, x2}. Since f is differentiable on (a, b) and [α, β] ⊆ (a, b), we know that f is
differentiable on (α, β) and continuous on [α, β]. By the Mean Value Theorem there exists some
c ∈ (α, β) such that

f ′(c) =
f(β)− f(α)

β − α
,

and hence
f(β)− f(α) = f ′(c)(β − α).

Since |f ′(x)| ≤M for all x ∈ (α, β), we next obtain

|f(β)− f(α)| =M |β − α|. (4.7)

If x1 < x2, then α = x1 and β = x2, and (4.7) implies (4.6); and if x2 < x1, then α = x2 and
β = x1, and again (4.7) implies (4.6). Therefore f is a Lipschitz function. ■
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We conclude this section by using the Mean Value Theorem to prove the following proposition,
which will in turn be used to prove the proposition that follows.

Proposition 4.17. Let I be an open interval.

1. If f ′(x) = 0 for all x ∈ I, then f is constant on I.
2. If f ′(x) = g′(x) for all x ∈ I, then f and g differ by a constant on I.

Proof.
Proof of Part (1). Suppose that f ′(x) = 0 for all x ∈ I. Let x1, x2 ∈ I, where x1 < x2. The
differentiability of f on I implies the continuity of f on I, and since [x1, x2] ⊆ I it follows that f
is continuous on [x1, x2] and differentiable on (x1, x2). Now the Mean Value Theorem concludes
that there is some c ∈ (x1, x2) such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
,

and since c ∈ I implies f ′(c) = 0 we obtain

f(x2)− f(x1)

x2 − x1
= 0.

So f(x2)− f(x1) = 0 and therefore f(x1) = f(x2). But x1 and x2 are arbitrary points in I, so
f must be constant on I.

Proof of Part (2). Suppose that f ′(x) = g′(x) for all x ∈ I. Then

(f − g)′(x) = (f ′ − g′)(x) = f ′(x)− g′(x) = 0

for all x ∈ I, and by part (1) we conclude that f − g must be constant on I. That is, there
exists some c ∈ R such that

f(x)− g(x) = (f − g)(x) = c

for all x ∈ I, which shows that f and g differ by c on I. ■

Proposition 4.18. Let I be an arbitrary interval, and suppose that f and g are continuous on
I. If f ′(x) = g′(x) for all x in the interior of I, then f and g differ by a constant on I.

Proof. Suppose that f ′(x) = g′(x) for all x in the interior of I. Proposition 4.17 implies there
exists some c ∈ R such that f − g = c on the interior of I, since it is an open interval. Suppose
that I includes its left endpoint, which we’ll denote by a. Since f and g are continuous on I, so
too is f − g; then, since there is some δ > 0 such that [a, a+ δ) ⊆ I, we have

lim
x→a+

(f − g)(x) = (f − g)(a). (4.8)

However, (f − g)(x) = c for all a < x < a+ δ so that

lim
x→a+

(f − g)(x) = lim
x→a+

c = c. (4.9)

Combining (4.8) and (4.9), we find that (f − g)(a) = c.
A similar argument will show that (f − g)(b) = c if I contains its right endpoint b. Therefore

f − g = c on all I. ■
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Both of the propositions above will be put to good use when antiderivatives are discussed in
section 4.8.
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Exercises

1. Show 1 + 2x+ x3 + 4x5 = 0 has exactly one real root.

2. Show the equation x7 + x3 = −x5 − 1 has exactly one real solution.

3. Show that, for any constant k, the equation x3 − 15x+ k = 0 has at most one root in the
interval [−2, 2].

4. Show x101 + x51 + x− 1 = 0 has exactly one real root.

5. Show 2x− 1− sinx = 0 has exactly one real root.

6. Show 2x4 + 5x2 + x− 3 = 0 has exactly two real roots.

7. Let f(x) = x4 − x3 + 7x2 + 3x− 11. Prove that the graph of f has at least one horizontal
tangent line.

8. Show that a 3rd-degree polynomial equation has at most three real roots. (Hint: start with a
general cubic equation ax3 + bx2 + cx+ d = 0.)

9. Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given
interval, then find the numbers c that satisfy the theorem’s conclusion.
(a) f(x) = 3x2 + 2x+ 5, [−1, 1]

(b) g(x) = 3
√
x, [0, 1]

(c) h(x) =
x

x+ 2
, [1, 4]

10. Let φ(x) = |x− 1|. Show that there’s no c ∈ [0, 3] such that

φ′(c) =
φ(3)− φ(0)

3
.

Why does this not contradict the Mean Value Theorem?

11. For what values of a, b, and m does the function

f(x) =


3, x = 0

a+ 3x− x2, x ∈ (0, 1)

mx+ b, x ∈ [1, 2]

satisfy the hypotheses of the Mean Value Theorem on the interval [0, 2]?

12. Does there exist a function f such that f(0) = −1, f(2) = 4, and f ′(x) ≤ 2 for all x?

13. Suppose f is continuous on [6, 15] and differentiable on (6, 15). Also suppose that f(6) = −8
and f ′(x) ≤ 12 for all x ∈ (6, 15). What is the largest possible value for f(15)?
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4.3 – Strict Monotonicity and Concavity

Definition 4.19. Let f be a function and I ⊆ Dom(f) an interval.
If f(x1) < f(x2) for all x1, x2 ∈ I such that x1 < x2, then f is increasing on I. In the

event that I = Dom(f) we say that f is an increasing function.
If f(x1) > f(x2) for all x1, x2 ∈ I such that x1 < x2, then f is decreasing on I. In the

event that I = Dom(f) we say that f is a decreasing function.

A function is said to be strictly monotonic on an interval I if it is either increasing or
decreasing on I. A useful fact: if f is increasing or decreasing I, then −f is decreasing or
increasing on I, respectively. The following theorem will prove invaluable in determining whether
a function f has the property of strict monotonicity on a given interval, so long as f fulfills
certain continuity and differentiability requirements.

Theorem 4.20 (Monotonicity Test). Let I be an interval. Suppose f is continuous on I and
differentiable on Int(I).

1. If f ′ > 0 on Int(I), then f is increasing on I.
2. If f ′ < 0 on Int(I), then f is decreasing on I.

Proof.
Proof of Part (1). Suppose f ′ > 0 on Int(I). Let x1, x2 ∈ I such that x1 < x2. Since [x1, x2] ⊆ I
and (x1, x2) ⊆ Int(I), f is continuous on [x1, x2] and differentiable on (x1, x2), and so by the
Mean Value Theorem there exists some c ∈ (x1, x2) such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
.

Observing that c ∈ Int(I), we obtain f ′(c) > 0 and thus

f(x2)− f(x1)

x2 − x1
> 0.

From this we conclude that f(x2)− f(x1) > 0, which is to say f(x1) < f(x2) and therefore f is
increasing on I.

Proof of Part (2). Suppose f ′ < 0 on Int(I). Then −f ′ > 0 on Int(I), so that −f is increasing
on I by Part (1), and therefore f itself is decreasing on I. ■

Like the Mean Value Theorem itself, the Monotonicity Test is often used to establish
inequalities that might otherwise be quite challenging to establish by purely algebraic means.
The next example illustrates a typical treatment.

Example 4.21. Show that

2
√
x > 3− 1

x
for all x > 1.
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Solution. Let

f(x) = 2
√
x+

1

x
− 3,

so the problem becomes one of showing that f(x) > 0 for all x > 1.
For any x > 1 we have

f ′(x) =
1√
x
− 1

x2
.

But we also have
√
x > 1, so that

x2 = x · x > x · 1 = x =
√
x ·

√
x >

√
x · 1 =

√
x,

hence
1

x2
<

1√
x
,

and therefore f ′(x) > 0. So f ′ > 0 on (1,∞), and since f is continuous on [1,∞), the
Monotonicity Test implies that f is increasing on [1,∞). In particular this means that f(x) >
f(1) = 0 for all x > 1. ■

Theorem 4.22 (First Derivative Test). Let c be a critical point of f , and suppose there exist
some γ > 0 such that f is continuous on Bγ(c).

1. If f ′ > 0 on (c− γ, c) and f ′ < 0 on (c, c+ γ), then f has a local maximum at c.
2. If f ′ < 0 on (c− γ, c) and f ′ > 0 on (c, c+ γ), then f has a local minimum at c.
3. If f ′ > 0 on B′

γ(c), or f
′ < 0 on B′

γ(c), then f has no local extremum at c.

Proof.
Proof of Part (1). Suppose f ′ > 0 on (c− γ, c) and f ′ < 0 on (c, c+ γ). Since f is continuous on
Bγ(c) it is also continuous on [c− γ/2, c]. Since f is differentiable on (c− γ, c) it is differentiable
on (c− γ/2, c). Now, f ′ > 0 on (c− γ/2, c), and so f is increasing on [c− γ/2, c] by Theorem
4.20(1).

Next, since f is continuous on Bγ(c) it is continuous on [c, c+ γ/2]. Since f is differentiable
on (c, c+γ) it is differentiable on (c, c+γ/2). Now, f ′ < 0 on (c, c+γ/2), and so f is decreasing
on [c, c+ γ/2] by Theorem 4.20(2).

Since f is increasing on [c− γ/2, c] we have f(c) ≥ f(x) for all c− γ/2 ≤ x ≤ c, and since f
is decreasing on [c, c+ γ/2] we have f(c) ≥ f(x) for all c ≤ x ≤ c+ γ/2. Thus f(c) ≥ f(x) for
all x ∈ Bγ/2(c), and therefore f has a local maximum at c.

Proof of Part (2). Suppose f ′ < 0 on (c − γ, c) and f ′ > 0 on (c, c + γ). Then −f ′ > 0 on
(c− γ, c) and f ′ < 0 on (c, c+ γ), so −f has a local maximum at c by Part (1), and therefore f
has a local minimum at c.

Proof of Part (3). Left as an exercise. ■

Example 4.23. Find the intervals of increase or decrease for the function

f(x) = 2
√
x− 4x2,

and find any local extrema.
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Solution. First we get the derivative of f ,

f ′(x) =
1√
x
− 8x,

which is continuous on its domain (0,∞). Clearly f ′(x) exists for all x > 0; however,

f ′(x) = 0 ⇔ 1√
x
− 8x = 0 ⇔ 1− 8x3/2 = 0 ⇔ x3/2 =

1

8
⇔ x =

1

4
,

and so f has x = 1
4
as its sole critical point.

Since f ′( 1
16

)
= 7

2
> 0, the Intermediate Value Theorem implies that f ′ > 0 on the interval(

0, 1
4

)
; and since f ′(1) = −7 < 0, it follows that f ′ < 0 on

(
1
4
,∞
)
. By the Monotonicity Test

we conclude that f is increasing on
(
0, 1

4

)
and decreasing on

(
1
4
,∞
)
. The First Derivative Test

tells us that f has a local maximum at x = 1
4
, with local maximum value f

(
1
4

)
= 3

4
. ■

Definition 4.24. Let f be differentiable on an open interval I. If f ′ is increasing on I, then f
is concave up on I. If f ′ is decreasing on I, then f is concave down on I.

If f is continuous at c and there exists some γ > 0 such that f is concave in one sense on
(c− γ, c) and concave in the opposite sense on (c, c+ γ), then (c, f(c)) is an inflection point
of the graph of f .

Notice that here the property of concavity is only defined on open intervals, unlike the
property of strict monotonicity.

Example 4.25. Consider any linear function f(x) = mx + b, where m and b are constants.
Where is f concave up, and where is it concave down? We have f ′(x) = m, a constant function.
By Definition 4.19, f ′ is neither increasing nor decreasing on any interval I ⊆ R, and thus
Definition 4.24 makes clear that f is neither concave up nor concave down on any open interval
in R. As a consequence, no line possesses the property of concavity anywhere along its length,
and there are no inflection points. ■

Theorem 4.26 (Concavity Test). Suppose that f ′′ exists on an open interval I.

1. If f ′′ > 0 on I, then f is concave up on I.
2. If f ′′ < 0 on I, then f is concave down on I.

Proof. We start by observing that the existence of f ′′ on the open interval I implies that f ′ is
differentiable on I, which in turn implies that f ′ is continuous on I and f is differentiable on I.

Proof of Part (1). Suppose that f ′′ > 0 on I. Since f ′′ = (f ′)′, by Theorem 4.20(1) it follows
that f ′ is increasing on I, and thus by definition f is concave up on I.

Proof of Part (2). Suppose that f ′′ < 0 on I. Since f ′′ = (f ′)′, by Theorem 4.20(2) it follows
that f ′ is decreasing on I, and thus by definition f is concave down on I. ■

Example 4.27. Find the intervals of concavity for the function

g(x) = 200 + 8x3 + x4,

and find any inflection points.
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Solution. We start by obtaining the second derivative of g,

g′′(x) = 48x+ 12x2.

Clearly g′′ is defined everywhere, but g′′(x) = 0 yields the solutions x = −4 and x = 0. We
next evaluate g(x) at convenient values in the intervals (−∞,−4), (−4, 0), and (0,∞); we have
g′′(−5) = 60 > 0, g′′(−1) = −36 < 0, and g′′(1) = 60 > 0. Since g′′ is continuous everywhere,
by the Intermediate Value Theorem we conclude that g′′ > 0 on intervals (−∞,−4) and (0,∞),
while g′′ < 0 on (−4, 0). The Concavity Test then implies that g is concave up on (−∞,−4),
concave down on (−4, 0), and concave up on (0,∞). Because g is continuous at −4 and 0 in
particular, we conclude that

(−4, g(−4)) = (−4,−56) and (0, g(0)) = (0, 200)

are inflection points of the graph of g. ■
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4.4 – The Graphs of Functions

The various tests introduced in the previous section, taken together with the study of
asymptotes made in §2.4 and §2.5, furnish a means of determining the general shape of the graph
of many kinds of functions without plotting very many points. Indeed, the tools of differential
calculus developed thus far can enable us to spot features in a graph that might otherwise
be all but indiscernible on the pixelated displays of computer algebra systems. In particular,
inflection points and local extrema that are not apparent on a calculator screen are often easily
apprehended in the course of studying a function’s first or second derivative.

Example 4.28. Let

f(x) =
x√
x2 + 1

.

(a) Find the domain of f .
(b) Find the intercepts of f .
(c) Find the asymptotes of f , and any points where y = f(x) intersects an asymptote.
(d) Use f ′ to find intervals of increase and decrease, then obtain critical points and find local

extrema.
(e) Use f ′′ to find intervals where f is concave up and concave down, and identify inflection

points.
(f) Sketch the graph of f .

Solution.

(a) The domain is (−∞,∞).

(b) Since f(x) = 0 has only x = 0 as a solution, the point (0, 0) is the sole x-intercept, which
happens also to be the y-intercept.

(c) There is a no vertical asymptote. However, since

lim
x→∞

f(x) = lim
x→∞

x

|x|
√
1 + x−2

= lim
x→∞

x

x
√
1 + x−2

= lim
x→∞

1√
1 + x−2

= 1,

y = 1 is a horizontal asymptote; and since

lim
x→−∞

f(x) = lim
x→−∞

x

|x|
√
1 + x−2

= lim
x→∞

x

−x
√
1 + x−2

= lim
x→∞

−1√
1 + x−2

= −1,

another horizontal asymptote is y = −1.
Any point where the graph of y = f(x) intersects a horizontal asymptote will be a point

(x, y) for which f(x) = ±1. But f(x) = ±1 implies x = ±
√
x2 + 1 and thus x2 = x2 + 1,

which is impossible. Therefore no intersections occur between the graph of f and its hori-
zontal asymptotes.

(d) With the quotient rule of differentiation,

f ′(x) =

√
x2 + 1− x · 1

2
(x2 + 1)−1/2(2x)

x2 + 1
=

1

(x2 + 1)3/2
,
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x

y

3−3

Figure 23.

which shows that f ′ > 0 on (−∞,∞), and thus f is increasing everywhere by the Mono-
tonicity Test. There are no critical points, and hence no local extrema.

(e) Differentiating f ′ gives

f ′′(x) = − 3x

(x2 + 1)5/2
.

Clearly f ′′ > 0 on (−∞, 0) and f ′′ < 0 on (0,∞). By the Concavity Test we conclude that
f is concave up on (−∞, 0) and concave down on (0,∞). Since concavity changes at 0 and
0 ∈ Dom(f), it follows that (0, 0) is the only inflection point on the graph of f .

(f) The sketch of the graph of f is in Figure 23, with the inflection point marked in black. ■

Example 4.29. Let

f(x) =
x3 − 1

x3 + 1
.

(a) Find the domain of f .
(b) Find the intercepts of f .
(c) Find the asymptotes of f .
(d) Use f ′ to find intervals of increase and decrease, then obtain critical points and find local

extrema.
(e) Use f ′′ to find intervals where f is concave up and concave down, and identify inflection

points.
(f) Sketch the graph of f .

Solution.

(a) The domain is Dom(f) = {x ∈ R : x ̸= −1} = (−∞,−1) ∪ (−1,∞).

(b) Since f(0) = −1, the y-intercept of f is (0,−1). As for any x-intercepts, set f(x) = 0 and
solve for x:

f(x) = 0 ⇒ x3 − 1

x3 + 1
= 0 ⇒ x3 − 1 = 0 ⇒ x = 1;

Thus f has x-intercept (1, 0).
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(c) We have

lim
x→−1−

x3 − 1

x3 + 1
= +∞ and lim

x→−1+

x3 − 1

x3 + 1
= −∞,

so there is a vertical asymptote x = −1. Also

lim
x→±∞

x3 − 1

x3 + 1
= 1,

so there is a horizontal asymptote y = 1.

(d) Differentiating f gives

f ′(x) =
(x3 + 1)(3x2)− (x3 − 1)(3x2)

(x3 + 1)2
=

6x2

(x3 + 1)2
.

It can be seen that f ′ > 0 on (−∞,−1) ∪ (−1, 0) ∪ (0,∞), which shows that f is increasing
everywhere on its domain except at 0.

The only critical point for f that lies in Dom(f) is x = 0, since f ′(0) = 0. However,
because f ′ > 0 for all x on (−1, 0) ∪ (0,∞), by the First Derivative Test no local extremum
lies at x = 0.

(e) Differentiating f ′ gives

f ′′(x) =
(x3 + 1)2(12x)− (6x2) · 2(x3 + 1)(3x2)

(x3 + 1)4
=

12x(1− 2x3)

(x3 + 1)3
.

Setting f ′′(x) = 0 implies that either 12x = 0 or 1− 2x3 = 0, from which we obtain solutions
x = 0, 2−1/3.

Now, f ′′(−2) ≈ 1.19 > 0, and since f ′′(x) ̸= 0 for all x ∈ (−∞,−1) and f ′′ is continuous
on (−∞,−1), the Intermediate Value Theorem implies that f ′′ > 0 on (−∞,−1). Therefore
f is concave up on (−∞,−1).

x

y

1−1−4 4

1

Figure 24.
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Next, f ′′(−1/2) ≈ −11.20 < 0, and since f ′′(x) ̸= 0 for all x ∈ (−1, 0) and f ′′ is
continuous on (−1, 0), the IVT implies f ′′ < 0 on (−1, 0). Therefore f is concave down on
(−1, 0).

A convenient value lying between 0 and 2−1/3 is 1/2. We have f ′′(1/2) ≈ 3.16 > 0, and
since f ′′(x) ̸= 0 for all x ∈ (0, 2−1/3) and f ′′ is continuous on (0, 2−1/3), the IVT implies
f ′′ > 0 on (0, 2−1/3). Therefore f is concave up on (0, 2−1/3).

Finally, f ′′(1) = −3/2 < 0, and since f ′′(x) ̸= 0 for all x ∈ (2−1/3,∞) and f ′′ is
continuous on (2−1/3,∞), the IVT implies f ′′ < 0 on (2−1/3,∞). Therefore f is concave
down on (2−1/3,∞).

The inflection points of f are (0,−1) and (2−1/3,−1/3). Note that there is not an
inflection point at x = −1 since f is undefined there!

(f) The sketch of the graph of f is in Figure 24, with inflection points marked in black. ■

Example 4.30. Let f(x) = x1/3(x+ 3)2/3.

(a) Find the domain of f .
(b) Find the intercepts of f .
(c) Find the asymptotes of f .
(d) Use f ′ to find intervals of increase and decrease, then obtain critical points and find local

extrema.
(e) Use f ′′ to find intervals where f is concave up and concave down, and identify inflection

points.
(f) Sketch the graph of f .

Solution.

(a) The domain is Dom(f) = (−∞,∞).

(b) Since f(0) = 0, the y-intercept of f , which doubles as an x-intercept, is (0, 0). As for any
x-intercepts besides the origin, we set f(x) = 0 and solve for x:

f(x) = 0 ⇒ x1/3(x+ 3)2/3 = 0 ⇒ x = −3, 0.

Thus f has x-intercepts (0, 0) and (−3, 0).

(c) Since the domain of f is (−∞,∞) there can be no vertical asymptotes. And since f(x) → ∞
as x→ ∞, and f(x) → −∞ as x→ −∞, there are no horizontal asymptotes either.

(d) Differentiating f gives

f ′(x) = x1/3 · 2
3
(x+ 3)−1/3 +

1

3
x−2/3 · (x+ 3)2/3 =

2x1/3

3(x+ 3)1/3
+

(x+ 3)2/3

3x2/3

=
2x

3x2/3(x+ 3)1/3
+

x+ 3

3x2/3(x+ 3)1/3
=

3x+ 3

3x2/3(x+ 3)1/3
=

x+ 1

x2/3(x+ 3)1/3

for any x ̸= −3, 0. We see that f ′ > 0 if x+1 > 0 and x+3 > 0, which implies that x > −1;
also f ′ > 0 if x+ 1 < 0 and x+ 3 < 0, which implies that x < −3. Thus f is increasing on
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x

y

1−1−4

1

Figure 25.

(−∞,−3) and (−1,∞) by the Monotonicity Test. Since f ′ < 0 on (−3,−1) we conclude
that f is decreasing on this interval.

Now we find the critical points for f . Setting f ′(x) = 0 gives x = −1, which is one
critical point. As for x values for which f ′(x) does not exist, we have x = −3, 0, which are
two more critical points. Since f ′ > 0 to the left of −3 and f ′ < 0 to the right of −3, by the
First Derivative Test it follows that f has a local maximum at −3, with local maximum
value of f(−3) = 0. Since f ′ < 0 to the left of −1 and f ′ > 0 to the right of −1, f has a
local minimum at −1, with local minimum value of f(−1) = − 3

√
4. Finally, since f ′ > 0 to

the left and right of 0, there is no local extremum for f at 0.

(e) Next, we have

f ′′(x) =
(x3 + 3x2)1/3 − (x+ 1) · 1

3
(x3 + 3x2)−2/3(3x2 + 6x)

(x3 + 3x2)2/3

=
(x3 + 3x2)− (x+ 1)(x2 + 2x)

(x3 + 3x2)4/3
= − 2x

(x3 + 3x2)4/3

for all x ̸= −3, 0. Since

(x3 + 3x2)4/3 =
(

3

»
x2(x+ 3)

)4
> 0

for all x ̸= −3, 0, we see that f ′′ > 0 on (−∞,−3) ∪ (−3, 0) and f ′′ < 0 on (0,∞), and so
by the Concavity Test f is concave up on (−∞,−3) ∪ (−3, 0) and concave down on (0,∞).
The point (0, 0) is therefore an inflection point. At the point (−3, 0) concavity does not
change so there is no inflection point there.

(f) The sketch of the graph of f is in Figure 25, with inflection point marked in black. ■
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4.5 – Optimization Problems

Example 4.31. A square-based, box-shaped shipping crate is designed to have a volume of 16
cubic meters. The material used to make the base costs twice as much (per m2) as the material
in the sides, and the material used to make the top costs half as much (per m2) as the material
in the sides. What are the dimensions of crate that minimize the cost of materials?

Solution. The base of the box is square, so let x be the length of the base edges (the length
and width of the box), and let y be the height of box. The volume must be 16 m3, so x2y = 16
and hence y = 16/x2. Let k be the cost per square meter (in dollars) for the material in the
sides of the box. The cost C of the box is a function of x as follows:

C(x) =

Å
2k dollars

m2

ã
(x2 m2)︸ ︷︷ ︸

cost of base

+

Å
0.5k dollars

m2

ã
(x2 m2)︸ ︷︷ ︸

cost of top

+4

Å
k dollars

m2

ãÅ
x · 16

x2
m2

ã
︸ ︷︷ ︸

cost of sides

,

and therefore

C(x) =
5

2
kx2 +

64k

x
.

We wish to find x such that the cost is minimized. We have

C ′(x) = 5kx− 64k

x2
,

and so if we set C ′(x) = 0 we obtain

5kx− 64k

x2
= 0 ⇒ 5kx3 − 64k = 0 ⇒ 5x3 = 64 ⇒ x =

4
3
√
5
.

Thus C(x) is minimized if we set x = 4/ 3
√
5. That is, the box should have dimensions

4
3
√
5
m× 4

3
√
5
m× 3

√
25 m

in order to minimize the cost of its construction. ■

Example 4.32. The intensity of a light source at a given location is directly proportional to
the strength of the source and inversely proportional to the square of the distance from the
source. Two light sources, one twice as strong as the other, are 12 meters apart. At what point
on the line segment joining the sources is the intensity the weakest?

Solution. Let L1 and L2 be the weaker and stronger light sources, respectively, and let I1 and
I2 be their intensities. If p is the point on the line segment joining L1 and L2 that is a distance
of x from L1, then I1 and I2 may be characterized as functions of x:

I1(x) =
ks1
x2

and I2(x) =
ks2

(12− x)2
,

where k > 0 is a constant of proportionality (dependent on what kind of unit is being used to
quantify “intensity”), and s1, s2 > 0 are the “strengths” of L1 and L2. The total light intensity
I at p is thus

I(x) = I1(x) + I2(x) =
ks1
x2

+
2ks1

(12− x)2
, x ∈ (0, 12),
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where we use the fact that s2 = 2s1.
We must find the global minimum for I, which is the minimum value I(x) attains for

0 < x < 12. We have

I ′(x) = −2ks1
x3

+
4ks1

(12− x)3
=

2ks1[2x
3 − (12− x)3]

x3(12− x)3
,

and so from I ′(x) = 0 we obtain the equation 2x3 − (12− x)3 = 0, where

2x3 − (12− x)3 = 0 ⇒ 2x3 = (12− x)3 ⇒ x 3
√
x = 12− x ⇒ x =

12

1 + 3
√
2
:= x∗,

which is approximately 5.31 and so is a critical point for I that lies in (0, 12). There is no
x ∈ (0, 12) for which I ′(x) does not exist, so there are no other critical points in (0, 12). Since I
is continuous on (0, 12) and

I ′(4) = − 3

128
ks1 < 0 and I ′(8) =

15

256
ks1 > 0,

we conclude by the Intermediate Value Theorem that I ′ < 0 on (0, x∗), and I ′ > 0 on (x∗, 12).
By the First Derivative Test I has a local minimum at x∗, and since I is decreasing on (0, x∗) and
increasing on (x∗, 12), we conclude that the local minimum at x∗ is in fact a global minimum.

Therefore the intensity of light between L1 and L2 is weakest a distance of

12

1 + 3
√
2
≈ 5.31 m

from the weaker light source L1. ■

Example 4.33. An island under the sovereignty of the Empire is 3.5 km from the nearest point
on a straight shoreline, and that point is in turn 8 km away from a nuclear power plant on
the shore (see at left in Figure 26). There is a prison filled with dissidents on the island, and
to power it the Empire plans to lay electrical cable underwater from the island to the shore
and then underground along the shore to the nuclear plant. Assume that it costs $2400 per
kilometer to lay underwater cable and $1200 per kilometer to lay underground cable. At what
point should the underwater cable meet the shore in order to minimize the cost of the Empire’s
project?

Shore

C
able3.5 km

Island

Nuclear
Plant

8 km Shore

√
x 2
+
3.5 23.5

Island

Nuclear
Plant

x 8− x

Figure 26.



110

Solution. Let x be as show at right in Figure 26; that is, x is the distance between the nearest
point on the shore to the island and the point where the cable will meet the shore. The cost
function is:

C(x) =

Å
$2400

km

ãÄ√
x2 + 3.52 km

ä
+

Å
$1200

km

ã
(8− x km) = 2400

…
x2 +

49

4
+ 1200(8− x).

We take the derivative:

C ′(x) =
2400x√
x2 + 49/4

− 1200.

Note that there is no x value for which C ′(x) does not exist. On the other hand,

C ′(x) = 0 ⇒ 2x√
x2 + 49/4

− 1 = 0 ⇒ 2x =

…
x2 +

49

4
⇒ 4x2 = x2 +

49

4

⇒ x2 =
49

12
⇒ x =

…
49

12
=

7

2
√
3
=

7
√
3

6
≈ 5.98.

Thus, if the cable meets the shore at a point about 8− 5.98 = 2.02 km away from the nuclear
plant, the cost will be minimized. ■
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4.6 – Linear Approximation

Example 4.34. We use linear approximation to approximate the value of 5
√
33. Let f(x) = 5

√
x.

Since we know that 5
√
32 = 2, and 32 is reasonably close to 33, we find the linear function L

that provides a linear approximation of f at x = 32. From f ′(x) = 1
5
x−4/5 we obtain

f ′(32) =
1

5
(32)−4/5 =

1

80
,

which is the slope of the line generated by L. A point on the line is (32, f(32)) = (32, 2), and so
by the point-slope formula the line has equation

y − 2 =
1

80
(x− 32),

and hence

L(x) =
1

80
x+

8

5
is the linear approximation of f at 32. That is, f(x) ≈ L(x) for all x near 32. In particular

5
√
33 = f(33) ≈ L(33) =

1

80
(33) +

8

5
= 2.0125,

which is quite close to the actual value 2.01234661.... The percent error is∣∣∣∣Actual Value − Approximate Value

Actual Value

∣∣∣∣× 100% ≈ 0.0076%.

The linear function L also provides a good approximate of, say, 5
√
37:

5
√
37 = f(37) ≈ L(37) =

1

80
(37) +

8

5
= 2.0625,

which is still close to the actual value 2.05892413.... The percent error is about 0.174%. ■
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4.7 – L’Hôpital’s Rule

Recall the following arithmetic conventions: for any a ∈ R, we define

a± (+∞) = ±∞, a/±∞ = 0, and a · (±∞) =

®
±∞, a > 0

∓∞, a < 0.

Also, letting ∞ stand for +∞ as we frequently do, we define ∞+∞ = ∞ and −∞−∞ = −∞.
All addition and multiplication operations are taken to be commutative.

In contrast to the expressions above, expressions such as

0

0
,

+∞
+∞

,
−∞
−∞

,
+∞
−∞

,
−∞
+∞

(4.10)

(the last four we henceforth lump together as ∞/∞) have no definitive real-number or infinite
value, and thus are called indeterminant forms. This is not quite the same as saying the
forms are “undefined” in the sense that, say, 3/0 is undefined. The form ∞/∞, for instance,
arises in attempting to evaluate the limit

lim
x→∞

x2

x3
.

Since x2 → ∞ and x3 → ∞ as x → ∞, we see that x2/x3 → ∞/∞ as x → ∞. However, we
know this does not necessarily mean the limit does not exist: with a little algebra the limit is
easily resolved into a real-number value:

lim
x→∞

x2

x3
= lim

x→∞

1

x
= 0.

So in this case we find that ∞/∞ resolves into 0. With another limit we may find ∞/∞ resolves
into 1 or −1

2
.

The following three theorems taken together are called L’Hôpital’s Rule. The rule is a
technique that helps to evaluate many limits that present an indeterminant form. It is possible to
express the rule as a single theorem, but it would come at the cost of either clarity or precision.

Theorem 4.35 (L’Hôpital’s Rule: Left-Hand Version). Let f and g be differentiable on
(a, b) with −∞ ≤ a < b ≤ ∞, and let g′(x) ̸= 0 for all x ∈ (a, b). Suppose that f ′(x)/g′(x) → L
as x→ b− for some −∞ ≤ L ≤ ∞. If

lim
x→b−

f(x) = lim
x→b−

g(x) = 0 or lim
x→b−

|g(x)| = +∞,

then f(x)/g(x) → L as x→ b−.

Theorem 4.36 (L’Hôpital’s Rule: Right-Hand Version). Let f and g be differentiable on
(a, b), where −∞ ≤ a < b ≤ ∞, and let g′(x) ̸= 0 for all x ∈ (a, b). Suppose that f ′(x)/g′(x) → L
as x→ a+ for some −∞ ≤ L ≤ ∞. If

lim
x→a+

f(x) = lim
x→a+

g(x) = 0 or lim
x→a+

|g(x)| = +∞,

then f(x)/g(x) → L as x→ a+.

The two one-sided versions of L’Hôpital’s Rule taken together readily imply a special
two-sided version of the rule, stated as follows.
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Theorem 4.37 (L’Hôpital’s Rule: Two-Sided Version). Let f and g be differentiable
on B′

γ(c) for some c ∈ R and γ > 0, with g′(x) ̸= 0 for all x ∈ B′
γ(c). Suppose that

limx→c f
′(x)/g′(x) = L for some −∞ ≤ L ≤ ∞. If

lim
x→c

f(x) = lim
x→c

g(x) = 0 or lim
x→c

|g(x)| = +∞,

then limx→c f(x)/g(x) = L.

Note that in Theorem 4.35 the left-hand limit can even take x→ +∞, and in Theorem 4.36
the right-hand limit can take x → −∞. However, in Theorem 4.37 we must have x → c for
some c ∈ R (so c ̸= ±∞).

Example 4.38. Evaluate the limit

lim
x→0

sinx− x

7x3
.

Solution. Since sinx− x→ 0 and 7x3 → 0 as x→ 0, we see the limit presents us with a 0/0
indeterminant form. Let f(x) = sinx − x and g(x) = 7x3, so the limit under consideration
may be written as limx→0 f(x)/g(x). Note that both f and g are differentiable everywhere, so
in particular they are differentiable on B′

γ(0) for, say, γ = 1. Also g′(x) = 21x2 ≠ 0 for all
x ∈ B′

1(0). Now, since

lim
x→0

f(x) = lim
x→0

(sinx− x) = 0 and lim
x→0

g(x) = lim
x→0

7x3 = 0,

Theorem 4.37 implies that

lim
x→0

sinx− x

7x3
= lim

x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

cosx− 1

21x2
. (4.11)

However, the limit at right in (4.11) is also a 0/0 indeterminant form. Can we use L’Hôpital’s
Rule rule again? Since f ′ and g′ are differentiable on B′

1(0), g
′′(x) = 42x ̸= 0 for all x ∈ B′

1(0),
and

lim
x→0

f ′(x) = lim
x→0

(cosx− 1) = 0 and lim
x→0

g′(x) = lim
x→0

21x2 = 0,

Theorem 4.37 implies that

lim
x→0

cosx− 1

21x2
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

f ′′(x)

g′′(x)
= lim

x→0

− sinx

42x
. (4.12)

But the limit at right in (4.12) is once again a 0/0 form! Once again we find we can use Theorem
4.37 to obtain

lim
x→0

− sinx

42x
= lim

x→0

f ′′(x)

g′′(x)
= lim

x→0

f ′′′(x)

g′′′(x)
= lim

x→0

− cosx

42
= − 1

42
.

Therefore

lim
x→0

sinx− x

7x3
= − 1

42
.

■
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There are other indeterminant forms other than the ones given in (4.10). The ones we
consider in this section are

+∞−∞, −∞+∞, 0 · (±∞), (±∞) · 0.

We let ∞−∞ denote the first two, and 0 · ∞ denote the last two. These forms are not directly
addressed by L’Hôpital’s Rule, but usually some simple algebraic prestidigitation within a limit
will turn these forms into either 0/0 or ∞/∞.

Example 4.39. Evaluate the limit

lim
x→0

Å
1

x
− cotx

ã
.

Solution. Let h(x) = 1/x − cotx, and note that limx→0+ h(x) and limx→0− h(x) present the
indeterminant forms +∞−∞ and −∞+∞, respectively. Neither of these forms is addressed
in our L’Hôpital’s Rule theorems above. However, for all x ∈ B′

1(0) we have

1

x
− cotx =

1

x
− cosx

sinx
=

sinx− x cosx

x sinx
,

and so

lim
x→0

Å
1

x
− cotx

ã
= lim

x→0

sinx− x cosx

x sinx
(4.13)

by Theorem 2.18. Now, the limit at right in (4.13) presents a 0/0 indeterminant form. By
Theorems 4.37 and 2.12, and Lemma 3.18, we finally obtain

lim
x→0

sinx− x cosx

x sinx
= lim

x→0

(sinx− x cosx)′

(x sinx)′
= lim

x→0

x sinx

sinx+ x cosx

= lim
x→0

Å
x sinx

sinx+ x cosx
· 1/x
1/x

ã
= lim

x→0

sinx
sinx

x
+ cosx

=
lim
x→0

sinx

lim
x→0

sinx

x
+ lim

x→0
cosx

=
0

1 + 1
= 0.

Therefore

lim
x→0

Å
1

x
− cotx

ã
= 0.

■
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4.8 – Antiderivatives and Indefinite Integrals

We begin with the notion of an antiderivative of a function f , which is quite simply any
function whose derivative is equal to f .

Definition 4.40. Let S ⊆ R be an interval or a disjoint union of intervals, and let f be a
function with S ⊆ Dom(f). An antiderivative for f on S is a function F : S → R such that
F ′(x) = f(x) for all x ∈ S.

Example 4.41. If f(x) = 0 for all x ∈ (−∞,∞), then an antiderivative for f on (−∞,∞)
is the function F given by F (x) = 1 for all x ∈ (−∞,∞). More concisely we say that an
antiderivative for 0 is 1, with the understanding that here 0 and 1 represent constant functions
and not numbers. ■

Example 4.42. An antiderivative for sinx on (−∞,∞) is − cosx, and an antiderivative for
cosx on (−∞,∞) is sinx.

An antiderivative for sec2 x on (−π/2, π/2) is tanx. In fact, tanx is an antiderivative for
sec2 x on (−π/2 + nπ, π/2 + nπ) for any integer n, and as a result tanx is an antiderivative for
sec2 x on the set S ⊆ R given by

S =
⋃
n∈Z

(
−π
2
+ nπ,

π

2
+ nπ

)
,

which is the union of all intervals of the form (−π/2 + nπ, π/2 + nπ), n ∈ Z. ■

If the set S in Definition 4.40 contains any left endpoints a or right endpoints b, then F ′(a)
and F ′(b) are defined by appropriate one-sided limits,

F ′
+(a) = lim

x→a+

F (x)− F (a)

x− a
and F ′

−(b) = lim
x→b−

F (x)− F (b)

x− b
,

which is to say only one-sided differentiability of F is required at endpoints. For instance if F
is an antiderivative for f on S = (−∞,−1] ∪ [1,∞), then at 1 there is only required to be a
right-hand derivative, and at −1 there is only a left-hand derivative.

If F is an antiderivative for f on some interval I, so that F ′(x) = f(x) for all x ∈ I, then
for any constant c we find that the function F + c is also an antiderivative on I:

(F + c)′(x) = (F ′ + c′)(x) = F ′(x) + c′(x) = f(x) + 0 = f(x) (4.14)

for all x ∈ I, with the derivative operator ′ indicating the appropriate one-sided derivative
at any endpoint of I. Thus if a function has one antiderivative on I, then in fact it has an
infinite number of antiderivatives on I which differ from one another by a constant term. A
question naturally arises: are there any antiderivatives for f on I that do not differ from the
antiderivative F by a mere constant? The next theorem makes clear the answer is no.

Theorem 4.43. Let f be a function, and let I ⊆ Dom(f) be an interval on which there is an
antiderivative Φ for f . Then

{F : F is an antiderivative for f on I} = {Φ + c : c ∈ R}
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Proof. The fact that

{Φ + c : c ∈ R} ⊆ {F : F is an antiderivative for f on I}

has already been demonstrated by equation (4.14) above.
For the reverse containment, suppose F is any antiderivative for f on I. Then F and Φ

are differentiable on I, which implies that F and Φ are continuous on I. Moreover we have
F ′(x) = Φ′(x) = f(x) for x ∈ Int(I), and so by Proposition 4.18 there exists some constant c0
such that F (x)−Φ(x) = c0 for x ∈ I. Thus F = Φ+ c0, and therefore F ∈ {Φ+ c : c ∈ R}. ■

This is a wonderful result, because it means that once one antiderivative for f on I has been
found, then all the antiderivatives for f on I are known.

Definition 4.44. Let I ⊆ R be an interval, and let f be a function with I ⊆ Dom(f). The
indefinite integral of f on I, denoted by

�
f or

�
f(x)dx, is the family of all antiderivatives

for f on I. That is, �
f = {F : F is an antiderivative for f on I}. (4.15)

In
�
f the function f is called the integrand.

The interval I mentioned in Definition 4.44 is left purposely vague and is not built into the
symbol

�
f . This is why

�
f is referred to as an “indefinite” integral. Commonly I it taken to

be the largest interval in R on which f possesses an antiderivative, but there are times when
it is convenient to consider some smaller interval, and other times when two or more disjoint
intervals must be considered. In fact, as we’ll see in Example 4.49 below, if a function has an
antiderivative that is only valid on two or more disjoint intervals, then a different arbitrary
constant term may be chosen for each interval of validity.

Proposition 4.45. If F is an antiderivative of f on an interval I, then�
f = {F + c : c ∈ R}. (4.16)

Proof. Suppose F is an antiderivative of f on I. Then by Theorem 4.43 the family of all
antiderivatives of f on I is the set {F + c : c ∈ R}, and so we see that (4.16) follows directly
from (4.15). ■

In practice (4.16) is written as either�
f = F + c or

�
f(x)dx = F (x) + c,

where the x in the latter symbol may be replaced with some other letter.
For any α ∈ R and function f that has an antiderivative on some interval I we define

α

�
f = {αF : F is an antiderivative for f on I} =

ß
αF : F ∈

�
f

™
. (4.17)

If f and g are functions that each have an antiderivative on I, then we define�
f +

�
g = {F +G : F,G are antiderivatives for f, g on I}
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=

ß
F +G : F ∈

�
f and G ∈

�
g

™
. (4.18)

As the next theorem shows, the indefinite integral
�
largely satisfies linearity properties with

respect to the operations defined by (4.17) and (4.18), except in the case of (4.17) when α = 0.
Before stating the theorem, we observe that if f, g have antiderivatives F,G on I, then αf and
f + g likewise have antiderivatives on I due to the linearity properties of the differentiation
operation. In explicit terms, since

(αF )′ = αF ′ = αf and (F +G)′ = F ′ +G′ = f + g,

we see that αF is an antiderivative for αf on I, and F +G is an antiderivative for f + g on I.

Theorem 4.46. If f and g each possess an antiderivative on an interval I, then the following
hold.

1.
�
(αf) = α

�
f whenever α ̸= 0.

2.
�
(f + g) =

�
f +

�
g.

Proof.
Proof of Part (1). Fix α ̸= 0. Let Φ be an antiderivative for f on I, so that αΦ is an
antiderivative for αf on I. Two applications of Proposition 4.45 yields�

αf = {αΦ + c : c ∈ R} = {αΦ + αc : c ∈ R} = {α(Φ + c) : c ∈ R}

= {αF : F is an antiderivative for f on I} = α

�
f,

where the fact that c ∈ R is arbitrary implies that the terms c and αc can each be any real number.

Proof of Part (2). Let Φ,Ψ be antiderivatives for f, g on I, respectively. Since Φ + Ψ is an
antiderivative for f + g on I, two applications of Proposition 4.45 yields�

(f + g) = {(Φ + Ψ) + c : c ∈ R} = {(Φ + Ψ) + (c1 + c2) : c1, c2 ∈ R}

= {(Φ + c1) + (Ψ + c2) : c1, c2 ∈ R}

= {F +G : F,G are antiderivatives for f, g on I} =

�
f +

�
g,

where the fact that c, c1, c2 ∈ R are arbitrary implies that the terms c and c1 + c2 can each
attain any real value. ■

As already indicated in the proof of the theorem, if F,G are particular antiderivatives for
f, g on I, then by Proposition 4.45 we can rewrite (4.17) as

α

�
f = {αF + c : c ∈ R}, (4.19)

and equation (4.18) as �
f +

�
g = {(F +G) + c : c ∈ R}. (4.20)
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In practice (4.19) and (4.20) may be written simply as

α

�
f = αF + c and

�
f +

�
g = (F +G) + c.

Now from Theorem 4.46(1) we see that to find
�
(αf), it suffices to find a particular antiderivative

F for f on I, and then add an arbitrary constant c to αF . Similarly, Theorem 4.46(2) shows
that to find

�
(f + g) it’s enough to find particular antiderivatives F,G for functions f, g on I,

and then add an arbitrary constant c to F +G.

Example 4.47. Find the indefinite integral�
9x2dx.

Solution. By “find the indefinite integral” is meant to determine explicitly (up to an arbitrary
constant) an antiderivative for the function 9x2, and also every interval I on which the anti-
derivative is valid. In the case of 9x2 an antiderivative is 3x3, which is valid on (−∞,∞). Thus
for arbitary constant c we have �

9x2dx = 3x3 + c

for all x ∈ (−∞,∞). ■

Example 4.48. Find the indefinite integral�
|x|dx.

Solution. Let f(x) = |x|. Since f(x) = x for all x > 0, an antiderivative for f on (0,∞) is
F1(x) =

1
2
x2. On the other hand for x < 0 we find that f(x) = −x, and so F2(x) = −1

2
x2 is an

antiderivative for f on (−∞, 0). Noting that F1(0) = F2(0) = 0, we can combine F1 and F2 to
obtain a single continuous function F defined on R:

F (x) =
1

2
x|x|. (4.21)

We have F ′(x) = f(x) for all x ̸= 0, and so F is an antiderivative for f on (−∞, 0) ∪ (0,∞).
What about x = 0? We must check to see if F ′(0) = f(0). We have

F ′
+(0) = lim

h→0+

F (h)− F (0)

h
= lim

h→0+

1
2
|h|h− 0

h
=

1

2
lim
h→0+

h = 0,

and

F ′
−(0) = lim

h→0−

F (h)− F (0)

h
= lim

h→0−

1
2
|h|h− 0

h
= −1

2
lim
h→0−

h = 0,

and so since F ′
+(0) = F ′

−(0) = 0, it follows that F ′(0) = 0 = f(0). Hence F given by (4.21) is
an antiderivative for f on (−∞,∞), and we conclude that�

|x|dx =
1

2
x|x|+ c, x ∈ (−∞,∞).

We have our answer: an antiderivative 1
2
x|x|, an arbitrary constant c added to the antiderivative,

and an interval of validity (−∞,∞) that is as inclusive as it can be. We have “found” the
indefinite integral. ■
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Example 4.49. Find the indefinite integral�
1

3
3
√
x2
dx.

Solution. Let

f(x) =
1

3
3
√
x2
.

Since (
3
√
x
)′
=
(
x1/3

)′
=

1

3
x−2/3 =

1

3
3
√
x2

= f(x)

for x ̸= 0, it follows that 3
√
x is an antiderivative for f on the intervals (−∞, 0) and (0,∞).

There is no hope of there being an antiderivative for f at x = 0 since 0 is not in the domain of
f . As there is nothing that compels the constant term in an antiderivative of f on (−∞, 0) to
be the same as the constant term in an antiderivative on (0,∞), we have, most generally,�

1

3
3
√
x2
dx =

®
3
√
x+ c1, if x < 0

3
√
x+ c2, if x > 0.

Here c1 and c2 are arbitrary constants, not necessarily equal. ■

Example 4.50. Find the indefinite integral� Å
2|x|+ 1

3
√
x2

ã
dx.

Solution. By Theorem 4.46,� Å
2|x|+ 1

3
√
x2

ã
dx =

�
2|x|dx+

�
1

3
√
x2
dx = 2

�
|x|dx+ 3

�
1

3
3
√
x2
dx. (4.22)

The two indefinite integrals at right in (4.22) were already found in Examples 4.48 and 4.49:
the first has expression 1

2
x|x|+ c for x ∈ (−∞,∞), while the second has expression 3

√
x+ c1 for

x < 0 and 3
√
x+ c2 for x > 0. Therefore from (4.22) we conclude that� Å

2|x|+ 1
3
√
x2

ã
dx =

®
2
(
1
2
x|x|

)
+ 3 3

√
x+ c1, if x < 0

2
(
1
2
x|x|

)
+ 3 3

√
x+ c2, if x > 0

=

®
x|x|+ 3 3

√
x+ c1, if x < 0

x|x|+ 3 3
√
x+ c2, if x > 0.

■

Though technical exactitude is desirable when first making a study of a new mathematical
concept, we shall henceforth be a bit less formal and simply write things like� Å

2|x|+ 1
3
√
x2

ã
dx = x|x|+ 3 3

√
x+ c,

with the understanding that the arbitrary constant c is free to assume different values in different
intervals of validity.
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Example 4.51. Find the indefinite integral�
tan2 xdx.

Solution. Since tan2 x = sec2 x− 1 and (tanx)′ = sec2 x, we find that�
tan2 xdx =

�
(sec2 x− 1)dx = tanx− x+ c

As discussed in Example 4.42, each interval of validity has the form In = (−π/2+nπ, π/2+nπ),
where n is an integer; and in each interval In the arbitrary constant c may assume a different
value cn. ■
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5
Integration Theory

5.1 – The Riemann Integral

Let f be a continuous function such that f(x) ≥ 0 for all a ≤ x ≤ b, so that y = f(x) graphs
as a curve that lies above the x-axis. The question arises: what is the area of the region in
the xy-plane that is contained within the graphs of the equations x = a, x = b, y = 0, and
y = f(x)? Figure 27(a) provides an illustration of this region, which is customarily referred
to as the “region under f between a and b”. A better question might be: what should be the
mathematical definition for the area A under f between a and b be?

What we have on hand from geometry is a precise definition for the area of a rectangle,
length times width, and so it seems reasonable to set out by first using, say, 10 rectangles to
get a rough approximation of A, as shown in Figure 27(b). To get a better approximation we
increase the number of rectangles to 20 as in Figure 27(c), and then to 50 as in Figure 27(d),
and so on into the hundreds, the thousands, and the hundreds of thousands. Should we not
expect our ever more refined approximations to draw ever nearer to some particular positive
value? We are, after all, carrying out a kind of limit process. We define the area A to equal the
value of this limit process.

In this section we establish some of the basic machinery that, when fully threshed out in
sections to come, will allow us to determine many areas under curves with relative ease, as well
as solve a host of other problems both practical and theoretical.

Before going forward a choice is offered to the reader. The first choice is to proceed in linear
fashion from here up to and including Theorem 5.10 without skipping anything. The second
choice is this: from here read up to but excluding Definition 5.1, then skip to §5.2 and read
up to and including Theorem 5.10 (only taking that theorem to be a definition), then reading
the part of §5.1 coming after Definition 5.4, omitting the proof of Proposition 5.7. The first
choice presents the Riemann integral more as in a mathematical analysis book, while the second
approach is more in line with a mainstream calculus book.

A partition of a closed, bounded interval [a, b] ⊆ R is a finite set of points

P = {xi}ni=0 ⊆ [a, b],

called grid points, such that

a = x0 < x1 < · · · < xn = b.
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Figure 27.

The grid points divide the interval [a, b] into smaller intervals:

[a, b] = [a, x1] ∪ [x1, x2] ∪ [x2, x3] ∪ · · · ∪ [xn−2, xn−1] ∪ [xn−1, b].

It is in this sense that the interval [a, b] is “partitioned”. For each 1 ≤ i ≤ n we call Ii = [xi−1, xi]
the ith subinterval of the partition P , and the length of the i subinterval is

∆xi = xi − xi−1.

The mesh of P , denoted by ∥P∥, is the length of the longest subinterval of P ; that is,

∥P∥ = max
1≤i≤n

∆xi.

The collection of all possible partitions of [a, b] we denote by P([a, b]) or P [a, b].

Notation. It is convenient to denote a partition {x0, x1, . . . , xn} more compactly by {xk}nk=0,
and write {xk}nk=0 ∈ P [a, b] to specify that {xk}nk=0 is a partition of the interval [a, b].

Definition 5.1. Let f : [a, b] → R be bounded, and let P = {xk}nk=0 ∈ P [a, b]. Define

Mk = sup{f(x) : xk−1 ≤ x ≤ xk} and mk = inf{f(x) : xk−1 ≤ x ≤ xk}
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for each 1 ≤ k ≤ n. Then

U(P, f) =
n∑
k=1

Mk∆xk and L(P, f) =
n∑
k=1

mk∆xk

are the upper sum of f with respect to P and lower sum of f with respect to P ,
respectively.

Note that since f is bounded on [a, b, ], it must be bounded on each [xk−1, xk] ⊆ [a, b] and
hence Mk and mk must be real numbers as a consequence of the Completeness Axiom of R.

Definition 5.2. Let f : [a, b] → R be bounded. The upper Riemann integral of f over
[a, b] is � b

a

f = inf{U(P, f) : P ∈ P [a, b]},

and the lower Riemann integral of f over [a, b] is� b

a

f = sup{L(P, f) : P ∈ P [a, b]}.

Proposition 5.3. If f : [a, b] → R is bounded, then

� b

a

f and

� b

a

f

exist in R.

Proof. Suppose that f : [a, b] → R is bounded. Then there exists some M ∈ R such that
f(x) ≤M for all x ∈ [a, b]. Let P = {xk}nk=0 ∈ P [a, b]. For each 1 ≤ k ≤ n we have f(x) ≤M
for all x ∈ [xk−1, xk], and so

mk = inf{f(x) : xk−1 ≤ x ≤ xk} ≤M

for each 1 ≤ k ≤ n. Thus

L(P, f) =
n∑
k=1

mk∆xk ≤
n∑
k=1

M∆xk =M
n∑
k=1

∆xk =M(b− a),

and since P ∈ P [a, b] is arbitrary we conclude that the real number M(b− a) is an upper bound
for {L(P, f) : P ∈ P[a, b]}. Therefore by the Completeness Axiom the least upper bound of
{L(P, f) : P ∈ P [a, b]} is real-valued, which is to say� b

a

f = sup{L(P, f) : P ∈ P [a, b]}

exists in R.
The proof of the statement concerning the upper Riemann integral of f over [a, b] is similar

and so left as an exercise. ■
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Definition 5.4. A bounded function f : [a, b] → R is Riemann integrable on [a, b] if
� b

a

f =

� b

a

f = If ∈ R.

We call the real number If the Riemann integral of f over [a, b], and denote it by the symbol� b

a

f or

� b

a

f(x)dx.

The set of all functions that are Riemann integrable on [a, b] is denoted by R[a, b].

The Riemann integral, also known in these notes as the definite integral, is just one of

many different kinds of integrals defined in mathematics. In the symbol
� b
a
f , which in practice

may be read as “the integral of f from a to b,” we call a the lower limit of integration, b the
upper limit of integration, and f the integrand.

The x in the symbol � b

a

f(x)dx (5.1)

given in Definition 5.4 is called the variable of integration. It is also called a dummy
variable, since we could substitute other letters for x and the meaning of the symbol would be
unchanged. Thus � b

a

f(x)dx,

� b

a

f(t)dt,

� b

a

f(u) du

and so on are all considered identical Riemann integrals. As the simpler symbol
� b
a
f suggests,

only the integrand f and the limits of integration a and b uniquely determine a Riemann integral.
Using the symbol (5.1) is preferred especially when the function [a, b] → R in the integrand

has no designation. Thus we may write � 9

0

x2dx

to denote the Riemann integral
� 9

0
f with integrand f(x) = x2. The symbol (5.1) is also useful

when there is more than one independent variable present in an analysis, as will often be the
case from Chapter 13 onward.

Proposition 5.5. Let c ∈ R. If f ≡ c on [a, b], then f ∈ R[a, b] and
� b
a
f = c(b− a).

If f ≡ c on [a, b] then it’s common practice to write� b

a

c = c(b− a) or

� b

a

cdx = c(b− a),

depending on one’s preference.

Example 5.6. Let r ∈ R such that r ̸= 0, and let c ∈ [a, b]. If

f(x) =

®
0, x ̸= c

r, x = c

then f ∈ R[a, b] and
� b
a
f = 0.
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Figure 28. The unit step function.

For the next proposition we introduce the unit step function u : R → R, defined by

u(x) =

®
0, if x < 0

1, if x ≥ 0

See Figure 28. This function has great importance in, for instance, the study of differential
equations and the Laplace transform.

Proposition 5.7. Let c ∈ R. If f(x) = u(x− c), then f ∈ R[a, b] for any −∞ < a < b <∞.

Proof. Suppose f(x) = u(x− c), and let [a, b] be any closed, bounded interval. We have

f(x) =

®
0, if x < c

1, if x ≥ c

so if c ≤ a then f(x) = 1 for all x ∈ [a, b], which is to say f is a constant function on [a, b]
and therefore f ∈ R[a, b] by Proposition 5.5. Similarly, if c > b then f ≡ 0 on [a, b], and so
f ∈ R[a, b] follows from Proposition 5.5 once more. If c = b, then f(x) = 0 for all a ≤ x < b
and f(b) = 1, and thus f ∈ R[a, b] obtains from Example 5.6.

It remains to analyze the case when c ∈ (a, b). Let P = {xi}ni=0 ∈ P [a, b] be such that c /∈ P .
Then there exists some 1 ≤ k ≤ n such that xk−1 < c < xk. Since u(x− c) ≡ 0 on [a, xk−1], for
1 ≤ i ≤ k − 1 we have

mi = inf{u(x− c) : x ∈ [xi−1, xi]} = 0

and

Mi = sup{u(x− c) : x ∈ [xi−1, xi]} = 0.

On [xk−1, xk] we have u(x− c) = 0 for xk−1 ≤ x < c and u(x− c) = 1 for c ≤ x ≤ xk, so mk = 0
and Mk = 1. Finally, since u(x− c) ≡ 1 on [xk, b], for k+1 ≤ i ≤ n we have mi =Mi = 1. Now,

L(P, f) =
n∑
i=1

mi∆xi =
k∑
i=1

mi∆xi +
n∑

i=k+1

mi∆xi =
n∑

i=k+1

∆xi

=
n∑

i=k+1

(xi − xi−1) = xn − xk = b− xk < b− c

and

U(P, f) =
n∑
i=1

Mi∆xi =
k−1∑
i=1

Mi∆xi +
n∑
i=k

Mi∆xi =
n∑
i=k

∆xi
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=
n∑
i=k

(xi − xi−1) = xn − xk−1 = b− xk−1 > b− c

Now suppose P = {xi}ni=0 ∈ P[a, b] is such that c ∈ P and ∥P∥ < ϵ for arbitrary ϵ > 0.
Then there exists some 1 ≤ k ≤ n − 1 such that c = xk. Since u(x − c) ≡ 0 on [a, xk−1], for
1 ≤ i ≤ k − 1 we have mi =Mi = 0. On [xk−1, xk] we have u(x− c) = 0 for xk−1 ≤ x < xk = c
and u(x − c) = 1 for x = xk = c, so mk = 0 and Mk = 1. Finally, since u(x − c) ≡ 1 on
[xk, b] = [c, b], for k + 1 ≤ i ≤ n we have mi =Mi = 1. Nothing has changed except that now
xk = c, so

L(P, f) = b− xk = b− c and U(P, f) = b− xk−1 > b− c.

We see that for all P ∈ P[a, b] we have L(P, f) ≤ b − c, with L(P, f) = b − c possible if
c ∈ P . This shows that b− c is the least upper bound for {L(P, f) : P ∈ P [a, b]} and therefore� b

a

f = sup{L(P, f) : P ∈ P [a, b]} = b− c.

As for U(P, f), certainly b− c is a lower bound for U = {U(P, f) : P ∈ P[a, b]}, but is it the
greatest lower bound? Since ∥P∥ < ϵ we have

∆x = xk − xk−1 = c− xk−1 < ϵ,

so xk−1 > c− ϵ and therefore

b− c < U(P, f) = b− xk−1 < b− (c− ϵ) = (b− c) + ϵ.

We see that b−c is a lower bound for the set U , and for every ϵ > 0 there exists some P ∈ P [a, b]
(so that U(P, f) ∈ U) for which U(P, f) < (b − c) + ϵ. This shows that b − c is indeed the
greatest lower bound for U . That is,� b

a

f = inf{U(P, f) : P ∈ P [a, b]} = b− c.

Since � b

a

f =

� b

a

f

by Definition 5.4 it follows that f ∈ R[a, b]. ■

From the proof, together with a glance at Proposition 5.5 and Example 5.6, we can see that� b

a

u(x− c)dx = b− c

for all c ∈ [a, b].
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5.2 – Riemann Sums

Given a partition P = {xk}nk=0, a sample point from [xk−1, xk] is any point x∗k chosen from
the interval, so that

xk−1 ≤ x∗k ≤ xk

for each 1 ≤ k ≤ n.

Definition 5.8. Given a function f : [a, b] → R, a partition P = {xk}nk=0 ∈ P [a, b], and sample
points x∗k ∈ [xk−1, xk] for k = 1, . . . , n, the sum

S(P, f) =
n∑
k=1

f(x∗k)∆xk

is called the Riemann sum for f with respect to P on [a, b].

In this definition as well as the next one it is important to bear in mind that the value of the
integer n depends on the choice of partition P . We could write nP instead of n to emphasize
this, but will refrain from doing so to minimize clutter.

Definition 5.9. Let L ∈ R. Then we define

lim
∥P∥→0

S(P, f) = L

to mean the following: for every ϵ > 0 there exists some δ > 0 such that if P = {xk}nk=0 ∈ P [a, b]
with 0 < ∥P∥ < δ, then

|S(P, f)− L| < ϵ

for all choice of sample points x∗k ∈ [xk−1, xk], 1 ≤ k ≤ n.

The following theorem provides, at least theoretically, a means of calculating a Riemann
integral by evaluating a limit. Further improvements are forthcoming.

Theorem 5.10. Let f : [a, b] → R be bounded. Then f ∈ R[a, b] if and only if

lim
∥P∥→0

S(P, f) = L

for some L ∈ R, in which case
� b
a
f = L.

Not every bounded function f : [a, b] → R is Riemann integrable on [a, b]. However if f is
continuous on [a, b] then integrability is assured, as we will see in §5.4. Indeed it is a fact that
f ∈ R[a, b] even if f has a finite number of discontinuities on [a, b], so long as f is bounded on
[a, b]. We will not need this fact at this time, however.

For each n ∈ R let Pn = {xn0 , . . . , xnpn} be some particular partition in P [a, b] together with
chosen sample points xn∗k ∈ [xnk−1, x

n
k ] for k = 1, . . . , pn. Given a function f : [a, b] → R, let

S(Pn, f) denote the Riemann sum for f with respect to Pn on [a, b]:

S(Pn, f) =

pn∑
k=1

f(xn∗k )∆xnk ,
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where ∆xnk = xnk − xnk−1. Now define

lim
n→∞

S(Pn, f) = L

to mean the following: for every ϵ > 0 there exists some integer N > 0 such that if n > N , then
|S(Pn, f)− L| < ϵ. (This kind of limit is called a “sequential limit” and will be developed and
analyzed more fully in Chapter 9.)

Proposition 5.11. Suppose f ∈ R[a, b], and let {Pn : n ∈ R} ⊆ P[a, b] be a collection of
partitions (constructed as above) for which ∥Pn∥ → 0 as n→ ∞. If

lim
n→∞

S(Pn, f) = L

for some L ∈ R, then
� b
a
f = L.

Proof. Suppose that limn→∞ S(Pn, f) = L, where L ∈ R. Since f ∈ R[a, b], by Theorem 5.10
there exists some M ∈ R such that� b

a

f = lim
∥P∥→0

S(P, f) =M. (5.2)

Suppose that M ̸= L. Let ϵ > 0 be sufficiently small so that L /∈ [M − 2ϵ,M + 2ϵ]. By
(5.2) there exists some δ > 0 such that, for any P ∈ P[a, b] with 0 < ∥P∥ < δ, we have
|S(P, f)− L| < ϵ for all choices of sample points x∗k. Now, ∥Pn∥ → 0 as n → ∞ implies that
there exists some N ∈ R such that ∥Pn∥ < δ for all n > N , and thus |S(Pn, f)−M | < ϵ holds
for all n > N . This yields

−|S(Pn, f)−M | > −ϵ,
and since |M − L| > 2ϵ we obtain

|M − L| − |S(Pn, f)−M | > ϵ,

and so by the Triangle Inequality |x− y| ≥ ||x| − |y|| we find that

|S(Pn, f)− L| =
∣∣(M − L)− (M − S(Pn, f))

∣∣
≥
∣∣|M − L| − |M − S(Pn, f)|

∣∣
≥ |M − L| − |S(Pn, f)−M | > ϵ

holds for all n > N . But this implies that limn→∞ S(Pn, f) ̸= L, which is a contradiction.

Therefore M = L, and we conclude that
� b
a
f = L. ■

The idea is that the limit limn→∞ S(Pn, f) can be expected to be relatively easy to evaluate
since it acts on a specific sequence of partitions Pn of [a, b], along with specific sample points,
that have been chosen for convenience.

Example 5.12. Evaluate
� 2

−1
f for f(x) = 3x2 − x.
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Solution. For each n ≥ 1 let Pn ∈ P[−1, 2] be the partition that subdivides [−1, 2] into n
subintervals each of length 3/n (the length of [−1, 2] divided by n). Thus,

Pn =
{
−1 + 0(3/n)︸ ︷︷ ︸

x0

, −1 + 1(3/n)︸ ︷︷ ︸
x1

, −1 + 2(3/n)︸ ︷︷ ︸
x2

, . . . ,−1 + k(3/n)︸ ︷︷ ︸
xk

, . . . ,−1 + n(3/n)︸ ︷︷ ︸
xn

}
,

where of course −1 + 0(3/n) = −1 and −1 + n(3/n) = 2, and so we obtain subintervals

[−1,−1 + 3/n], [−1 + 3/n,−1 + 2(3/n)], . . . , [−1 + (k − 1)(3/n),−1 + k(3/n)], . . .

. . . , [−1 + (n− 1)(3/n), 2].

We need only concern ourselves with the kth subinterval, since it is representative of all the
subintervals. A convenient sample point is x∗k = −1 + k(3/n), which is the right endpoint of the
kth subinterval. Now, since ∆xk = 3/n for all k,

S(Pn, f) =
n∑
k=1

f (−1 + 3k/n) (3/n) =
3

n

n∑
k=1

î
3 (3k/n− 1)2 − (3k/n− 1)

ó
=

3

n

n∑
k=1

Å
27k2

n2
− 21k

n
+ 4

ã
=

3

n

[
27

n2

n∑
k=1

k2 − 21

n

n∑
k=1

k +
n∑
k=1

4

]

=
3

n

ï
27

n2
· n(n+ 1)(2n+ 1)

6
+

21

n
· n(n+ 1)

2
+ 4n

ò
=

141n2 + 144n+ 27

2n2
,

and so � 2

−1

f =

� 2

−1

(3x2 − x)dx = lim
n→∞

S(Pn, f) = lim
n→∞

141n2 + 144n+ 27

2n2

= lim
n→∞

141 + 144/n+ 27/n2

2
=

141 + 0 + 0

2
=

141

2

by Proposition 5.11. ■

Notice that the sequential limit in the example is handled in exactly the same way as the
limit at infinity of a rational function:

lim
x→∞

141x2 + 144x+ 27

2x2
= lim

x→∞

141 + 144/x+ 27/x2

2
=

141

2
.

The full justification for this is given in Section 9.2.7

Example 5.13. Use the definition of the definite integral to evaluate� 9

4

√
xdx

7That sequential limits are not developed first in a traditional calculus course is one of the great tragedies of
modern civilization, for they are conceptually much easier.
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Solution. The strategy of starting out by partitioning the interval [4, 9] into n subintervals of
equal length ∆x = 5/n will not work. Indeed, if we attempt it and let x∗k = 4 + 5k/n for each
1 ≤ k ≤ n, what results is� 9

4

√
xdx = lim

n→∞

n∑
i=1

√
x∗k∆xk = lim

n→∞

n∑
i=1

f

Å
4 +

5k

n

ã
5

n
= lim

n→∞

5

n

n∑
k=1

…
4 +

5k

n
, (5.3)

which leaves us stymied since we don’t have any formula that resolves
∑n

k=1

√
4 + 5k/n as an

expression in terms of n.
The way forward is to give up on having the n subintervals in our partition be of equal

length. Instead, we should contrive to have the right endpoint of each subinterval be a perfect
square so that the square root in (5.3) can be evaluated.

Let f(x) =
√
x. Referring to Figure 29, what we do is partition [2, 3] on the y-axis in the

expected way, choosing P ∈ P [2, 3] to be

P = {2, 2 + 1/n, 2 + 2/n, . . . , 2 + k/n, . . . , 3} ,

and setting y∗k = 2 + k/n for each 1 ≤ k ≤ n. We then choose Q ∈ P [4, 9] to be

Q =
{
f−1(2), f−1(2 + 1/n), f−1(2 + 2/n), . . . , f−1(2 + k/n), . . . , f−1(3)

}
=
{
4, (2 + 1/n)2, (2 + 2/n)2, . . . , (2 + k/n)2, . . . , 9

}
and set x∗k = f−1(y∗k) = (2 + k/n)2. The length of the kth subinterval in Q is

∆xk =

Å
2 +

k

n

ã2
−
Å
2 +

k − 1

n

ã2
=

4

n
− 1

n2
+

2k

n
.

With this new partitioning scheme, we finally compute� 9

4

√
xdx = lim

n→∞

n∑
i=1

√
x∗k∆xk = lim

n→∞

n∑
i=1

»
(2 + k/n)2 · (4/n− 1/n2 + 2k/n)

= lim
n→∞

n∑
i=1

Å
2 +

k

n

ãÅ
4

n
− 1

n2
+

2k

n

ã
= lim

n→∞

n∑
i=1

Å
8n− 2

n2
+

8n− 1

n3
k +

2

n3
k2
ã

= lim
n→∞

ï
8n− 2

n2
· n+

8n− 1

n3
· n(n+ 1)

2
+

2

n3
· n(n+ 1)(2n+ 1)

6

ò

x

f(x)

0

1

2

3

0 4 9

Figure 29.
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= lim
n→∞

76n2 + 15n− 1

6n2
=

76

6
=

38

3
,

where the first equality is justified by Proposition 5.11. ■

The problem of approximating areas under curves introduced in Section 5.1 can now be fully
resolved using definite integrals.

Definition 5.14. Let f : [a, b] → R be a continuous function such that f(x) ≥ 0 for all
a ≤ x ≤ b. The area of the region R bound by the curves x = a, x = b, y = 0, and y = f(x) is

A(R) =

� b

a

f.

So, in light of Example 5.13, the area of the region R bound by x = 4, x = 9, y = 0, and
y =

√
x is 38/3 square units.

Proposition 5.15. If f(x) = x, then f ∈ R[a, b] for all a, b ∈ R such that a < b.
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5.3 – Properties of the Riemann Integral

In this section we establish various general properties of the Riemann integral. Most of these
properties will make the task of evaluating Riemann integrals easier, and certainly all of them
will be useful later on to prove further theoretical results.

Definition 5.16. For any f ∈ R[a, b] we define� a

b

f = −
� b

a

f.

For any function f for which f(a) ∈ R we define� a

a

f = 0.

Proposition 5.17 (Linearity Properties of the Riemann Integral). Suppose f, g ∈ R[a, b]
and c ∈ R. Then the following hold.

1. cf ∈ R[a, b], with � b

a

cf = c

� b

a

f.

2. f + g ∈ R[a, b], with � b

a

(f + g) =

� b

a

f +

� b

a

g.

Theorem 5.18. Suppose f, g ∈ R[a, b]. If f ≤ g on [a, b], then� b

a

f ≤
� b

a

g.

Theorem 5.19. Suppose c ∈ (a, b). If f ∈ R[a, b], then f ∈ R[a, c], f ∈ R[c, b], and� b

a

f =

� c

a

f +

� b

c

f.

A result amounting nearly to a converse of Theorem 5.19 is the following proposition, the
proof of which will be the one and only time in these notes that we will present a “direct”
approach working with explicit partitions.

Proposition 5.20. Suppose c ∈ (a, b). If f ∈ R[a, c] and f ∈ R[c, b], then f ∈ R[a, b].

Proof. Suppose f ∈ R[a, c] and f ∈ R[c, b]. Then f is bounded on [a, c] and [c, b], which means
it is bounded on [a, b] and so there exists some M > 1 such that f(x) ≤ M for all a ≤ x ≤ b.
By Theorem 5.10 there exist L1, L2 ∈ R such that

lim
∥P∥→0
P∈P[a,c]

S(P, f) = L1 and lim
∥P∥→0
P∈P[c,b]

S(P, f) = L2.
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Let ϵ > 0. There exists δ1 > 0 such that whenever P1 = {xi}ni=0 ∈ P[a, c] with 0 < ∥P1∥ < δ1,
we have

|S(P1, f)− L1| < ϵ/5

for any choice of sample points x∗i ∈ [xi−1, xi], i = 1, . . . , n. Also there exists δ2 > 0 such that
whenever P2 = {yi}ni=0 ∈ P [c, b] with 0 < ∥P2∥ < δ2, we have

|S(P2, f)− L2| < ϵ/5

for any choice of sample points y∗i ∈ [yi−1, yi], i = 1, . . . , n.
Let

δ = min
{
δ1, δ2,

ϵ

5M

}
,

and suppose P = {zi}ni=0 ∈ P[a, b] with ∥P∥ < δ. Assume c /∈ P , so zk−1 < c < zk for some
1 ≤ k ≤ n. Let z∗i ∈ [zi−1, zi] for each i = 1, . . . , n. Observe that P1 = {zi}k−1

i=0 ∪ {c} ∈ P[a, c]
with ∥P1∥ < δ1, and P2 = {c}∪{zi}ni=k ∈ P [c, b] with ∥P2∥ < δ2. For P1 take z

∗
1 < · · · < z∗k−1 < c

as sample points, and for P2 take c < z∗k+1 < · · · < z∗n as sample points. Then

|S(P1, f)− L1| < ϵ/5 and |S(P2, f)− L2| < ϵ/5,

and also

|f(c)(c− zk−1)|, |f(c)(zk − c)|, |f(z∗k)∆zk| ≤M · ϵ

5M
=
ϵ

5
since ∥P∥ < ϵ/5M . Now,

S(P1, f) =
k−1∑
i=1

f(z∗i )∆zi + f(c)(c− zk−1)

and

S(P2, f) = f(c)(zk − c) +
n∑

i=k+1

f(z∗i )∆zi,

so that

S(P, f) = [S(P1, f)− f(c)(c− zk−1)] + f(z∗k)∆zk + [S(P2, f)− f(c)(zk − c)].

We thus have

|S(P,f)− (L1 + L2)|

=
∣∣[S(P1, f)− L1] + [S(P2, f)− L2]− f(c)(c− zk−1)− f(c)(zk − c) + f(z∗k)∆zk

∣∣
≤ |S(P1, f)− L1|+ |S(P2, f)− L2|+ |f(c)(c− zk−1)|+ |f(c)(zk − c) + |f(z∗k)∆zk|

< ϵ/5 + ϵ/5 + ϵ/5 + ϵ/5 + ϵ/5 = ϵ.

The situation when c ∈ P is actually simpler to analyze. So for any ϵ > 0 there’s some δ > 0
such that any partition P of [a, b] having mesh less than δ will have Riemann sum S(P, f) for
which

|S(P, f)− (L1 + L2)| < ϵ
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holds for any choice of sample points. This demonstrates that

lim
∥P∥→0
P∈P[a,b]

S(P, f) = L1 + L2,

where of course L1 + L2 ∈ R. Therefore f ∈ R[a, b]. ■

In the proof of Proposition 5.20 note that, by Theorem 5.10,

L1 =

� c

a

f and L2 =

� b

c

f,

and so the proof establishes that � b

a

f =

� c

a

f +

� b

c

f,

which one might expect in light of Theorem 5.19 (whose proof can be done in a very similar
fashion).

Theorem 5.21. Suppose f ∈ R[a, b]. If

{x ∈ [a, b] : g(x) ̸= f(x)}
is a finite set, then g ∈ R[a, b] and � b

a

g =

� b

a

f.
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5.4 – Integrable Functions

In this section we develop tools to help determine whether a given function is Riemann
integrable on an interval [a, b].

Theorem 5.22. If φ ∈ R[a, b], Ran(φ) ⊆ [α, β], and ψ : [α, β] → R is continuous, then
ψ ◦ φ ∈ R[a, b].

Proposition 5.23. If f is continuous on [a, b], then f ∈ R[a, b].

Proof. Suppose that f : [a, b] → R is continuous. Let φ : [a, b] → R be the identity function on
[a, b], so that φ(x) = x for all x ∈ [a, b]. Since Ran(φ) = [a, b], and φ ∈ R[a, b] by Proposition
5.15, it follows by Theorem 5.22 that f ◦ φ ∈ R[a, b]. Now, for any x ∈ [a, b],

(f ◦ φ)(x) = f(φ(x)) = f(x),

so we see that f ◦ φ = f and therefore f ∈ R[a, b]. ■

Proposition 5.24. Suppose f, g ∈ R[a, b]. Then the following properties hold.

1. f 2 ∈ R[a, b],

2. fg ∈ R[a, b],

3. |f | ∈ R[a, b] with
∣∣ � b

a
f
∣∣ ≤ � b

a
|f |,

4. f ∨ g, f ∧ g ∈ R[a, b].

Proof.
Proof of Part (1). Suppose that f ∈ R[a, b]. Then f : [a, b] → R is a bounded function, so that
Ran(f) ⊆ [α, β] for some −∞ < α < β <∞. Defining the function ψ by ψ(x) = x2, it is clear
that ψ is continuous on [α, β]. By Theorem 5.22 we conclude that ψ ◦ f ∈ R[a, b]. Now, since

(ψ ◦ f)(x) = ψ(f(x)) = [f(x)]2 = f 2(x)

for any x ∈ [a, b], we see that ψ ◦ f = f 2 and therefore f 2 ∈ R[a, b].

Proof of Part (2). Suppose that f, g ∈ R[a, b]. By Proposition 5.17 we have f+g, f−g ∈ R[a, b],
and then by Part (1) we have (f + g)2, (f − g)2 ∈ R[a, b]. Applying Proposition 5.17 once more,
it follows that

fg =
1

4
[(f + g)2 − (f − g)2] ∈ R[a, b]

as was to be shown.

Proof of Part (3). Suppose that f ∈ R[a, b]. Once again Ran(f) ⊆ [α, β] for some −∞ < α <
β < ∞. If ψ(x) = |x|, then ψ is continuous on [α, β]. By Theorem 5.22 we conclude that
ψ ◦ f ∈ R[a, b]. Now, since

(ψ ◦ f)(x) = ψ(f(x)) = |f(x)| = |f |(x)

for any x ∈ [a, b], we see that ψ ◦ f = |f | and therefore |f | ∈ R[a, b]. ■
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5.5 – The Fundamental Theorem of Calculus

Recall that, according to the Extreme Value Theorem, a continuous function on a closed
interval [a, b] will attain an absolute maximum value and an absolute minimum value. That is,
there will be some x1, x2 ∈ [a, b] such that f(x1) ≥ f(x) for all x ∈ [a, b] and f(x2) ≤ f(x) for
all x ∈ [a, b]. Then we can write

f(x1) = max{f(x) : x ∈ [a, b]} and f(x2) = min{f(x) : x ∈ [a, b]}.

This is essential in what follows.

Lemma 5.25. Let f be continuous on [a, b] and c ∈ [a, b]. Define αc, βc : [a, b] → R by

αc(x) =

®
max{f(t) : t ∈ [c, x]}, if x ≥ c

max{f(t) : t ∈ [x, c]}, if x < c

and

βc(x) =

®
min{f(t) : t ∈ [c, x]}, if x ≥ c

min{f(t) : t ∈ [x, c]}, if x < c

Then limx→c αc(x) = limx→c βc(x) = f(c).

Remark. Note αc and βc are indeed real-valued functions for any a ≤ c ≤ b since f is bounded
on [a, b] by the Extreme Value Theorem.

Proof. We will assume that c ∈ (a, b). If c = a or c = b only a right- or left-hand limit,
respectively, would need to be considered, but otherwise the argument would be the same.

Let ϵ > 0. Since f is continuous at c, there exists some δ1 > 0 such that c ≤ x < c+δ1 implies
|f(x)− f(c)| < ϵ/2. Suppose that c < x < c+ δ1. For any t ∈ [c, x] we have |f(t)− f(c)| < ϵ/2,
whence

f(c)− ϵ/2 < f(t) < f(c) + ϵ/2

obtains and thus

f(c)− ϵ/2 < αc(x) = max{f(t) : t ∈ [c, x]} ≤ f(c) + ϵ/2.

From this it can be seen that

|αc(x)− f(c)| ≤ ϵ/2 < ϵ,

and so

lim
x→c+

αc(x) = f(c).

Next, continuity of f at c implies that there is some δ2 > 0 such that |f(x)− f(c)| < ϵ/2
whenever c − δ2 < x ≤ c. Suppose that c − δ2 < x < c. For any t ∈ [x, c] we have
|f(t)− f(c)| < ϵ/2, which gives

f(c)− ϵ/2 < f(t) < f(c) + ϵ/2

and thus

f(c)− ϵ/2 < αc(x) = max{f(t) : t ∈ [x, c]} ≤ f(c) + ϵ/2.
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Once again we’re led to conclude that

|αc(x)− f(c)| ≤ ϵ/2 < ϵ,

and so

lim
x→c−

αc(x) = f(c).

So limx→c αc(x) = f(c) for any c ∈ (a, b). The proof runs along similar lines for the function
βc and so it omitted. ■

Theorem 5.26 (The Fundamental Theorem of Calculus, Part 1). If f is continuous on
[a, b], then the function Φ : [a, b] → R given by

Φ(x) =

� x

a

f(t)dt, a ≤ x ≤ b

is differentiable on [a, b], with Φ′(x) = f(x) for each a ≤ x ≤ b.

Remark. As is our custom, it is intended that Φ′(a) and Φ′(b) be taken as signifying the
one-sided derivatives Φ′

+(a) and Φ′
−(b), respectively.

Proof. Suppose that f is continuous on [a, b], so that f ∈ R[a, b] by Proposition 5.23. Let
c ∈ (a, b). Using Theorem 5.19, we have

lim
x→c+

Φ(x)− Φ(c)

x− c
= lim

x→c+

1

x− c

Å� x

a

f −
� c

a

f

ã
= lim

x→c+

1

x− c

� x

c

f (5.4)

Let αc, βc : [a, b] → R be as defined in Lemma 5.25. For any fixed x ∈ (c, b) we have
βc(x) ≤ f(t) ≤ αc(x) for all t ∈ [c, x]. Thus by Theorem 5.18 we obtain� x

c

βc(x) ≤
� x

c

f ≤
� x

c

αc(x),

whence Proposition 5.5 gives

βc(x) · (x− c) ≤
� x

c

f ≤ αc(x) · (x− c)

and therefore

βc(x) ≤
1

x− c

� x

c

f ≤ αc(x). (5.5)

Since the inequality (5.5) holds for all c < x < b and

lim
x→c+

αc(x) = lim
x→c+

βc(x) = f(c)

by Lemma 5.25, by (5.4) and the Squeeze Theorem we obtain

lim
x→c+

Φ(x)− Φ(c)

x− c
= lim

x→c+

1

x− c

� x

c

f = f(c).

A similar argument shows that

lim
x→c−

Φ(x)− Φ(c)

x− c
= lim

x→c−

1

x− c

� x

c

f = f(c),
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and thus

Φ′(c) = lim
x→c

Φ(x)− Φ(c)

x− c
= f(c).

Since a < c < b is arbitrary, we conclude that Φ is differentiable on (a, b) with Φ′(x) = f(x) for
all x ∈ (a, b).

Now let c = a. We have

αa(x) = max{f(t) : t ∈ [a, x]} and βa(x) = min{f(t) : t ∈ [a, x]},

and Lemma 5.25 gives
lim
x→a+

αa(x) = lim
x→a+

βa(x) = f(a). (5.6)

Given any x ∈ (a, b) we have βa(x) ≤ f(t) ≤ αa(x) for all t ∈ [a, x], implying� x

a

βa(x) ≤
� x

a

f ≤
� x

a

αa(x),

and thus

βa(x) ≤
1

x− a

� x

a

f ≤ αa(x). (5.7)

Since (5.7) holds for all a < x < b, by (5.6) and the Squeeze Theorem we obtain

Φ′
+(a) = lim

x→a+

Φ(x)− Φ(a)

x− a
= lim

x→a+

Φ(x)

x− a
= lim

x→a+

1

x− a

� x

a

f = f(a),

where Φ(a) = 0 by Definition 5.18. A similar argument shows that Φ′
−(b) = f(b).

Therefore Φ is differentiable on [a, b] with Φ′(x) = f(x) for all a ≤ x ≤ b. ■

Example 5.27. Given that

F (x) =

� sinx

2

(1− t2)7dt,

find F ′.

Solution. Define Φ : R → R by

Φ(x) =

� x

2

(1− t2)7dt.

Then
F (x) = Φ(sin(x)) = (Φ ◦ sin)(x)

and the Chain Rule gives

F ′(x) = (Φ ◦ sin)′(x) = Φ′(sin(x)) · sin′(x) = Φ′(sin(x)) · cos(x)

for all x ∈ R. Now, by Theorem 5.26 we have Φ′(x) = (1− x2)7, and so

F ′(x) = Φ′(sinx) · cosx = (1− sin2 x)7(cosx) = (cos2 x)7(cosx) = cos15(x)

for all x ∈ R. ■

Recalling Definition 4.40, what Theorem 5.26 says is that Φ is an antiderivative for f on
[a, b]. We make use of this fact to prove the following.
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Theorem 5.28 (The Fundamental Theorem of Calculus, Part 2). Let f be continuous
on [a, b]. If F is any antiderivative for f on [a, b], then� b

a

f(t)dt = F (b)− F (a) (5.8)

Proof. F be an antiderivative for f on [a, b]. By Theorem 4.43 there exists some constant c
such that F = Φ + c, where Φ is the antiderivative for f on [a, b] that is given in Theorem 5.26.
That is,

F (x) = Φ(x) + c =

� x

a

f + c

for x ∈ [a, b], which gives F (a) =
� a
a
f + c = c, and so

F (b) =

� b

a

f + c =

� b

a

f + F (a).

Equation (5.8) now follows. ■

Remark. Theorem 5.28 applies even in the case when a = b, since both sides of equation (5.8)
become zero.

The first part of the Fundamental Theorem of Calculus shows how a definite integral can
be used to determine an antiderivative for a function f on a closed interval [a, b], while the
second part shows how an antiderivative can be used to determine a definite integral for f on
[a, b]. The symmetry is something to behold, the two parts taken together effectively uniting
the differential and integral branches of calculus.

The great utility of Theorem 5.28 can be appreciated by comparing the lengthy calculation
in Example 5.13 to the following calculation.

Example 5.29. Evaluate � 9

4

√
xdx

Solution. An antiderivative for f(x) =
√
x on [4, 9] is F (x) = 2

3
x3/2. We compute� 9

4

√
xdx = F (9)− F (4) =

2

3

Ä
93/2 − 43/2

ä
=

2

3
(27− 8) =

38

3
,

and we’re done. ■

One should not get swept away by an irrational exuberance when wielding Theorem 5.28 in
a crusade to vanquish inimical definite integrals. Consider the integral� 8

0

1

3
x−2/3dx. (5.9)

An antiderivative for f(x) = 1
3
x−2/3 is F (x) = 3

√
x. This is only true for x ̸= 0, however, since

the domain of f is (−∞, 0) ∪ (0,∞), which certainly includes the interval (0, 8] but not quite
the entire interval of integration [0, 8]! The integral (5.9) is what is called an “improper integral,”
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which is the subject of §8.7. A direct application of Theorem 5.28 is not possible in this case,
even though it may often “accidentally” arrive at the right answer.

We turn to a new matter. Suppose f is continuous on [a, b], and Φ : [a, b] → R is a function
given by

Φ(x) =

� b

x

f(t)dt

for all x ∈ [a, b]. What is Φ′(x)? We might be tempted to use Definition 5.16 to write
� b
x
f

as −
� x
b
f (thereby formally restoring x as the upper limit of integration) and then employ

Theorem 5.26 to obtain Φ′(x) = −f(x). The flaw with this approach is that the integral in
Theorem 5.26 requires x to be greater than or equal to the lower limit of integration, whereas in
our situation this is not so. More must be done in order to rigorously derive an expression for
Φ′(x), but the good news is that it will indeed prove to be −f(x)!

Proposition 5.30. If f is continuous on [a, b], then the function Φ : [a, b] → R given by

Φ(x) =

� b

x

f(t)dt, a ≤ x ≤ b

is differentiable on [a, b], with Φ′(x) = −f(x) for each a ≤ x ≤ b.

Proof. Suppose f is continuous on [a, b]. By Theorem 5.26 it is known that f has an antideriv-
ative F on [a, b], and thus F is an antiderivative for f on [x, b] for any a ≤ x ≤ b. By Theorem
5.28 (and the remark following it) we have, for all x ∈ [a, b],

Φ(x) =

� b

x

f(t)dt = F (b)− F (x),

which shows that Φ is differentiable on [a, b], and moreover

Φ′(x) =
(
F (b)− F (x)

)′
= 0− F ′(x) = −f(x)

as was to be shown. ■

The following proposition is something that will be useful in the study of differential equations.
What it shows is that the choice of a for the lower limit of integration in Theorem 5.26 is not
essential: any c ∈ [a, b] may be the lower limit of integration, and the resultant function Φ will
prove to be an antiderivative of f on [a, b].

Proposition 5.31. If f is continuous on (a, b) and c ∈ (a, b), then the function Φ : (a, b) → R
given by

Φ(x) =

� x

c

f(t)dt, a < x < b (5.10)

is differentiable on (a, b), with Φ′(x) = f(x) for each a < x < b.
If f is continuous on [a, b], then Φ′ = f on [a, b] for any choice of c ∈ [a, b] in (5.10).
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Proof. Suppose f is continuous on (a, b) and c ∈ (a, b). Let ϵ > 0 be such that c ∈ [a+ ϵ, b− ϵ].
Since f is continuous on [c, b− ϵ] and

Φ(x) =

� x

c

f(t)dt

for x ∈ [c, b− ϵ], Theorem 5.26 implies that Φ′(x) = f(x) for c < x < b− ϵ, and Φ′
+(c) = f(c).

Since f is continuous on [a+ ϵ, c] and

Φ(x) =

� x

c

f(t)dt = −
� c

x

f(t)dt

for x ∈ [a+ ϵ, c], Proposition 5.30 implies that

Φ′(x) = − d

dx

� c

x

f(t)dt = −[−f(x)] = f(x)

for a+ ϵ < x < c, and Φ′
−(c) = f(c). Now, Φ′

+(c) = Φ′
−(c) = f(c) shows that Φ′(c) = f(c), and

therefore Φ′(x) = f(x) for all x ∈ (a+ ϵ, b− ϵ). Since ϵ > 0 is arbitrary, we conclude that Φ is
differentiable on (a, b) with Φ′(x) = f(x) for all x ∈ (a, b).

The last statement in the proposition follows from combining the first statement with
Theorem 5.26 and Proposition 5.30. ■
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5.6 – The Substitution Rule

We develop here an important tool that will enable us to determine a wider class of indefinite
integrals and, as a result, evaluate more definite integrals as well.

Theorem 5.32. Let I be an interval, and let g : I → R be such that g is differentiable on I.
Suppose F is an antiderivative for f on an open interval J containing g(I). Then�

(f ◦ g)g′ = {F ◦ g + c : c ∈ R}. (5.11)

As with similar results in §4.8, there are two alternate notations that may be used to denote
(5.11): what might be called the “concise” notation,�

(f ◦ g)g′ = F ◦ g + c,

and what might be called the “classical” notation,�
f(g(x))g′(x)dx = F (g(x)) + c. (5.12)

In any case c is understood to be an arbitrary real-valued constant. Now for the proof of the
theorem.

Proof. Fix x ∈ Int(I). Then x is in the interior of Dom(g), and so g is differentiable at x.
Now, g(x) ∈ g(I) ⊆ J , and since J is open and F is differentiable on J , it follows that F is
differentiable at g(x). By the Chain Rule as given by Theorem 3.21, F ◦ g is differentiable at x
with

(F ◦ g)′(x) = F ′(g(x))g′(x) = f(g(x))g′(x).

Now suppose x is a left endpoint of I. Then g is right-differentiable at x, but as before we
find that F is differentiable in the usual (two-sided) sense at g(x). A simple extension of the
Chain Rule implies that F ◦ g is right-differentiable at x with

(F ◦ g)′+(x) = f(g(x))g′+(x).

Similarly, if x is a right endpoint of I we find that F ◦ g is left-differentiable at x with

(F ◦ g)′−(x) = f(g(x))g′−(x).

We have now shown that F ◦ g is an antiderivative for (f ◦ g)g′ on I, and therefore (5.11)
follows from Proposition 4.45. ■

Example 5.33. Determine � √
ax+ b dx,

where a ̸= 0 and b are constants, by using Theorem 5.32.
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Solution. In light of equation (5.12), which is the essential embodiment of the theorem, it’s
clear the first task is to find functions f and g such that

f(g(x))g′(x) =
√
ax+ b.

If we let g(x) = ax+ b and f(x) =
√
x we find that f(g(x))g′(x) = a

√
ax+ b, which is almost

what we seek save for the factor of a. This is most easily rectified if we adjust f so that
f(x) =

√
x/a. Thus, � √

ax+ b dx =

�
g(f(x))g′(x)dx

for f(x) = (1/a)x1/2 and g(x) = ax+ b. Now, because F (x) = (2/3a)x3/2 is an antiderivative
for f , equation (5.12) gives� √

ax+ b dx = F (g(x)) + c = F (ax+ b) + c =
2

3a
(ax+ b)3/2 + c

and we’re done. ■

There’s a mechanical procedure known as u-substitution which can help streamline finding
an indefinite integral of the form �

f(g(x))g′(x)dx (5.13)

over an applicable interval I. Let u = g(x) on I. Substitute u for g(x) and du for g′(x)dx in
(5.13) to obtain the indefinite integral

�
f(u) du. (Here it’s best to write

�
f(u) du rather than�

f to make it clear that f is regarded as a function of u.) Now, the function F in Theorem
5.32 is an antiderivative for f on the interval g(I), so by Proposition 4.45,�

f(u) du = F (u) + c,

whereupon we replace u with g(x) on the right-hand side to obtain F (g(x)) + c precisely as in
equation (5.12). In this sense we may write�

f(g(x))g′(x)dx =

�
f(u) du,

which is generally referred to as the Substitution Rule since a new variable u has been
substituted for g(x). The procedure is as follows:

• For
�
f(g(x))g′(x)dx, let u = g(x) and du = g′(x)dx to obtain�

f(u) du.

• Determine an antiderivative F for f , so that�
f(u) du = F (u) + c.

• Substitute g(x) for u in F (u) + c to obtain�
f(g(x))g′(x)dx = F (g(x)) + c.
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Example 5.34. For constants a ̸= 0 and b ∈ R, find� √
ax+ b dx

using the Substitution Rule.

Solution. In this approach we make a reasoned guess as to what g(x) ought to be, and then
hope the machinery of the procedure will make any corrections that may be necessary. If we
guess that g(x) = ax + b, then let u = g(x) = ax + b and du = g′(x)dx = adx. Here is the
correction: since adx is not in evidence in our integrand, we formally manipulate du = adx to
obtain dx = (1/a) du. Now,� √

ax+ b dx =

� √
u · 1

a
du =

1

a

� √
u du =

1

a
· 2
3
u3/2 + c,

and when we substitute ax+ b for u we obtain� √
ax+ b dx =

2

3a
(ax+ b)3/2 + c

precisely as before. ■

Example 5.35. Find �
sin10 θ cos θ dθ.

Solution. Let u = sin θ, so that du = (sin θ)′ dθ = cos θ dθ, which happens to be in the integrand
so no further manipulations are necessary. We obtain�

sin10 θ cos θ dθ =

�
u10 du =

1

11
u11 + c,

and when we substitute sin θ for u,�
sin10 θ cos θ dθ =

1

11
sin11 θ + c

is the end result. ■

Example 5.36. Evaluate � 3

0

y2 + 1√
y3 + 3y + 4

dy.

Solution. First the Substitution Rule will be employed to determine�
y2 + 1√
y3 + 3y + 4

dy.

Let u = y3 + 3y + 4, so that du = (y3 + 3y + 4)′dy = (3y2 + 3)dy. The integrand does not quite
contain this expression, but if we divide by 3 we obtain just what’s needed: (y2 + 1)dy = 1

3
du.

Now, �
y2 + 1√
y3 + 3y + 4

dy =

�
1√

y3 + 3y + 4
· (y2 + 1)dy =

�
1√
u
· 1
3
du
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=
1

3

�
u−1/2 du =

2

3
u1/2 + C =

2

3

√
y3 + 3y + 4 + C.

Thus an antiderivative for

f(y) =
y2 + 1√
y3 + 3y + 4

is

F (y) =
2

3

√
y3 + 3y + 4.

Therefore � 3

0

y2 + 1√
y3 + 3y + 4

dy = F (3)− F (0) =
2

3

√
40− 2

3

√
4 =

4(
√
10− 1)

3

by Theorem 5.28. ■

Example 5.36 indicates how the Substitution Rule together with the Fundamental Theorem
of Calculus can be used to evaluate certain definite integrals. The next theorem provides a
substitution rule that is specialized to handle definite integrals directly. The proof makes no use
whatsoever of facts established about indefinite integrals.

Theorem 5.37. For functions f and g, if g′ is continuous on [a, b] and f is continuous on
g([a, b]), then � b

a

f(g(x))g′(x)dx =

� g(b)

g(a)

f(u) du.

Proof. The continuity of g′ on [a, b] implies that g is continuous on [a, b], and so by the Extreme
Value Theorem g([a, b]) is a closed interval [m,M ]. Since f is continuous on [m,M ], we can find
a function φ that is continuous on an open interval J that contains [m,M ] such that φ(x) = f(x)
for all x ∈ [m,M ]. Now, let [α, β] be such that

[m,M ] ⊆ (α, β) ⊆ [α, β] ⊆ J.

Since φ is continuous on [α, β], by Theorem 5.26 there exists a function Φ, continuous on [α, β],
such that Φ′(u) = φ(u) for all u ∈ (α, β).

Fix x ∈ (a, b). Since g is differentiable at x and Φ is differentiable at g(x) ∈ [m,M ] ⊆ (α, β),
by the Chain Rule we obtain

(Φ ◦ g)′(x) = Φ′(g(x))g′(x) = φ(g(x))g′(x) = f(g(x))g′(x) = ((f ◦ g)g′)(x).

Since Φ ◦ g and (f ◦ g)g′ are continuous on [a, b], and (Φ ◦ g)′ = (f ◦ g)g′ on (a, b), it follows
that Φ ◦ g is an antiderivative for (f ◦ g)g′ on [a, b], and so by Theorem 5.28 we obtain

� b

a

f(g(x))g′(x)dx = (Φ ◦ g)(b)− (Φ ◦ g)(a) = Φ(g(b))− Φ(g(a)). (5.14)

Now, suppose that g(a) ≤ g(b), and note that [g(a), g(b)] ⊆ [m,M ]. For any u ∈ (g(a), g(b))
we have u ∈ [m,M ] ⊆ (α, β) and thus Φ′(u) = φ(u) = f(u), and since Φ and f are continuous
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on [g(a), g(b)] we conclude that Φ is an antiderivative for f on [g(a), g(b)], giving� g(b)

g(a)

f(u) du = Φ(g(b))− Φ(g(a)). (5.15)

On the other hand if g(b) ≤ g(a), we have [g(b), g(a)] ⊆ [m,M ] and similar arguments lead to
the conclusion that Φ is an antiderivative for f on [g(b), g(a)], giving� g(a)

g(b)

f(u) du = Φ(g(a))− Φ(g(b));

but then, by Theorem 5.18(2),� g(b)

g(a)

f(u) du = −
� g(a)

g(b)

f(u) du = −[Φ(g(a))− Φ(g(b))] = Φ(g(b))− Φ(g(a)), (5.16)

as with (5.15). Comparing equations (5.15) and (5.16) with (5.14), it is clear that� b

a

f(g(x))g′(x)dx =

� g(b)

g(a)

f(u) du,

which completes the proof. ■
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6
Applications of Integration

6.1 – The Mean Value Theorem for Integrals

In §4.2 we encountered the traditional Mean Value Theorem, sometimes called the Mean
Value Theorem for Derivatives to distinguish it from the following.

Theorem 6.1 (Mean Value Theorem for Integrals). If the function f is continuous on
[a, b], then there exists some c ∈ (a, b) such that

f(c) =
1

b− a

� b

a

f.

Proof. Suppose that f is continuous on [a, b]. By the Fundamental Theorem of Calculus the
function F : [a, b] → R given by

F (x) =

� x

a

f

is continuous on [a, b] and differentiable on (a, b). Thus by the Mean Value Theorem for
Derivatives there exists some c ∈ (a, b) such that

F ′(c) =
F (b)− F (a)

b− a
.

Since F ′(c) = f(c) by the Fundamental Theorem of Calculus, and

F (b) =

� b

a

f and F (a) =

� a

a

f = 0,

it follows that

f(c) =
1

b− a

Ç� b

a

f −
� a

a

f

å
=

1

b− a

� b

a

f

as was to be shown. ■
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6.2 – Regions Between Curves

Definition 6.2. Let f and g be continuous functions on [a, b]. The area of the region R bound
by the curves x = a, x = b, y = f(x), and y = g(x) is

A(R) =

� b

a

|f − g|.

If g(x) = 0 and f(x) ≥ 0 for all x ∈ [a, b], then

A(R) =

� b

a

|f(x)− g(x)|dx =

� b

a

f(x)dx =

� b

a

f,

which is just the area under f between x = a and y = b as defined in Section 5.2.

Example 6.3. Find the area of the region bounded by f(x) =
√
x and g(x) = x2.

Solution. We start by finding the points where the curves intersect, which entails finding all x
for which f(x) = g(x). Thus, we solve the equation

√
x = x2:

√
x = x2 ⇒ x = x4 ⇒ x4 − x = 0 ⇒ x(x3 − 1) ⇒ x = 0 or x = 1.

The curves intersect at points (0, 0) and (1, 1), bounding the region R shown in Figure 30.
Clearly f(x) =

√
x ≥ x2 = g(x) on [0, 1], and so

A(R) =

� 1

0

∣∣√x− x2
∣∣ dx =

� 1

0

(√
x− x2

)
dx =

ï
2

3

√
x3 − 1

3
x3
ò1
0

=

ï
2

3
·
√
13 − 1

3
· 13
ò
−
ï
2

3
·
√
03 − 1

3
· 03
ò
=

1

3

is the area of R. ■

Example 6.4. Find the area of the region R that lies between the curves f(x) = 2x− x3 and
g(x) = x2 for −2 ≤ x ≤ 2.

x

y

f

g
R

1

1

Figure 30.
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x

y

−2 21

1

4

−4

R

f

g

Figure 31.

Solution. Again we start by finding where the curves given by f andg intersect, which means
finding all x for which f(x) = g(x), and thus we must solve the equation 2x− x3 = x2:

2x− x3 = x2 ⇒ x3 + x2 − 2x = 0 ⇒ x(x+ 2)(x− 1) = 0 ⇒ x = −2, 0, 1.

So the curves intersect at points (−2, f(−2)) = (−2, 4), (0, f(0)) = (0, 0), and (1, f(1)) = (1, 1),
as shown in Figure 31. Just from the figure it can be seen that f(x) ≥ g(x) on the interval [0, 1],
and f(x) ≤ g(x) on [−2, 0] ∪ [1, 2]. (The Intermediate Value Theorem could be employed to
demonstrate these facts rigorously.) We now calculate:

A(R) =

� 2

−2

|f(x)− g(x)| dx

=

� 0

−2

|f(x)− g(x)| dx+
� 1

0

|f(x)− g(x)| dx+
� 2

1

|f(x)− g(x)| dx

=

� 0

−2

[g(x)− f(x)] dx+

� 1

0

[f(x)− g(x)] dx+

� 2

1

[g(x)− f(x)] dx

=

� 0

−2

(
x2 − 2x+ x3

)
dx+

� 1

0

(
2x− x3 − x2

)
dx+

� 2

1

(
x2 − 2x+ x3

)
dx

=

ï
1

3
x3 − x2 +

1

4
x4
ò0
−2

+

ï
x2 − 1

4
x4 − 1

3
x3
ò1
0

+

ï
1

3
x3 − x2 +

1

4
x4
ò2
1

= −
Å
−8

3
− 4 + 4

ã
+

Å
1− 1

4
− 1

3

ã
+

ïÅ
8

3
− 4 + 4

ã
−
Å
1

3
− 1 +

1

4

ãò
=

37

6
.

That is, A(R) = 61
6
square units. ■

Example 6.5. Find the area of the region R bounded by 4x+ y2 = 12 and x = y.

Solution. In this case it is easier to set up both curves as functions of y instead of x: from x = y
we obtain the function f(y) = y; and from 4x+y2 = 12 we obtain the function g(y) = (12−y2)/4.
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x

y

2

−6

2−6

Rf g

Figure 32.

To find where the curves f and g intersect we find all y values for which f(y) = g(y), which
means solving the equation y = (12− y2)/4:

y =
12− y2

4
⇒ y2 + 4y + 12 = 0 ⇒ (y + 6)(y − 2) = 0 ⇒ y = −6, 2.

Thus the curves intersect at the points (−6,−6) and (2, 2), and the region R appears as in
Figure 32, with g(y) ≥ f(y) for all y ∈ [−6, 2]. The area is

A(R) =

� 2

−6

|f(y)− g(y)| dy =

� 2

−6

[g(y)− f(y)] dy

=

� 2

−6

Å
3− 1

4
y2 − y

ã
dy =

ï
3y − 1

12
y3 − 1

2
y2
ò2
−6

=

ï
3(2)− 1

12
(2)3 − 1

2
(2)2
ò
−
ï
3(−6)− 1

12
(−6)3 − 1

2
(−6)2

ò
=

10

3
+ 18 =

64

3
.

■
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6.3 – Volumes by Slicing

We wish to find the volume V(S) of a solid S that exists in a region of space where
−∞ < a ≤ x ≤ b < ∞. Suppose that for each x ∈ [a, b] the cross sectional area of S is A(x),
where A : [a, b] → [0,∞) is a continuous function. We use the function A to estimate the
volume of S. To start, let P = {xi}∞i=0 be any partition of [a, b], so that x0 = a and xn = b.
Choose a sample point x∗i in each interval [xi−1, xi] of the partition. By way of approximation,
we assume the cross-sectional area of S is constantly equal to A(x∗i ) for all xi−1 ≤ x ≤ xi;
that is A(x) ≈ A(x∗i ) for all x ∈ [xi−1, xi]. Thus the volume Vi of the “slice” of S that exists
in the region of space where xi−1 ≤ x ≤ xi we approximate to be A(x∗i )∆xi, where as usual
∆xi = xi − xi−1 is the length of the interval [xi−1, xi]. Doing this for all integers 1 ≤ i ≤ n, we
estimate the volume of S to be

V(S) ≈
n∑
i=1

A(x∗i )∆xi. (6.1)

We now naturally define the exact volume of S to be the limiting value that is approached by
the sum at right in (6.1) as ∥P∥ → 0, where ∥P∥ = max1≤i≤n∆xi. That is, we define

V(S) = lim
∥P∥→0

n∑
i=1

A(x∗i )∆xi =

� b

a

A(x)dx.

Thus the volume of S is taken to be given by the definite integral
� b
a
A, which will exist as a real

number since the function A is given to be continuous on [a, b]. This is the Slicing Method of
finding the volume of a solid in space.

Example 6.6. Find the volume of a pyramid with height h and rectangular base with dimensions
a and b.

Solution. The pyramid may be oriented so that its apex is at (0, 0) and its base at x = h,
as at left in Figure 33. Most conveniently we consider cross sections of the pyramid that are
perpendicular to the x-axis, as they will always be rectangles. In particular we consider a cross
section at some x ∈ [0, h], which will have dimensions ax and bx shown at left in Figure 33.

y

bx

ax

a

b

hx x bbxx

h

Figure 33.
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At right in Figure 33 is the intersection of the situation at left with the xy-plane. By similar
triangles

bx
x

=
b

h
,

and so bx = bx/h. In a similar fashion we find that ax = ax/h, and so the cross section of the
pyramid has area

A(x) = axbx =

Å
ab

h2

ã
x2.

Now we find the volume of the pyramid to be� h

0

A(x)dx =
ab

h2

� h

0

x2dx =
ab

h2
· h

3

3
=
abh

3
.

In particular a pyramid with height h and a square base with sides of length h has volume
1
3
h3. ■
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6.4 – Lengths of Planar Curves

� Somedaaaa-a-a-aaayyyyy, Over the Rainbow.... �

6.5 – Physical Applications

Pressure is a scalar quantity defined to be force per unit area, where by “force” we mean
here the magnitude of a force vector directed orthogonally down upon some flat surface. The
following two examples apply the Riemann integral to answer questions about pressure on a
large spherical body such as a moon.

Example 6.7 (Pressure at Small Depths). We purpose to determine the pressure P at
a depth of x meters below the surface of an airless moon of radius R meters comprised of
incompressible material that has uniform density ρ. In this example we assume that x is small
compared to R, so that the “sphericalness” of the moon may be safely ignored. The problem is
that even though the density is the same throughout the interior of the moon, the gravitational
force directed toward the center of the moon will vary with depth. Indeed, at the very center
of the moon there will be no gravitational force at all. This does not mean, however, that the
pressure at the moon’s center will be zero!

To start, we partition the interval [0, x] into n subintervals of equal length x/n. The ith
subinterval is

Ii =
[
i−1
n
x, i

n
x
]
,

corresponding to a depth between i−1
n
x meters and i

n
x meters. For t ∈ [0,∞), let g(t) be the

magnitude of the moon’s gravitational force (the “gravity”) at a distance of t meters from the
surface of the moon. Physics informs us that it is reasonable to assume that g is a continuous
function. For each 1 ≤ i ≤ n we approximate the gravity throughout the depth interval Ii to
equal g(ix/n), which is in fact the gravity at the bottom end of the depth range from i−1

n
x

meters to i
n
x meters.

Consider a tiny square patch of area A at depth x. Above this square patch is a rectangular
column of mass of cross-sectional area A that reaches up to the surface of the moon. For
simplicity’s sake we will assume for now that the pressure on the square patch is due entirely
to the mass within this column. The column is broken into shorter columns of height x/n in
accordance with our partition of the interval [0, x]. Each of the smaller columns is a rectangular
box having volume Ax/n, and so contains a mass of ρAx/n. In the ith box Bi the force of
gravity is assumed to be a constant g(ix/n), and so the weight wi of the mass inside Bi is

wi =

Å
ρA

n
x

ã
g

Å
i

n
x

ã
by the usual “mass times force” formula. Since the stuff making up the moon is incompressible,
the weight wi of the mass inside box Bi is conveyed all the way down to the tiny square of area
A at depth x. Thus the total force on the square patch is the sum of the weights w1, . . . , wn:

n∑
i=1

wi =
n∑
i=1

ρAxg(ix/n)

n
.
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This force we divide by the area A to obtain an estimate of P (x), the pressure at depth x:

P (x) ≈ 1

A

n∑
i=1

Å
ρA

n
x

ã
g

Å
i

n
x

ã
=

n∑
i=1

ρx

n
g

Å
i

n
x

ã
.

Since ρg is a continuous function, P (x) will approach some limiting value as n→ ∞, and it is
this limiting value that we take to be the exact pressure at depth x:

P (x) = lim
n→∞

n∑
i=1

ρg

Å
i

n
x

ã
x

n
.

Letting ∆xi = x/n and x∗i = ix/n for each 1 ≤ i ≤ n, we have

P (x) = lim
n→∞

n∑
i=1

ρg(x∗i )∆xi.

By Proposition 5.11 it follows that

P (x) =

� x

0

ρg(t)dt.

From physics it is known that the force of gravity r meters from the center of the moon is
GM(r)/r2, where here M(r) denotes the mass of the moon that lies within a distance r from
the center, and G is the gravitational constant. Since at a depth of t meters the center of the
moon is R− t meters away, we have

g(t) =
GM(R− t)

(R− t)2
=

G

(R− t)2
· 4
3
π(R− t)3ρ =

4

3
π(R− t)Gρ.

Thus we have

P (x) =
4

3
πGρ2

� x

0

(R− t)dt =
4

3
πGρ2

Å
Rx− 1

2
x2
ã
= 4πGρ2x

Å
2R− x

6

ã
.

In particular the pressure at the center of the moon is

P (R) =
2

3
πGρ2R2,

which certainly is not zero.
More realistically the density of a moon increases with increasing depth, in which case a

similar analysis will find that

P (x) =

� x

0

ρ(t)g(t)dt,

where the constant ρ is replaced by a function ρ(t). ■

Example 6.8 (Pressure at Great Depths). In the previous example it was assumed that
the pressure upon the square patch of area A at depth x was a box-shaped column with square
cross-section of constant area A all the way up to the surface of the moon. This is reasonable at
small depths, but at great depths we must account for the spherical shape of the moon.

The gravitational field of the moon is radial in nature, which is to say the field lines of the
moon’s gravity are straight lines that all converge to a single point which we take to be the center
of the moon. Thus the “column” of mass that is exerting pressure upon the aforementioned
square patch must broaden toward the moon’s surface, to form something of a truncated pyramid.
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Our partition of the interval [0, x] chops up this truncated pyramid into smaller chunks that are
themselves truncated pyramids. We must calculate the volume of the ith such chunk. ■
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7
Transcendental Functions

7.1 – The Inverse Function Theorem

Some functions are capable of assuming the same value at different points in their domain.
For instance the function f : R → R given by f(x) = x2 takes on the value 9 when x is 3 or −3.
A function that cannot do this is called one-to-one.

Definition 7.1. A function f : X → Y is one-to-one if f(x1) ̸= f(x2) for every x1, x2 ∈ X
with x1 ̸= x2.

An equivalent definition states that f is one-to-one if f(x1) = f(x2) implies x1 = x2. Note
that while f(x) = x2 is not one-to-one because f(−3) = 9 = f(3), the function g(x) = x3 is
one-to-one. We could also obtain a one-to-one function from f(x) = x2 by restricting its domain
to the nonnegative real numbers (thereby deleting −3 from the domain, for instance); that is,
f(x) = x2 is one-to-one if we assume f : [0,∞) → R.

Definition 7.2. A function f : X → Y is onto if, for each y ∈ Y , there exists some x ∈ X
such that f(x) = y. In other words f : X → Y is onto if and only if Ran(f) = Y .

If a function f : X → Y is not onto, we can obtain an onto function by restricting its
codomain to Ran(f). For example f(x) = x2 is onto if we assume f : R → [0,∞), and it is both
one-to-one and onto if we assume f : [0,∞) → [0,∞).

Remark. By convention we will henceforth always take the codomain of a function to be equal
to its range! Since this will result in all functions being automatically onto, we will make no
further reference to the notion.

Theorem 7.3. If f is a one-to-one function, then there exists a unique function g such that
Dom(g) = Ran(f), and f(g(x)) = x for all x ∈ Dom(g).

Proof. Suppose f is a one-to-one function. For the existence part of the proof, define the
function g : Ran(f) → Dom(f) as follows: for each x ∈ Ran(f) let g(x) equal the unique y



157

value for which f(y) = x. Clearly Dom(g) = Ran(f), and also

f(g(x)) = f(y) = x

for all x ∈ Ran(f).
For the uniqueness part of the proof, suppose that h is a function such that Dom(h) = Ran(f)

and f(h(x)) = x for all x ∈ Ran(f). Now, Ran(f) = Dom(g) immediately implies that
Dom(h) = Dom(g). Moreover, for every x in the common domain we have

f(h(x)) = x = f(g(x)),

and since f is one-to-one we obtain h(x) = g(x). Therefore h = g. ■

Definition 7.4. Let f be a one-to-one function. The inverse of f , denoted by f−1, is the
unique function for which Dom(f−1) = Ran(f), and f(f−1(x)) = x for all x ∈ Ran(f).

Theorem 7.5. If f−1 is the inverse of f , then Dom(f−1) = Ran(f) and Ran(f−1) = Dom(f).

Proof. We already have Dom(f−1) = Ran(f) by Definition 7.4. Let y ∈ Ran(f−1). Then there
exists some x ∈ Dom(f−1) such that f−1(x) = y, and since Dom(f−1) = Ran(f) it follows that
x ∈ Ran(f); that is, there exists some z ∈ Dom(f) such that f(z) = x. Now, Definition 7.4
implies that f(f−1(x)) = x, and since

f(z) = x = f(f−1(x)) = f(y)

and f is one-to-one, we obtain y = z ∈ Dom(f). This verifies Ran(f−1) ⊆ Dom(f).
Next, let y ∈ Dom(f). Setting x = f(y), we have x ∈ Ran(f) = Dom(f−1) and so

f(f−1(x)) = x. Since f is one-to-one and

f(f−1(x)) = x = f(y),

it follows that y = f−1(x) and thus y ∈ Ran(f−1). Hence Dom(f) ⊆ Ran(f−1). ■

Theorem 7.6. If f−1 is the inverse of f , then f(x) = y if and only if f−1(y) = x.

Proof. Suppose that f(x) = y. This implies x ∈ Dom(f) and y ∈ Ran(f), with the latter
(together with Definition 7.4) in turn implying f(f−1(y)) = y. Since f is one-to-one (this is
understood because it has an inverse) and f(f−1(y)) = y = f(x), we conclude that f−1(y) = x.

Now suppose that f−1(y) = x. Then y ∈ Dom(f−1) = Ran(f), whence we obtain f(f−1(y)) =
y and therefore f(x) = y. ■

The theorem above is often notationally distilled down to

f(x) = y ⇔ f−1(y) = x.

An immediate consequence of Theorems 7.5 and 7.6 is that f−1(f(x)) = x for all x ∈ Dom(f)
and f(f−1(y)) = y for all y ∈ Dom(f−1), which is commonly how the inverse of a function is
defined in textbooks.
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Proposition 7.7. If f is a one-to-one function that is continuous on an interval I, then f is
either an increasing or decreasing function on I.

Lemma 7.8. If f is a one-to-one function that is continuous on an open interval I, then f(I)
is open.

Proof. By Proposition 7.7, f is either increasing or decreasing on I. For the sake of argument
assume that f is increasing (the proof is similar if it is decreasing). Fix b ∈ f(I). Then
there exists some a ∈ I such that f(a) = b. Since I is open there is some δ > 0 such that
[a− δ, a+ δ] ⊆ I, and thus b ∈ f((a− δ, a+ δ)).

Suppose y ∈ f((a− δ, a+ δ)). Then there is some x ∈ (a− δ, a+ δ) such that f(x) = y, and
since f is increasing we have

f(a− δ) < y < f(a+ δ).

Hence y ∈ (f(a− δ), f(a+ δ)) and we obtain

f((a− δ, a+ δ)) ⊆ (f(a− δ), f(a+ δ)).

Therefore b ∈ (f(a− δ), f(a+ δ)), an open interval.
Next, suppose y ∈ (f(a − δ), f(a + δ)). By the Intermediate Value Theorem, since f is

continuous on [a− δ, a+ δ], there exists some x ∈ (a− δ, a+ δ) ⊆ I such that f(x) = y, and
thus y ∈ f(I). Therefore

b ∈ (f(a− δ), f(a+ δ)) ⊆ f(I),

so b is an interior point of f(I). Since b ∈ f(I) is arbitrary, we conclude that f(I) is an open
set. ■

With this proposition and lemma we are now in a position to prove the two most momentous
calculus results of this section.

Theorem 7.9. If f is a one-to-one function that is continuous on an open interval I, then f−1

is continuous on f(I).

Proof. Suppose that f is a one-to-one function that is continuous on open interval I. Let
b ∈ f(I) be arbitrary. Then there exists some a ∈ I such that f(a) = b, and so a = f−1(b).

Let ϵ > 0. Since I is open there exists some γ > 0 such that [a − γ, a + γ] ⊆ I. Set
ϵ̂ = min{ϵ, γ}, so that [a− ϵ̂, a+ ϵ̂] ⊆ I, and define

δ1 = |f(a− ϵ̂)− f(a)| and δ2 = |f(a+ ϵ̂)− f(a)|.

Note that since f is one-to-one on [a− ϵ̂, a+ ϵ̂] and a− ϵ̂ < a < a+ ϵ̂, by Proposition 7.7 we
must have either

f(a− ϵ̂) < f(a) < f(a+ ϵ̂) or f(a− ϵ̂) > f(a) > f(a+ ϵ̂).

Choose δ = min{δ1, δ2}, and suppose |y − f(a)| < δ. Then

|y − f(a)| < |f(a− ϵ̂)− f(a)| and |y − f(a)| < |f(a+ ϵ̂)− f(a)|
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both hold, and since f(a− ϵ̂) and f(a+ ϵ̂) lie on opposite sides of f(a), it follows that y lies
between f(a− ϵ̂) and f(a+ ϵ̂). By the Intermediate Value Theorem there is some x ∈ (a− ϵ̂, a+ ϵ̂)
such that f(x) = y. Then |x− a| < ϵ̂ for x = f−1(y), which implies that

|f−1(y)− f−1(b)| < ϵ̂ ≤ ϵ

and therefore f−1 is continuous at b.
Since b ∈ f(I) is arbitrary it’s concluded that f−1 is continuous on f(I). ■

Theorem 7.10 (Inverse Function Theorem). Let f be a one-to-one function that is differ-
entiable on an open interval I, and let a ∈ I. If f ′(a) ̸= 0, then f−1 is differentiable at f(a)
with

(f−1)′(f(a)) =
1

f ′(a)
.

Proof. Suppose f ′(a) ̸= 0. Let ϵ > 0. By Theorem 2.12(5), from

lim
x→a

f(x)− f(a)

x− a
= f ′(a)

we obtain

lim
x→a

x− a

f(x)− f(a)
= lim

x→a

1

f(x)− f(a)

x− a

=
1

f ′(a)
.

Since a is an interior point of I, there is some γ > 0 such that 0 < |x− a| < γ implies that∣∣∣∣ x− a

f(x)− f(a)
− 1

f ′(a)

∣∣∣∣ < ϵ. (7.1)

Now, by Theorem 7.9, f−1 is continuous on f(I). Moreover, b = f(a) ∈ f(I) and f(I) is an
open set by Lemma 7.8, so there is some δ > 0 such that (b−δ, b+δ) ⊆ f(I) and y ∈ (b−δ, b+δ)
implies that |f−1(y)− f−1(b)| < γ.

Let y be such that 0 < |y− b| < δ. Then y ∈ f(I), so there is some x ∈ I such that f(x) = y,
and thus x = f−1(y). Also

f(x) = y ̸= b = f(a),

so x ̸= a since f is one-to-one, which means f−1(y) ̸= f−1(b). We now have

0 < |f−1(y)− f−1(b)| < γ,

or equivalently 0 < |x− a| < γ, and so from (7.1) we obtain∣∣∣∣f−1(y)− f−1(b)

y − b
− 1

f ′(a)

∣∣∣∣ < ϵ.

This shows

lim
y→b

f−1(y)− f−1(b)

y − b
=

1

f ′(a)
,

and since 1/f ′(a) ∈ R we conclude that f−1 is differentiable at b and (f−1)′(b) = 1/f ′(a). ■
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An application of this theorem is the following result, which has been assumed to be true
since the early days of Chapter 2.

Proposition 7.11. limx→c
m
√
x = m

√
c for any integer m > 0, where c ∈ (−∞,∞) if m is odd

and c ∈ (0,∞) if m is even.

Proof. First assume that m > 0 is odd. Then f(x) = xm is a one-to-one and differentiable
function on (−∞,∞), and the inverse of f is f−1(x) = m

√
x. Now, for any c ∈ (−∞, 0) ∪ (0,∞)

there exists a unique a ∈ (−∞, 0) ∪ (0,∞) such that f(a) = xm = c, and since

f ′(a) = mam−1 ̸= 0,

Theorem 7.10 implies that f−1 is differentiable, and hence continuous, at c. Thus

lim
x→c

m
√
x = lim

x→c
f−1(x) = f−1(c) = m

√
c

for any c ̸= 0.
The case when c = 0 must be handled separately. In doing so, we need the fact that m

√
x

is an increasing function on (−∞, 0) and (0,∞), which is easily established using the known
one-to-oneness and continuity of m

√
· on these intervals: on (0,∞) note that

m
√
1 = 1 < 2 =

m
√
2m

for 1 < 2m and invoke Proposition 7.7; on (−∞, 0) note that

m
√
−2m = −2 < −1 = m

√
−1

and again appeal to Proposition 7.7.
We now proceed to show that

lim
x→0

m
√
x =

m
√
0 = 0.

Let ϵ > 0. Choose δ = ϵm. Suppose that 0 < |x| < ϵm. If x > 0 we obtain 0 < x < ϵm, whence
0 < m

√
x < ϵ implies that |m

√
x | < ϵ as desired. If x < 0 we obtain 0 < −x < ϵm, whence

−ϵm < x < 0 implies that −ϵ < m
√
x < 0, leading again to |m

√
x | < ϵ.

We now have established that limx→c
m
√
x = m

√
c for all c ∈ R when m > 0 is odd. The

proof is actually more straightforward when m > 0 is assumed to be even, since we then have
c ∈ (0,∞) and need not consider the case when c = 0. ■

Example 7.12. Let f be given by f(x) = 2x3 + x− 12. Find (f−1)′(6).

Solution. Clearly f is differentiable on (−∞,∞), and since

f ′(x) = 6x2 + 1 > 0

for all −∞ < x < ∞, it follows by the Increasing/Decreasing Test that f is increasing on
(−∞,∞) and therefore is one-to-one. Now, since

f(2) = 2(2)3 + 2− 12 = 6

and
f ′(2) = 6(2)2 + 1 = 25 ̸= 0,
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by Theorem 7.10 we conclude that f−1 is differentiable at 6 and

(f−1)′(6) =
1

f ′(2)
=

1

25
.

Note that it is no easy task to find a general expression for f−1(x) by direct algebraic
means! ■

With Proposition 7.11 in hand, we are now in a position to at last prove the statement of
Theorem 2.12(7) in §2.3.

Proof of Law (7). By hypothesis we have limx→c f(x) = L for some c, L ∈ R. Let m > 0 be
an even integer, and suppose there exists some γ > 0 such that f(x) ≥ 0 for all x ∈ B′

γ(c). Then

we must have L ≥ 0. Assume that L > 0, so L is a point in the interior of Dom(m
√
· ) = [0,∞).

By Proposition 7.11 m
√

· is continuous on (0,∞), and so by Proposition 2.41

lim
x→c

m

»
f(x) = m

√
lim
x→c

f(x) =
m
√
L, if L > 0 (7.2)

The case when L = 0 must be handled separately, since 0 is not an interior point of the
domain of m

√
· and so Proposition 2.41 cannot be applied. Thus, suppose that limx→c f(x) = 0.

Let ϵ > 0. Then there exists some β > 0 such that

0 < |x− c| < β implies |f(x)| < ϵm.

Choose δ = min{β, γ}, and suppose 0 < |x− c| < δ. Then f(x) ≥ 0 and |f(x)| < ϵm together

yield 0 ≤ f(x) < ϵm, whence we obtain 0 ≤ m
√
f(x) < ϵ since m

√
· is an increasing function, and

thus ∣∣ m

»
f(x)

∣∣ < ϵ.

We have shown that

lim
x→c

m

»
f(x) = 0 =

m
√
0 = m

√
lim
x→c

f(x),

which together with (7.2) proves Law (7) under all possible circumstances when m is even.
The proof is actually easier when m > 0 is assumed to be odd, since then Dom(m

√
· ) =

(−∞,∞) and so Proposition 2.41 applies for any L ∈ R. ■

Example 7.13. Show that the function

f(x) =
3x− 1

2x+ 5

is one-to-one, and find its inverse f−1. Also state the domain and range of both f and f−1.

Solution. Suppose that f(a) = f(b). From this we obtain

3a− 1

2a+ 5
=

3b− 1

2b+ 5
,

and hence
(3a− 1)(2b+ 5) = (3b− 1)(2a+ 5).

Multiplying then gives

6ab+ 15a− 2b− 5 = 6ab+ 15b− 2a− 5
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15a− 2b = 15b− 2a

17a = 17b

a = b,

which shows that f is one-to-one.
Now, let y = f(x), so that y = (3x− 1)/(2x+ 5). We solve this for x,

y =
3x− 1

2x+ 5
⇒ 2xy + 5y = 3x− 1 ⇒ 3x− 2xy = 5y + 1

⇒ x(3− 2y) = 5y + 1 ⇒ x =
5y + 1

3− 2y
.

According to Theorem 7.6 x = f−1(y), so we obtain

f−1(y) =
5y + 1

3− 2y
,

which can be written f−1(x) = (5x+ 1)/(3− 2x).
Finally,

Dom(f) = Ran(f−1) = {x | x ̸= −5/2} = (−∞,−5/2) ∪ (−5/2,∞)

and

Ran(f) = Dom(f−1) = {x | x ̸= 3/2} = (−∞, 3/2) ∪ (3/2,∞).

■

Example 7.14. Find all the inverses associated with f(x) = (x− 4)2, and state their domains
and ranges.

Solution. Let f1 be the restriction of f to the interval [4,∞). That is, f1(x) = f(x) for x ≥ 4.
Then f1 is a one-to-one function and thus has an inverse f−1

1 . To find f−1
1 set y = f1(x), so that

y = (x− 4)2 for x ≥ 4. Then √
y = |x− 4| = x− 4,

whence x = 4 +
√
y. Since y = f1(x) if and only if x = f−1

1 (y) by Theorem 7.6, we obtain

f−1
1 (y) = 4 +

√
y.

Next, let f2 be the restriction of f to the interval (−∞, 4]. That is, f2(x) = f(x) for x ≤ 4.
Then f2 is a one-to-one function and has an inverse f−1

2 . To find f−1
2 set y = f2(x), so that

y = (x− 4)2 for x ≤ 4. Then
√
y = |x− 4| = −(x− 4) = 4− x,

whence x = 4 − √
y. Since y = f2(x) if and only if x = f−1

2 (y) by Theorem 7.6, we obtain

f−1
2 (y) = 4−√

y.

We have now found that there are two (local) inverses associated with f : the function f−1
1

given by

f−1
1 (y) = 4 +

√
y
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with Dom(f−1
1 ) = Ran(f1) = [0,∞) and Ran(f−1

1 ) = Dom(f1) = [4,∞), and f−1
2 given by

f−1
2 (y) = 4−√

y.

with Dom(f−1
2 ) = Ran(f2) = [0,∞) and Ran(f−1

2 ) = Dom(f2) = (−∞, 4]. ■
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7.2 – The Natural Logarithm and Exponential Functions

In what follows it is important to recall a few properties of the Riemann integral that were
established back in Chapter 5. Let [a, b] be a closed interval (so we assume a < b), and let f
and g be integrable functions on [a, b].

• For any c ∈ [a, b],
� c
c
f(x)dx = 0

• If f(x) > 0 for all x ∈ [a, b], then
� b
a
f(x)dx > 0

• If f(x) ≥ g(x) for all x ∈ [a, b], then
� b
a
f(x)dx ≥

� b
a
g(x)dx

Definition 7.15. The natural logarithm function ln : (0,∞) → R is given by

ln(x) =

� x

1

1

t
dt,

for all x > 0.

By the Fundamental Theorem of Calculus we have, for each x > 0,

ln′(x) =
d

dx

Å� x

1

1

t
dt

ã
=

1

x
. (7.3)

Thus the natural logarithm is differentiable on (0,∞), which immediately implies that it is also
continuous on (0,∞). By the Chain Rule we find that, for any function u differentiable at x
with u(x) ∈ (0,∞),

(ln ◦u)′(x) = [ln(u(x))]′ = ln′(u(x)) · u′(x) = 1

u(x)
· u′(x) = u′(x)

u(x)
, (7.4)

which in general can be written as (ln ◦u)′ = u′/u. This formula enables us to prove the
following momentous theorem.

Theorem 7.16. For all a, b > 0, ln(ab) = ln(a) + ln(b).

Proof. For any a > 0 we have by (7.4)

[ln(ax)]′ =
1

ax
· (ax)′ = 1

ax
· a =

1

x
= ln′(x).

Since ln(x) and ln(ax) have the same derivative they must differ by some constant c:

ln(ax) = ln(x) + c. (7.5)

To determine c put x = 1 into (7.5) to get ln(a) = ln(1) + c. But ln(1) = 0, so in fact c = ln(a)
and (7.5) becomes

ln(ax) = ln(x) + ln(a)

for any x > 0. The proof is finished by setting x = b in this last equation. ■

The property exhibited by Theorem 7.16 is actually the defining property of a “logarithmic
function.” Another wonderful property now follows.

Proposition 7.17. For all a > 0 and r ∈ Q, ln(ar) = r ln(a).
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Proof. Let r ∈ Q. By (7.4) we obtain, for any x > 0,

[ln(xr)]′ =
1

xr
· (xr)′ = 1

xr
· rxr−1 = r · 1

x
= r · ln′(x) = [r ln(x)]′,

where the second equality follows from the Power Rule for Differentiation as established in
Calculus 1. Thus ln(xr) and r ln(x) have the same derivative and must therefore differ only by
a constant c:

ln(xr) = r ln(x) + c. (7.6)

To find c put x = 1 into (7.6) to get

r ln(1) + c = ln(1r).

Since ln(1r) = ln(1) = 0 we discover that c = 0. Putting this into (7.6) along with x = a then
yields ln(ar) = r ln(a) as desired. ■

We would like to extend the property in Proposition 7.17 so that it is applicable when the
exponent r is any real number, which means entertaining the notion of an exponent that is
an irrational number. But right now irrational exponents have no meaning for us. Fantastical
beasties like 2π and 5

√
2 are so far just that: fantasies. Don’t lose heart, though. The dev-

elopments of the next few pages will ultimately lead us to a working definition for an irrational
exponent.

It’s given that the domain of the natural logarithm is (0,∞), but what is its range?

Theorem 7.18. The range of the natural logarithm is R

Proof. Let M > 0 be any real number. The functions f(t) = 1/t and g(t) = 1/2 are integrable
on [1, 2] with f(t) ≥ g(t) for all t ∈ [1, 2], so by the third property of definite integrals given at
the beginning of this section we obtain

ln(2) =

� 2

1

1

t
dt ≥

� 2

1

1

2
dt =

1

2
.

Let N be an integer such that N ≥ 2(M + 1). Now, employing Proposition 7.17,

ln
(
2N
)
= N ln(2) ≥ 2(M + 1) · 1

2
=M + 1 > M.

Since ln(1) = 0 < M , ln
(
2N
)
> M , and the natural logarithm function is continuous on

(0,∞), the Intermediate Value Theorem implies that there exists some c1 ∈
(
1, 2N

)
such that

ln(c1) =M . Thus Ran(ln) includes all positive real numbers (along with 0).
The observation that

ln
(
2−N

)
= −N ln(2) < −M

and ln(1) = 0 > −M enables us to invoke the Intermediate Value Theorem to assert that
ln(c2) = −M for some c2 ∈

(
2−N , 1

)
. Thus Ran(ln) includes all negative real numbers.

Therefore Ran(ln) = (−∞,∞). ■
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Notice that since ln′(x) = 1/x > 0 for all x ∈ (0,∞), the natural logarithm must be strictly
increasing on its domain (0,∞) and so is one-to-one. Therefore, since Ran(f) = R there must
be some unique positive real number, universally denoted by e, for which ln(e) = 1. Then by
Proposition 7.17 we have

ln(er) = r ln(e) = r, for all r ∈ Q.

The following definition extends this formulation to the case when r is irrational, again exploiting
the fact that ln is one-to-one with range R.

Definition 7.19. If z is irrational, then ez is the unique real number for which ln(ez) = z.

Therefore we have

ln(ex) = x (7.7)

for all x ∈ R. What we’ve now done is given meaning to ex for any real number x, which is our
first step toward giving meaning to irrational exponents in general. Notice that for any x ∈ R
we must have ex > 0, otherwise ln(ex) would be undefined.

Definition 7.20. The exponential function exp : R → (0,∞) is given by

exp(x) = ex

for all x ∈ R.

Since Dom(exp) = R = Ran(ln) and

ln(exp(x)) = ln(ex) = x

for all x ∈ Ran(ln), it follows from Definition 7.4 that the exponential function exp is the inverse
of the natural logarithm function ln. Of course, we should expect ln to have an inverse since it
is one-to-one, and since ln must be the inverse of exp we have

exp(ln(x)) = eln(x) = x (7.8)

for all x ∈ Ran(exp) = (0,∞). Doubters could verify this directly: for any x > 0, since
ln(eln(x)) = ln(x) holds as a consequence of (7.7), and since ln is one-to-one, it can only be
concluded that eln(x) = x.

Remark. Since ln(x) is a continuous one-to-one function, exp(x) is its inverse, and ln((0,∞)) =
R, we find from Theorem 7.9 that exp(x) is continuous on R.

For any r ∈ Q and a > 0, observe that ln(ar) = r ln(a) by Proposition 7.17, and ln(er ln(a)) =
r ln(a) by (7.7). Hence ar = er ln(a) follows by once again exploiting the one-to-oneness of the
natural logarithm. This leads us at last to a natural interpretation of the expression az for
a > 0 and z an irrational number.

Definition 7.21. For all a > 0 and z irrational, az = ez ln(a).
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Equipped with this definition and the lovely result of the previous paragraph, we obtain

ax = ex ln(a), for all a > 0 and x ∈ R. (7.9)

Taking the natural logarithm of both sides of (7.9) gives ln(ax) = ln(ex ln(a)) = x ln(a), which
delivers to us a result that improves on Proposition 7.17.

Theorem 7.22. For all a > 0 and x ∈ R, ln(ax) = x ln(a).

We are almost in a position to prove a generalized power rule for differentiation, but first we
need one important property of the exponential function which is so wonderful it deserves to be
enshrined as a theorem by itself.

Theorem 7.23. For all x ∈ R, exp′(x) = exp(x).

Proof. For each b ∈ R there exists some a ∈ (0,∞) such that ln(a) = b, and since ln′(a) =
1/a ̸= 0 it follows from Theorem 7.10 that exp is differentiable at b. Hence exp is differentiable
on R, and since ln is differentiable on (0,∞) (which is the range of exp), the Chain Rule implies
that ln ◦ exp is differentiable on R and

(ln ◦ exp)′(x) = ln′(exp(x)) exp′(x).

Treating the left-hand side we obtain

(ln ◦ exp)′(x) = [ln(exp(x))]′ = (x)′ = 1

for all x ∈ R. As for the right-hand side, (7.3) implies

ln′(exp(x)) exp′(x) =
1

exp(x)
· exp′(x) =

exp′(x)

exp(x)
.

Equating the two results yields
exp′(x)

exp(x)
= 1

for all x ∈ R, and hence exp′(x) = exp(x). ■

What Theorem 7.23 is saying is that the exponential function is its own derivative: (ex)′ = ex.
Are there any other functions that have this property?

As a result of this theorem the Chain Rule gives, for differentiable function u,î
eu(x)
ó′
= (exp ◦u)′(x) = exp′(u(x)) · u′(x) = exp(u(x)) · u′(x) = u′(x)eu(x). (7.10)

Now, at last, we are in a position to obtain the most general power rule of differentiation that
we will ever have need of throughout the remainder of our study of calculus.

Theorem 7.24. For all x > 0 and r ∈ R, (xr)′ = rxr−1.

Proof. Making use of (7.9), as well as (7.10) with u(x) = r ln(x), we get

(xr)′ =
î
er ln(x)

ó′
= er ln(x) · [r ln(x)]′ = er ln(x) · r

x
= xr · r

x
= rxr−1

in one go. ■



168

Proposition 7.25. For x ∈ (−∞, 0) ∪ (0,∞),�
1

x
dx = ln |x|+ c.

Proof. Let F (x) = ln |x|. If x ∈ (0,∞), then F (x) = ln(x) and so

F ′(x) =
1

x

by (7.3). If x ∈ (−∞, 0), then F (x) = ln(−x) and so

F ′(x) =
(−x)′

−x
=

−1

−x
=

1

x

by (7.4). Thus F is an antiderivative for 1/x on (−∞, 0) ∪ (0,∞), and therefore the family of
functions of the form ln |x| + c, where c ∈ R, constitutes all of the antiderivatives of 1/x on
(−∞, 0) ∪ (0,∞). ■

The proof of the proposition (or the proposition itself) tells us immediately that

ln′ |x| = 1

x
,

which is a formula that will be useful in later applications.

Example 7.26. For

f(x) =
x2 + 1

x3 + 3x+ 1
,

determine
�
f(x)dx, and use the result to evaluate

� −1

−2
f(x)dx.

Solution. Let u = x3 + 3x+ 1, so that, by the u-substitution procedure, we obtain

du = (3x2 + 3)dx = 3(x2 + 1)dx

and hence (x2 + 1)dx = 1
3
du. Now,�

f(x)dx =

�
x2 + 1

x3 + 3x+ 1
dx =

�
1/3

u
du =

1

3

�
1

u
du =

1

3
ln |u|+ c

=
1

3
ln |x3 + 3x+ 1|+ c (7.11)

Now, on the interval [−2,−1] we find that x3 + 3x+ 1 < 0, and so from (7.11) we conclude that
an antiderivative for f on [−2,−1] is

F (x) =
1

3
ln(−x3 − 3x− 1).

Thus, by the Fundamental Theorem of Calculus,� −1

−2

f(x)dx = F (x)
∣∣∣−1

−2
= F (−1)− F (−2)

=
1

3

[
ln
(
−(−1)3 − 3(−1)− 1

)
− ln

(
−(−2)3 − 3(−2)− 1

)]



169

=
1

3
[ln(3)− ln(13)] =

1

3
ln

Å
3

13

ã
,

as foreseen by the Emperor. ■

Example 7.27. Evaluate � π/2

0

sinx

1 + cos x
dx

Solution. Let u = cosx, so by the u-substitution procedure we obtain du = − sinxdx and
hence sinxdx = −du. When x = 0 we have u = cos 0 = 1, and when x = π/2 we have
u = cos(π/2) = 0. So,� π/2

0

sinx

1 + cos x
dx = −

� 0

1

1

1 + u
du = − [ ln |1 + u| ]01 = − [ln(1)− ln(2)] = ln(2).

Note that the substitution u = 1 + cosx would have worked just as well. ■

Example 7.28. Consider the function h(x) = xtan(x). In accordance with our customary
definition we take the domain of h to be the set

Dom(h) = {x ∈ R : xtan(x) ∈ R},

which in this case is fairly complicated because when x < 0 the expression xtan(x) will only be
real-valued if tan(x) = m/n such that m is an integer and n is an odd integer! Happily the
domain for h′ is easier to apprehend since h′(x) can only be defined for x in the interior of
Dom(h). This disqualifies all x ≤ 0, because while there are some negative values for x for
which h(x) is real—like h(−π/4) = −4/π, for instance—these values will not form any kind of
interval.

Let

S = Dom(tan) ∩ (0,∞) = (0, π/2) ∪
∞⋃
k=0

(π
2
+ kπ,

π

2
+ (k + 1)π

)
.

For any x0 ∈ S we find that tan(x0) is some real number, and since x0 > 0 it follows that

h(x0) = x
tan(x0)
0 > 0.

Indeed, because S is an open set there exists some γ > 0 such that I = (x0−γ, x0+γ) ⊆ S, and
so xtan(x) > 0 for all x ∈ I. This shows not only that x0 is in the interior of Dom(h), but also
that xtan(x) is in the domain of the natural logarithm function for all x ∈ I. Thus we may write

h(x) = xtan(x) = exp(ln(xtan(x))) = exp(tan(x) ln(x)) = etan(x) ln(x)

for all x ∈ I using Equation (7.8) and Theorem 7.22. Then by Equation (7.10) we obtain

h′(x) = etan(x) ln(x) · [tan(x) ln(x)]′ = xtan(x)
ï
tan(x)

x
+ sec2(x) ln(x)

ò
for all x ∈ I, which shows in particular that h′(x0) is defined and therefore x0 ∈ Dom(h′). Since
x0 ∈ S is arbitrary we conclude that S ⊆ Dom(h′). It can be shown with a little analysis that
Dom(h′) ⊆ S, and so at last we have Dom(h′) = S. ■
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A significant consequence of this section’s developments is the following theorem, which
the typical reader will have taken as true without proof since it was introduced in elementary
algebra.

Theorem 7.29 (Laws of Exponents). Let a > 0 and x, y ∈ R.
1. ax · ay = ax+y

2. ax/ay = ax−y

3. (ax)y = axy

4. (a · b)x = ax · bx
5. (a/b)x = ax/bx

Proof.
Proof of Part (1). Let a > 0. For any x, y ∈ R we have ax, ay ∈ (0,∞) = Dom(ln), and so by
Theorems 7.16 and 7.22 we have

ln(ax · ay) = ln(ax) + ln(ay) = x ln(a) + y ln(a) = (x+ y) ln(a) = ln(ax+y).

Since the natural logarithm function is one-to-one, it immediately follows that

ax · ay = ax+y

as desired.

Proof of Part (2). First observe that, for any y ∈ R,

a−y · ay = a−y+y = a0 = 1,

where the first equality follows from Part (1) and the last from the definition of the zero exponent.
Dividing by ay then yields

a−y =
1

ay
,

as we might expect. Now,

ax

ay
= ax · 1

ay
= ax · a−y = ax+(−y) = ax−y

obtains by employing Part (1) once again.

Proof of Part (3). By Theorem 7.22,

ln
[
(ax)y

]
= y ln(ax) = y · x ln(a) = (xy) ln(a) = ln(axy),

and therefore

(ax)y = axy

by the one-to-oneness of the natural logarithm function.

Proof of Part (4). We have

ln(a · b)x = x ln(a · b) = x
[
ln(a) + ln(b)

]
= x ln(a) + x ln(b) = ln(ax) + ln(bx) = ln(ax · bx),
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and so
(a · b)x = ax · bx

by the one-to-oneness of the natural logarithm function.

Proof of Part (5). Left as an exercise. ■

The next example should go a long way toward making clear the great utility of L’Hôpital’s
Rule and the Fundamental Theorem of Calculus, for they help us to evaluate a limit involving
an integral of the form � b

a

et
2

dt,

which cannot be evaluated by any technique we have encountered thus far.

Example 7.30. Evaluate

lim
x→∞

Å
1

x

� x

0

et
2

dt

ã
.

Solution. Letting

f(x) =

� x

0

et
2

dt and g(x) = x,

the limit may be written as limx→∞ f(x)/g(x). Since the function t 7→ et
2
is everywhere

continuous, Theorem 5.26 implies the function f is differentiable on (0, b) for each b > 0, and
thus f is differentiable on (0,∞). Also g is differentiable on (0,∞), with g(x) ̸= 0 for all

x ∈ (0,∞). Now, by Theorem 5.26 we have f ′(x) = ex
2
, and so

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞

ex
2

1
= +∞.

Since |g(x)| → +∞, it follows that

lim
x→∞

Å
1

x

� x

0

et
2

dt

ã
= +∞

by Theorem 4.35. ■
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7.3 – The Natural Logarithm and Exponential Functions

Let b ∈ (0, 1) ∪ (1,∞), and define f : (−∞,∞) → (0,∞) by

f(x) = bx.

By (7.9) we may also write

f(x) = ex ln(b) = exp(x ln(b)),

and since exp(x) > 0 for all x ∈ R (and ln(b) ∈ R), it follows that f(x) > 0 for all x ∈ R. That
is, Ran(f) ⊆ (0,∞).

Observe that ln(b) ̸= 0. Indeed, ln(b) = 0 implies that b = exp(0) = e0 = 1, but we are
assuming that b ̸= 1. Let y ∈ (0,∞). Since Ran(exp) = (0,∞) there exists some x ∈ R such
that exp(x) = y, and then

f

Å
x

ln(b)

ã
= exp

Å
x

ln(b)
· ln(b)

ã
= exp(x) = y

shows that y ∈ Ran(f). Hence (0,∞) ⊆ Ran(f) and we conclude that Ran(f) = (0,∞).
Let x1, x2 ∈ R such that x1 ̸= x2. Then since ln(b) ̸= 0 we obtain x1 ln(b) ̸= x2 ln(b), and so

by the one-to-oneness of exp(x) we find that

f(x1) = exp(x1 ln(b)) ̸= exp(x2 ln(b)) = f(x2).

That is, x1 ≠ x2 implies that f(x1) ̸= f(x2), and therefore f is one-to-one and so has an inverse
function f−1 : (0,∞) → (−∞,∞).

By (7.10) we have, for any x ∈ R,

f ′(x) = [ex ln(b)]′ = (x ln(b))′ex ln(b) = ln(b) · ex ln(b) = bx ln(b), (7.12)

and thus f is a differentiable function. Note that ln(b) ̸= 0 and ex ln(b) ̸= 0 imply f ′(x) ̸= 0.
Let y ∈ (0,∞). There exists some x ∈ R such that f(x) = bx = y. Since f ′(x) ̸= 0 and f is

one-to-one and differentiable, by Theorem 7.10 we find that f−1 is differentiable at y and

(f−1)′(y) =
1

f ′(x)
=

1

bx ln(b)
=

1

y ln(b)
. (7.13)

Definition 7.31. Let b ∈ (0, 1) ∪ (1,∞). The base-b exponential function is the bijection
expb : (−∞,∞) → (0,∞) given by

expb(x) = bx

for all x ∈ R. The inverse of expb is the base-b logarithmic function, or base-b logarithm,
logb : (0,∞) → (−∞,∞).

The functions f and f−1 above are thus expb and logb, respectively. In light of equations
(7.12) and (7.13) we have the following result.
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Theorem 7.32. For all x ∈ R,
exp′

b(x) = bx ln(b);

and for all x ∈ (0,∞),

log′b(x) =
1

x ln(b)
.

Example 7.33. For the function h given by h(x) = 7 log3(4− ln(x5)), find Dom(h), and then
find h′ and Dom(h′).

Solution. Let f(x) = 4− ln(x5) and g(x) = 7 log3(x), so that

f ′(x) = −5

x
and g′(x) =

7

x ln(3)
,

and h = g ◦ f . Then

Dom(h) = {x : x ∈ Dom(f) and f(x) ∈ Dom(g)} = {x : x > 0 and 4− ln(x5) > 0}.

Recalling that exp(x) is an increasing function, so that x < y if and only if ex < ey, we have

4− ln(x5) > 0 ⇔ 4− 5 ln(x) > 0 ⇔ ln(x) < 4/5 ⇔ eln(x) < e4/5 ⇔ x < e4/5,

and so

Dom(h) = {x : x > 0 and 4− ln(x5) > 0} = {x : x > 0 and x < e4/5} = (0, e4/5).

For any x ∈ (0, e4/5) the function f is differentiable at x, and since f(x) = 4− ln(x5) > 0 it
follows that g is differentiable at f(x). Therefore by the Chain Rule h = g ◦ f is differentiable
at x, with

h′(x) = (g ◦ f)′(x) = g′(f(x))f ′(x) = g′(4− ln(x5))f ′(x)

=
7

[4− ln(x5)] ln(3)
·
Å
−5

x

ã
=

35

x ln(3)[ln(x5)− 4]

and Dom(h′) = (0, e4/5). ■
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7.4 – Hyperbolic Functions

The hyperbolic sine is the function sinh : R → R given by

sinh(x) =
ex − e−x

2
,

and the hyperbolic cosine is the function cosh : R → R given by

cosh(x) =
ex + e−x

2
.

Both of these functions are everywhere continuous and differentiable. Their graphs are shown
in Figure 34.

Let us take a closer look at sinh. Since sinh(0) = 0, sinh(x) → +∞ as x → +∞, and
sinh(x) → −∞ as x→ −∞, the Intermediate Value Theorem implies that the range of sinh is
R. Now, since (ex)′ = ex and (e−x)′ = −e−x, for any x ∈ R we find that

sinh′(x) =
ex + e−x

2
> 0,

so by Theorem 4.20 the hyperbolic sine is increasing on R, and hence it is one-to-one on R.
This implies sinh has an inverse sinh−1 : R → R, recalling that the domain of the inverse of a
function f equals the range of f . To determine sinh−1 explicitly, let y = sinh(x). Now,

y = sinh(x) ⇒ 2exy = 2ex sinh(x) ⇒ 2exy = e2x − 1 ⇒ e2x − 2yex − 1 = 0.

Let u = ex to obtain u2 − 2yu− 1 = 0. Complete the square:

u2 − 2yu− 1 = 0 ⇒ u2 − 2yu+ y2 = 1 + y2 ⇒ (u− y)2 = 1 + y2

⇒ |u− y| =
√

1 + y2 ⇒ u = y ±
√
y2 + 1

x

y

y = cosh(x)

y = sinh(x)

1

2

Figure 34. Both y = sinh(x) and y = cosh(x) approach y = ex/2 as x→ +∞.



175

⇒ ex = y ±
√
y2 + 1.

Note that y −
√
y2 + 1 is always negative, whereas ex is never negative. Thus we must have

ex = y +
√
y2 + 1,

and hence

x = ln
Ä
y +

√
y2 + 1

ä
Since y = sinh(x) if and only if sinh−1(y) = x, it follows that

sinh−1(y) = ln
Ä
y +

√
y2 + 1

ä
for all y ∈ R. We now have an explicit formula for the inverse hyperbolic sine function.

The hyperbolic cosine function, cosh, is not one-to-one on R. In fact we have

cosh(−x) = e−x + e−(−x)

2
=
e−x + ex

2
=
ex + e−x

2
= cosh(x)

for any x ∈ R. The derivative of cosh is

cosh′(x) =
ex − e−x

2
,

so for x ∈ (−∞, 0) we have

x < 0 ⇒ x < −x ⇒ ex < e−x ⇒ ex − e−x < 0 ⇒ cosh′(x) < 0,

and for x ∈ (0,∞) we have

x > 0 ⇒ x > −x ⇒ ex > e−x ⇒ ex − e−x > 0 ⇒ cosh′(x) > 0.

Thus, by Theorem 4.20, cosh is decreasing on (−∞, 0) and increasing on (0,∞). In particular
cosh is increasing on [0,∞), and hence is one-to-one there. (If there were to exist some a > 0
such that cosh(0) ≥ cosh(a), then cosh could not be increasing on (0, a)—a contradiction.) This
means that cosh with domain restricted to the nonnegative real numbers, cosh : [0,∞) → R, is
one-to-one and so has an inverse cosh−1. The domain of cosh−1 equals the range of cosh, which
is [1,∞) since cosh has a global minimum at 0 and cosh(0) = 1. Now, by the same procedure
that found sinh−1, we find that cosh−1 : [1,∞) → R is given by

cosh−1(y) = ln
Ä
y +

√
y2 − 1

ä
for y ∈ [1,∞).

Theorem 7.34. The functions sinh : R → R and cosh : [0,∞) → [1,∞) are one-to-one and
onto, with inverse functions given as follows.

1. sinh−1(x) = ln
Ä
x+

√
x2 + 1

ä
for all x ∈ R.

2. cosh−1(x) = ln
(
x+

√
x2 − 1

)
for all x ∈ [1,∞).

Theorem 7.35.
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1. (sinh−1)′(x) =
1√

x2 + 1
for all x ∈ R.

2. (cosh−1)′(x) =
1√

x2 − 1
for all x ∈ (1,∞).

Proof.
Proof of Part (1). Recalling that ln′(x) = 1/x, by Theorem 7.34(1) and the Chain Rule we have

(sinh−1)′(x) =
1

x+
√
x2 + 1

ï
1 +

1

2
(x2 + 1)−1/2(2x)

ò
=

√
x2 + 1 + x

x
√
x2 + 1 + (x2 + 1)

=

√
x2 + 1 + x

x
√
x2 + 1 + (x2 + 1)

· x
√
x2 + 1− (x2 + 1)

x
√
x2 + 1− (x2 + 1)

=
x2
√
x2 + 1− (x2 + 1)3/2

x2(x2 + 1)− (x2 + 1)2
=
x2
√
x2 + 1− (x2 + 1)3/2

−(x2 + 1)

=
x2 − (x2 + 1)

−
√
x2 + 1

=
1√

x2 + 1

for any x ∈ R. The verification of the second part is accomplished similarly. ■

Example 7.36. Show that�
1√

ax2 + b
dx =

1√
a
sinh−1

Å…
a

b
x

ã
+ c

for any a, b > 0.

Solution. By Theorem 7.35(1) we have�
1√

x2 + 1
dx = sinh−1(x) + c.

Let u = (a/b)1/2x, so u2 = (a/b)x2 and dx = (b/a)1/2du. Now,�
1√

ax2 + b
dx =

1√
b

�
1√

(a/b)x2 + 1
dx =

1√
b

� √
b/a√

u2 + 1
du =

1√
a

�
1√

u2 + 1
du

=
1√
a
sinh−1(u) + c =

1√
a
sinh−1

Å…
a

b
x

ã
+ c.

■
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7.5 – Inverse Trigonometric Functions

The function f(y) = sin y, y ∈ [−π/2, π/2] is a one-to-one function, and so has an inverse
f−1 which has domain [−1, 1]. Now, since f is differentiable on (−π/2, π/2) and for every
y ∈ (−π/2, π/2) we have f ′(y) = cos y ̸= 0, Theorem 7.10 implies that f−1 is differentiable at
f(y) ∈ (−1, 1). Hence f−1 is differentiable on (−1, 1). By Definition 7.4 we obtain

(f ◦ f−1)(x) = f(f−1(x)) = x

for all x ∈ Ran(f) = [−1, 1], and so by the Chain Rule we obtain, for any x ∈ (−1, 1),

(f ◦ f−1)′(x) = f ′(f−1(x)) · (f−1)′(x) = 1,

and thus

(f−1)′(x) =
1

f ′(f−1(x))
. (7.14)

Setting f−1(x) = y, we obtain sin y = f(y) = x and thus

cos y = f ′(y) =
√
1− x2,

or equivalently f ′(f−1(x)) =
√
1− x2. Putting this result into the equation above then gives

(f−1)′(x) =
1√

1− x2

The function f−1 is of course the inverse sine function from trigonometry, written as either
sin−1 or arcsin. This proves the first equation in part (1) of the following theorem.

Theorem 7.37.

1. For all x ∈ (−1, 1),

arcsin′(x) =
1√

1− x2
and arccos′(x) = − arcsin′(x).

2. For all x ∈ (−∞,∞),

arctan′(x) =
1

1 + x2
and arccot′(x) = − arctan′(x).

3. For all x ∈ (−∞,−1) ∪ (1,∞),

arcsec′(x) =
1

|x|
√
x2 − 1

and arccsc′(x) = − arcsec′(x).

We verify the second equation in part (3) of Theorem 7.37. The function f(y) = csc y,
y ∈ [−π/2, 0)∪ (0, π/2] is one-to-one, and so has an inverse f−1 with domain (−∞,−1]∪ [1,∞).
Recalling that f ′(y) = − csc y cot y and applying the same arguments that led to (7.14) gives

(f−1)′(x) =
1

f ′(f−1(x))

for x ∈ (−∞,−1) ∪ (1,∞). Let y = f−1(x) for any x ∈ (−∞,−1) ∪ (1,∞), so that csc y =
f(y) = x for y ∈ (0, π/2) ∪ (−π/2, 0).
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If y ∈ (0, π/2), then x > 1 and y can be regarded as an interior angle of a right triangle in
Quadrant I as in the figure,

y

(
√
x2 − 1, 1)

√
x2 − 1

1
x

From this it can be seen that cot y =
√
x2 − 1, and so since |x| = x we obtain

(f−1)′(x) =
1

f ′(f−1(x))
=

1

f ′(y)
=

1

− csc y cot y
= − 1

x
√
x2 − 1

= − 1

|x|
√
x2 − 1

.

If y ∈ (−π/2, 0), then x < −1 and y is an interior angle of a triangle in Quadrant IV,

y

(
√
x2 − 1,−1)

√
x2 − 1

−1−x

Now we find that cot y = −
√
x2 − 1, and so since |x| = −x we obtain

(f−1)′(x) =
1

f ′(f−1(x))
=

1

f ′(y)
=

1

− csc y cot y
=

1

x
√
x2 − 1

= − 1

|x|
√
x2 − 1

.

By definition f−1 is csc−1, which is also written arccsc and so the second half of part (6) is
verified.

Example 7.38. If f(x) = arccos
(
esinx

)
, then

f ′(x) = − 1»
1− (esinx)2

·
(
esinx

)′
= − 1√

1− e2 sinx
· esinx · (sinx)′ = − esinx cosx√

1− e2 sinx

by Theorem 7.37(2) and the Chain Rule. ■

Example 7.39. If f(x) = sin(sec−1(2x)), then for |2x| > 1 (that is, |x| > 1/2) we obtain

f ′(x) = cos(sec−1(2x)) · (sec−1(2x))′ = cos(sec−1(2x)) · 1

|2x|
√
(2x)2 − 1

· (2x)′

= cos(sec−1(2x)) · 2

|2x|
√

(2x)2 − 1
= cos(sec−1(2x)) · 1

|x|
√
(2x)2 − 1

.

However, this can be simplified some more. If we let θ = sec−1(2x), then 0 < θ < π is such that
sec θ = 2x, and so

cos(sec−1(2x)) = cos θ = 1/2x
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since cos = 1/ sec. Therefore we have

f ′(x) =
1

2x|x|
√
4x2 − 1

for x ∈ (−∞,−1/2] ∪ [1/2,∞). ■

An immediate consequence of Theorem 7.37 are the following formulas that allow us to
determine various indefinite integrals.

Theorem 7.40.

1.

�
1√

a2 − x2
dx = arcsin

(x
a

)
+ c, for all a ∈ (0,∞)

2.

�
1

a2 + x2
dx =

1

a
arctan

(x
a

)
+ c, for all a ∈ (−∞, 0) ∪ (0,∞)

3.

�
1

x
√
x2 − a2

dx =
1

a
arcsec

∣∣∣x
a

∣∣∣+ c, for all a ∈ (0,∞)

Example 7.41. Evaluate � 5/4

0

3

64x2 + 100
dx.

Solution. Employ the u-substitution procedure: let u = 8x, so that dx = 1
8
du. When x = 0 we

have u = 0; and when x = 5/4 we have u = 10. Thus,� 5/4

0

3

64x2 + 100
dx = 3

� 10

0

1/8

u2 + 102
du =

3

8

� 10

0

1

102 + u2
du =

3

8

ï
1

10
arctan

( u
10

)ò10
0

=
3

80
[arctan(1)− arctan(0)] =

3

80

(π
4
− 0
)
=

3π

320
,

using Theorem 7.40(2). ■

Example 7.42. Determine �
1

(x+ 3)
√
x2 + 6x

dx.

Solution. Use u-substitution: let u = x+ 3, so x = u− 3 and dx = du, and we obtain�
1

(x+ 3)
√
x2 + 6x

dx =

�
1

u
√

(u− 3)2 + 6(u− 3)
du =

�
1

u
√
u2 − 9

du

=
1

3
arcsec

∣∣∣u
3

∣∣∣+ c =
1

3
arcsec

∣∣∣∣x+ 3

3

∣∣∣∣+ c,

using Theorem 7.40(3) with a = 3. ■
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7.6 – L’Hôpital’s Rule: Other Indeterminant Forms

Recall the statements of the various theorems known collectively as L’Hôpital’s Rule in §4.7,
which are used to help evaluate limits that otherwise lead to indeterminate forms of the type
0/0 or ∞/∞. With some algebraic manipulation we were also able to resolve indeterminate
forms such as 0 · ∞ and ∞−∞.

We now consider indeterminate forms of the type ∞0, 1∞ and 00. If a limit limx→c f(x)
(or a corresponding one-sided limit) leads to ∞0, 1∞ or 00, the strategy will be to evaluate
limx→c ln(f(x)) instead, which will exhibit one of the forms 0/0 or ∞/∞ and so lend itself to
evaluation by L’Hôpital’s Rule, and then employ Proposition 2.41 to obtain

lim
x→c

f(x) = lim
x→c

exp
(
ln(f(x))

)
= exp

(
lim
x→c

ln(f(x))
)
.

Example 7.43. Evaluate

lim
x→∞

Å
1

5x

ã2/x
.

Solution. This limit exhibits the indeterminate form 00, so the strategy will be to obtain a
limit that lends itself to an application of L’Hôpital’s Rule.

For all x > 0 we haveÅ
1

5x

ã2/x
= exp

ñ
ln

Å
1

5x

ã2/xô
= exp

ï
2

x
ln

Å
1

5x

ãò
= exp

Å−2 ln(5x)

x

ã
.

The functions f(x) = −2 ln(5x) and g(x) = x are differentiable on (0,∞), and g′(x) = 1 ̸= 0 for
all x ∈ (0,∞). Since g(x) → ∞ as x→ ∞, and

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞

−2/x

1
= 0,

by L’Hôpital’s Rule (specifically Theorem 4.35) we obtain

lim
x→∞

f(x)

g(x)
= lim

x→∞

−2 ln(5x)

x
= 0

as well. Now, since exp(x) is a continuous function,

lim
x→∞

Å
1

5x

ã2/x
= lim

x→∞
exp

Å−2 ln(5x)

x

ã
= exp

Å
lim
x→∞

−2 ln(5x)

x

ã
= exp(0) = 1

by Proposition 2.41 ■

Recall that for any set A ⊆ R, a point c ∈ A is said to be in the interior of A if there exists
some δ > 0 such that (c− δ, c+ δ) ⊆ A.

Example 7.44. Evaluate

lim
x→0+

(cotx)x.
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Solution. This limit exhibits the indeterminate form ∞0. We evaluate

lim
x→0+

ln(cotx)x = lim
x→0+

x ln(cotx) = lim
x→0+

ln(cotx)

1/x
(7.15)

instead. Certainly ln(cotx) and 1/x are differentiable on (0, π/2), and

(1/x)′ = −1/x2 ̸= 0

for all x ∈ (0, π/2). Moreover we see that 1/x → ∞ as x → 0+. So, we can evaluate (7.15)
using L’Hôpital’s Rule (specifically Theorem 4.36) if we can evaluate

lim
x→0+

(ln(cotx))′

(1/x)′
= lim

x→0+

(1/ cotx)(− csc2 x)

−1/x2
= lim

x→0+

x2

cosx sinx
(7.16)

But this limit itself gives rise to the indeterminate form 0/0! So we must attempt to
apply L’Hôpital’s Rule on (7.16) before we can address (7.15). Clearly x2 and cosx sinx are
differentiable on (0, π/4) and

(cosx sinx)′ = cos2 x− sin2 x ̸= 0

for all x ∈ (0, π/4). Now,

lim
x→0+

(x2)′

(cosx sinx)′
= lim

x→0+

2x

cos2 x− sin2 x
=

0

1− 0
= 0,

so by Theorem 4.36 the limit (7.16) equals 0, and then by Theorem 4.36 again the limit (7.15)
is 0:

lim
x→0+

ln(cotx)x = 0

Now, 0 is in the interior of Dom(exp) = (−∞,∞), so by (7.8) and Proposition 2.41,

lim
x→0+

(cotx)x = lim
x→0+

exp(ln(cotx)x) = exp

Å
lim
x→0+

ln(cotx)x
ã
= exp(0) = e0 = 1.

■

In §7.2 the number e is defined to be that unique real number for which ln(e) = 1. The
question naturally arises: How do we determine the value of e? The following provides an
answer. Another way of finding e is given in §10.3.

Proposition 7.45.

e = lim
x→∞

Å
1 +

1

x

ãx
Proof. We evaluate the limit

lim
x→∞

ln

Å
1 +

1

x

ãx
= lim

x→∞
x ln

Å
1 +

1

x

ã
= lim

x→∞

ln(1 + 1/x)

1/x
,

which has a 0/0 indeterminate form and can be treated with L’Hôpital’s Rule:

lim
x→∞

ln(1 + 1/x)

1/x
= lim

x→∞

1

1 + 1/x
·
Å
− 1

x2

ã
−1/x2

= lim
x→∞

1

1 + 1/x
=

1

1 + 0
= 1.
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Thus we have

lim
x→∞

ln

Å
1 +

1

x

ãx
= 1,

and so by (7.8) and Proposition 2.41 it follows that

lim
x→∞

Å
1 +

1

x

ãx
= lim

x→∞
exp

Å
ln

Å
1 +

1

x

ãx ã
= exp

Å
lim
x→∞

ln

Å
1 +

1

x

ãx ã
= exp(1) = e1 = e,

as was to be shown. ■

A good approximation to e is

e ≈
Å
1 +

1

10, 000

ã10,000
≈ 2.7181.

In actual fact e is an irrational number:

e = 2.718281828459045235360287471352662497757247093...

Example 7.46. Evaluate
lim
x→∞

(cosh ax)1/bx

for a > 0 and b ̸= 0.

Solution. The limit exhibits an ∞0 indeterminant form. Applying Theorem 4.35, we obtain

lim
x→∞

ln(cosh ax)1/bx = lim
x→∞

ln(cosh ax)

bx
= lim

x→∞

[ln(cosh ax)]′

(bx)′
= lim

x→∞

a tanh ax

b

=
a

b
lim
x→∞

eax − e−ax

eax + e−ax
=
a

b
lim
x→∞

1− e−2ax

1 + e−2ax
=
a

b
· 1− 0

1 + 0
=
a

b
.

Now, by Proposition 2.41,

lim
x→∞

(cosh ax)1/bx = lim
x→∞

exp
Ä
ln(cosh ax)1/bx

ä
= exp

(
lim
x→∞

ln(cosh ax)1/bx
)
= exp(a/b).

That is,
lim
x→∞

(cosh ax)1/bx = ea/b

if a > 0 and b ̸= 0. ■

Problems

1. Evaluate limx→∞(cosh ax)1/bx for a < 0 and b ̸= 0.

2. Evaluate limx→0+ x
sinx.
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8
Integration Techniques

8.1 – Integration by Parts

Let I be an interval on which functions u, v are differentiable, and u′v has antiderivative F0.
By the Product Rule of differentiation,

(uv)′(x) = u(x)v′(x) + u′(x)v(x) = (uv′)(x) + (u′v)(x)

for each x ∈ I, and so uv′ = (uv)′ − u′v on I. It is now clear that uv′ has antiderivative uv−F0

on I, and so Proposition 4.45 implies that
�
uv′ = {(uv − F0) + c : c ∈ R} = {uv − (F0 + c) : c ∈ R}

= {uv − F : F is an antiderivative of u′v on I}

= uv − {F : F is an antiderivative of u′v on I} = uv −
�
u′v.

We have proven the following theorem.

Theorem 8.1 (Integration by Parts: Indefinite Integrals). On an interval I where u, v
are differentiable and u′v has an antiderivative,

�
uv′ = uv −

�
u′v. (8.1)

We call equation (8.1) the integration by parts formula for indefinite integrals, which can
also be written as �

u(x)v′(x)dx = u(x)v(x)−
�
u′(x)v(x)dx. (8.2)

The integration by parts formula for indefinite integrals extends quite naturally to definite
integrals as follows.
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Theorem 8.2 (Integration by Parts: Definite Integrals). For any closed interval [a, b]
where u, v are differentiable and u′v has an antiderivative,� b

a

uv′ = uv
∣∣b
a
−
� b

a

u′v.

Proof. Let F be an antiderivative for u′v on [a, b]. By Theorem 8.1 it follows that G = uv − F
is an antiderivative for uv′ on [a, b], and so� b

a

uv′ = G(b)−G(a) = (uv − F )(b)− (uv − F )(a)

= [(uv)(b)− (uv)(a)]− [F (b)− F (a)] = uv
∣∣b
a
−
� b

a

u′v

by the Fundamental Theorem of Calculus. ■

The conclusion of Theorem 8.2 is often written as� b

a

u(x)v′(x)dx =
[
u(x)v(x)

]b
a
−
� b

a

u′(x)v(x)dx.

Some examples will illustrate how the integration by parts technique is put into practice.

Example 8.3. Find �
x cos 2xdx.

Solution. Let u(x) = x and v′(x) = cos 2x, so that u′(x) = 1 and we can choose v(x) = 1
2
sin 2x.

(In fact any antiderivative for v′ will be suited to our purpose, but the one with constant term
equal to zero is usually the easiest to work with.) By Theorem 8.1 it follows that�

x cos 2xdx = x · 1
2
sin 2x−

�
1

2
sin 2xdx =

1

2
x sin 2x− 1

2

Å
−1

2
cos 2x+ c

ã
=

1

2
x sin 2x+

1

4
cos 2x− c

2
=

1

2
x sin 2x+

1

4
cos 2x+ c.

For the last equality we observe that, since c is arbitrary, both −c/2 and c can assume any real
value, and so replacing the term −c/2 with the term c changes nothing. ■

Example 8.4. Find �
ln(x)dx.

Solution. Setting u(x) = ln(x) and v′(x) = 1, we obtain ln(x) = u(x)v′(x). Now, u′(x) = 1/x,
and a suitable choice for v is v(x) = x. (Choosing v(x) = x+ c for any constant c will also work
for us, but it’s natural to simply let c = 0.) Now we find that�

ln(x)dx = ln(x) · x−
�

1

x
· xdx = x ln(x)−

�
dx = x ln(x)− x+ c

by Theorem 8.1. ■
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Example 8.5. Find �
tan−1(x)dx.

Solution. Setting u(x) = tan−1(x) and v′(x) = 1, we obtain tan−1(x) = u(x)v′(x). Now,
u′(x) = 1/(x2 + 1), and a suitable choice for v is v(x) = x. Employing integration by parts
yields �

tan−1(x)dx = tan−1(x) · x−
�

1

x2 + 1
· xdx = x tan−1(x)− 1

2

�
2x

x2 + 1
dx. (8.3)

Employing u-substitution, we let u = x2 + 1, so that du = 2xdx and we obtain�
2x

x2 + 1
dx =

�
1

u
du = ln |u|+ c = ln |x2 + 1|+ c = ln(x2 + 1) + c.

Putting this result into (8.3) gives�
tan−1(x)dx = x tan−1(x)− 1

2
ln(x2 + 1) + c = x tan−1(x)− ln

√
x2 + 1 + c,

where −1
2
c is written simply as c since it is an arbitrary constant anyway. ■

The following example illustrates how integration by parts may be used twice in order to
obtain an equation that can be solved for an indefinite integral.

Example 8.6. Find �
ex sin(x)dx.

Solution. Let u(x) = sin(x) and v′(x) = ex, so that u′(x) = cos(x) and we can choose v(x) = ex

to obtain �
ex sin(x)dx = ex sin(x)−

�
ex cos(x)dx. (8.4)

The new integral on the right-hand side of the equation is no better than the one on the left-hand
side. Before despairing, however, let us see what happens if we apply integration by parts to
this new integral.

Let u(x) = cos(x) and v′(x) = ex, so u′(x) = − sin(x) and v(x) = ex, and we obtain�
ex cos(x)dx = ex cos(x)−

�
−ex sin(x)dx = ex cos(x) +

�
ex sin(x)dx. (8.5)

Substituting (8.5) into (8.4) yields�
ex sin(x)dx = ex sin(x)−

Å
ex cos(x) +

�
ex sin(x)dx

ã
Now the integral we are to determine appears on both sides of the equation, which leaves us

to merely solve for it and be done:�
ex sin(x)dx =

ex(sinx− cosx)

2
+ c.

Do not forget to append an arbitrary constant c in the final result. ■
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Question: would the approach in the example above have worked equally well if we had
chosen u(x) = ex and v′(x) = cos(x) in the second integration by parts procedure?

Example 8.7. Evaluate � 4

1

√
t ln(t)dt.

Solution. Let u(t) = ln(t) and v′(t) =
√
t, so that u′(t) = 1/t and we can choose v(t) = 2

3
t3/2.

Now, � 4

1

√
t ln(t)dt =

ï
2

3
t3/2 ln(t)

ò4
1

−
� 4

1

1

t
· 2t

3/2

3
dt =

2

3

î
t3/2 ln(t)

ó4
1
− 2

3

� 4

1

√
tdt

=
2

3

î
43/2 ln(4)− 13/2 ln(1)

ó
− 2

3

ï
2

3
t3/2
ò4
1

=
2

3
[8 ln(4)− 0]− 4

9

î
43/2 − 13/2

ó
=

16

3
· ln(4)− 4

9
· 7 =

48 ln(4)− 28

9
,

by Theorem 8.2. ■

Example 8.8. Let R be the region in the first quadrant bounded by the coordinate axes, the
line x = 1, and the curve y = e−x. Find the volume V of the solid generated by revolving R
about the y-axis.

Solution. By the Shell Method we have

V =

� 1

0

2πxe−xdx.

Let u(x) = 2πx and v′(x) = e−x, so that u′(x) = 2π and v(x) = −e−x. By Theorem 8.2,

V =
[
− 2πxe−x

]1
0
−
� 1

0

−2πe−xdx = −2πe−1 + 2π
[
− e−x

]1
0

= −2πe−1 − 2π(e−1 − 1) = 2π − 4π

e
.

■
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8.2 – Trigonometric Integrals

A trigonometric integral is an integral whose integrand consists entirely of trigonometric
functions, such as those given in the next two theorems.

Theorem 8.9 (Reduction Formulas). If n is a positive integer, then the following hold.

1.

�
sinn xdx = −sinn−1 x cosx

n
+
n− 1

n

�
sinn−2 xdx

2.

�
cosn xdx =

cosn−1 x sinx

n
+
n− 1

n

�
cosn−2 xdx

3.

�
tann xdx =

tann−1 x

n− 1
−
�

tann−2 xdx, n ̸= 1

4.

�
secn xdx =

secn−2 x tanx

n− 1
+
n− 2

n− 1

�
secn−2 xdx, n ̸= 1

The proofs for these various reduction formulas involve the method of induction. A demon-
stration of this for the first formula will be supplied at a later date, as will a proof for at least
one part of the following theorem.

Theorem 8.10.

1.

�
tanxdx = − ln | cosx|+ c = ln | secx|+ c

2.

�
cotxdx = ln | sinx|+ c

3.

�
secxdx = ln | secx+ tanx|+ c

4.

�
cscxdx = − ln | cscx+ cotx|+ c

Example 8.11. Determine �
tan2 θ sec θ dθ

Solution. We start with the identity tan2 θ = sec2 θ − 1,�
tan2 θ sec θ dθ =

�
(sec2 θ − 1) sec θ dθ =

�
sec3 dθ −

�
sec θ dθ

=

Å
1

2
sec θ tan θ +

1

2

�
sec θ dθ

ã
−
�

sec θ dθ

=
1

2
sec θ tan θ − 1

2

�
sec θ dθ

=
1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ|+ c,

using Theorem 8.9(4) in the second line, and Theorem 8.10(3) in the last line. ■
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Example 8.12. Determine �
sin7(x) cos3(x)dx

Solution. We have�
sin7(x) cos3(x)dx =

�
[sin2(x)]3 cos3(x) sin(x)dx

=

�
[1− cos2(x)]3 cos3(x) sin(x)dx,

and so if we let u = cos(x), so that sin(x)dx is replaced by −du by the Substitution Rule, we
obtain �

sin7(x) cos3(x)dx = −
�

(1− u2)3u3 du =

�
(u3 − 3u5 + 3u7 − u9) du

=
1

4
u4 − 1

2
u6 +

3

8
u8 − 1

10
u10 + c

=
1

4
cos4−1

2
cos6+

3

8
cos8− 1

10
cos10+c.

■
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8.3 – Trigonometric Substitution

A trigonometric substitution is a variable substitution that is made that converts an
integral to a trigonometric integral.

Example 8.13. Determine � √
121− x2dx.

Solution. Let x = 11 sin θ for θ ∈ [−π/2, π/2], so that dx is replaced with 11 cos θ dθ as part of
the substitution. Observe that −π/2 ≤ θ ≤ π/2 implies cos θ ≥ 0, so that

√
cos2 θ = | cos θ| = cos θ.

Now, � √
121− x2dx =

� √
121− 121 sin2 θ · 11 cos θ dθ =

�
121 cos θ

√
1− sin2 θ dθ

= 121

�
cos θ

√
cos2 θ dθ = 121

�
cos2 θ dθ,

and with the deft use of the given formula for
�
cosn θ dθ we obtain� √

121− x2dx = 121

Å
cos θ sin θ

2
+

1

2

�
(1) dθ

ã
=

121

2
cos θ sin θ +

121

2
θ + c.

From x = 11 sin θ comes sin θ = x/11, so θ = sin−1(x/11) and θ may be characterized as an
angle in the right triangle

θ√
121− x2

|x|11

Note that x ≥ 0 if θ ∈ [0, π/2], and x < 0 if θ ∈ [−π/2, 0). From this triangle we see that
cos θ =

√
121− x2/11, and therefore

� √
121− x2dx =

121

2
·
√
121− x2

11
· x
11

+
121

2
sin−1

( x
11

)
+ c

=
x
√
121− x2

2
+

121

2
sin−1

( x
11

)
+ c.

■

Example 8.14. Determine �
1√

x2 − 49
dx, x > 7
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Solution. Let x = 7 sec θ. Then dx is replaced with 7 sec θ tan θ dθ as part of the substitution,
and we obtain�

1√
x2 − 49

dx =

�
7 sec θ tan θ√
49 sec2 θ − 49

dθ =

�
7 sec θ tan θ

7
√
tan2 θ

dθ =

�
sec θ tan θ

| tan θ|
dθ. (8.6)

Now, since we’re given x > 7, we have sec θ = x/7 > 1, and so 0 < θ < π/2 holds. It follows
that tan θ > 0, so then | tan θ| = tan θ and from (8.6) we obtain�

1√
x2 − 49

dx =

�
sec θ tan θ

tan θ
dθ =

�
sec θ dθ = ln | sec θ + tan θ|+ c.

Given that 0 < θ < π/2 and sec θ = x/7, we find θ to be an interior angle of the triangle

θ
7

√
x2 − 49

x

and so tan θ =
√
x2 − 49/7 and we obtain�

1√
x2 − 49

dx = ln

Ç
x

7
+

√
x2 − 49

7

å
+ c,

where the absolute value signs can be removed since x > 7. ■

Other answers are possible in the example above. For instance we can write

ln

Ç
x

7
+

√
x2 − 49

7

å
+ c = ln

Ä
x+

√
x2 − 49

ä
+ ln

Å
1

7

ã
+ c

= ln
Ä
x+

√
x2 − 49

ä
+ c,

where ln(1/7) is “absorbed” by the arbitrary constant c to yield an arbitrary constant that can
just as well be represented by c.

Example 8.15. Determine �
1√

1− 1/x
dx.

Solution. First we need 1− 1/x > 0, which implies that x ∈ (−∞, 0) ∪ (1,∞). Assume that
x > 1. Now,

I :=

�
1√

1− 1/x
dx =

�
x√

x2 − x
dx =

�
x»

(x− 1
2
)2 − 1

4

dx.

Letting u = x− 1
2
(so u > 1/2), we obtain

I =

�
u+ 1/2√
u2 − 1/4

du =

�
u√

u2 − 1/4
du+

1

2

�
1√

u2 − 1/4
du. (8.7)

For the first integral, let v = u2 − 1/4 to get�
u√

u2 − 1/4
du =

1

2

�
v−1/2 dv = v1/2 =

»
u2 − 1/4 =

√
x2 − x (8.8)
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(we suppress the arbitrary constant for the time being).
For the second integral make the substitution u = 1

2
sec θ. Note that since u > 1/2 implies

sec θ > 1, the new variable θ will satisfy 0 < θ < π/2 and thus»
u2 − 1/4 =

…
1

4
sec2 θ − 1

4
=

1

2

√
tan2 θ =

1

2
| tan θ| = 1

2
tan θ. (8.9)

Now, since sec θ = 2u implies tan θ =
√
4u2 − 1,�

1√
u2 − 1/4

du =

�
2

tan θ
· 1
2
tan θ sec θ dθ =

�
sec θ dθ = ln | sec θ + tan θ|

= ln
Ä
2u+

√
4u2 − 1

ä
= ln
Ä
2x− 1 + 2

√
x2 − x

ä
(8.10)

Finally, combining (8.8) and (8.10), we obtain from (8.7)�
1√

1− 1/x
dx =

√
x2 − x+

1

2
ln
Ä
2x− 1 + 2

√
x2 − x

ä
+ c, if x > 1.

The analysis is similar if we assume that x < 0, only (8.9) leads to»
u2 − 1/4 = −1

2
tan θ

since u < −1/2 implies π/2 < θ < π; then, noting that 2u+
√
4u2 − 1 < 0 for u < −1/2, the

manipulations in (8.10) take a slightly different tack:�
1√

u2 − 1/4
du =

�
−2

tan θ
· 1
2
tan θ sec θ dθ = −

�
sec θ dθ = − ln | sec θ + tan θ|

= − ln
Ä
−2u−

√
4u2 − 1

ä
= − ln

Ä
1− 2x− 2

√
x2 − x

ä
.

Therefore �
1√

1− 1/x
dx =

®√
x2 − x+ ln

√
2x− 1 + 2

√
x2 − x+ c, if x > 1√

x2 − x− ln
√

1− 2x− 2
√
x2 − x+ c, if x < 0

which necessarily is piecewise defined. ■

Recalling the definition of an antiderivative given in Chapter 4, what we’ve found in the
example above is that an antiderivative for f(x) = 1/

√
1− 1/x on any interval I ⊆ (1,∞) is

given by

F1(x) =
√
x2 − x+ ln

√
2x− 1 + 2

√
x2 − x+ c

for an arbitrarily chosen constant c, which implies that F ′
1(x) = f(x) for all x > 1. On the other

hand, an antiderivative for f on any I ⊆ (−∞, 0) is given by

F2(x) =
√
x2 − x− ln

√
1− 2x− 2

√
x2 − x+ c,

so that F ′
2(x) = f(x) for all x < 0.
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8.4 – Partial Fraction Decomposition

Recall that, formally, a rational function is a function f for which f(x) is a rational expression.
Thus, f(x) = p(x)/q(x) for polynomial functions p and q, where q is not the zero function.
Given

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0,

recall that the “degree” of p, denoted by deg(p), is the highest power of x in the polynomial;
thus, deg(p) = n.

Suppose deg(p) < deg(q), there are polynomials q1(x), . . . , qn(x) such that each qi(x) is a
factor of q(x) but not all qi(x) equal q(x), and there are polynomials p1(x), . . . , pn(x) such that
deg(pi) ≤ 1 for each i and

p(x)

q(x)
=
p1(x)

q1(x)
+
p2(x)

q2(x)
+ · · ·+ pn(x)

qn(x)
. (8.11)

Then the right-hand side of (8.11) is a partial fraction decomposition of p(x)/q(x).

Example 8.16. Find a partial fraction decomposition for

7

2x2 + 5x− 12
.

Solution. First, 2x2 + 5x− 12 = (2x− 3)(x+ 4), so it’s reasonable to suppose that there must
be fractions A/(2x− 3) and B/(x+ 4) such that

A

2x− 3
+

B

x+ 4
=

7

(2x− 3)(x+ 4)
.

for all x ̸= −4, 3
2
. What must be done is to determine the appropriate values of A and B. First

observe that, for x ̸= −4, 3
2
,

(2x− 3)(x+ 4) ·
Å

A

2x− 3
+

B

x+ 4

ã
=

7

(2x− 3)(x+ 4)
· (2x− 3)(x+ 4)

A(x+ 4) +B(2x− 3) = 7

(A+ 2B)x+ (4A− 3B) = 0x+ 7,

and so it stands to reason that A+ 2B = 0 and 4A− 3B = 7. That is, we have a system of two
equations with two unknowns A and B. From A+ 2B = 0 we obtain A = −2B, which we put
into 4A− 3B = 7 to get 4(−2B)− 3B = 7. Now,

4(−2B)− 3B = 7 ⇒ −11B = 7 ⇒ B = −7/11,

and thus A = −2(−7/11) = 14/11.
Therefore the partial fraction decomposition we seek is

14/11

2x− 3
+

−7/11

x+ 4
=

14

11(2x− 3)
− 7

11(x+ 4)
,

which is easily verified by combining the fractions. ■
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The utility of partial fraction decomposition lies in its potential to help determine otherwise
intractable integrals.

Example 8.17. Determine �
7

2x2 + 5x− 12
dx.

Solution. Using the result of the previous example, we obtain�
7

2x2 + 5x− 12
dx =

� Å
14

11(2x− 3)
− 7

11(x+ 4)

ã
dx

=
14

11

�
1

2x− 3
dx− 7

11

�
1

x+ 4
dx

=
7

11
ln |2x− 3| − 7

11
ln |x+ 4|+ c.

■

A general characterization of the partial fraction decomposition methodology is furnished by
the following theorem.

Theorem 8.18 (Partial Fraction Decomposition). Let p and q be polynomial functions
such that deg(p) < deg(q), and suppose q can be factored as a product of polynomials of degree
at most 2. Then one of the following cases must hold.

1. q(x) has form

q1(x) = (a1x+ b1)(a2x+ b2) · · · (anx+ bn)

aix + bi ̸= ajx + bj whenever i ̸= j. So q1(x) is a product of distinct linear factors. Then
there exist constants A1, A2, . . . , An for which

p(x)

q1(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ An

anx+ bn
. (8.12)

2. q(x) has form

q2(x) = (ax+ b)n

for some integer n ≥ 2. So q2(x) is a product of repeated linear factors. Then there exist
constants B1, B2, . . . , Bn for which

p(x)

q2(x)
=

B1

ax+ b
+

B2

(ax+ b)2
+ · · ·+ Bn

(ax+ b)n
. (8.13)

3. q(x) has form

q3(x) = (a1x
2 + b1x+ c1) · · · (anx2 + bnx+ cn),

with b2i − 4aici < 0 for each i, and aix
2 + bix+ ci ̸= ajx

2 + bjx+ cj if i ̸= j. So q3(x) is a
product of distinct irreducible quadratic factors. Then there exist constants C1, . . . , Cn and
D1, . . . , Dn for which

p(x)

q3(x)
=

C1x+D1

a1x2 + b1x+ c1
+

C2x+D2

a2x2 + b2x+ c2
+ · · ·+ Cnx+Dn

anx2 + bnx+ cn
. (8.14)
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4. q(x) has form

q4(x) = (ax2 + bx+ c)n

with b2 − 4ac < 0 and n ≥ 2. So q4(x) is a product of repeated irreducible quadratic factors.
Then there exist constants C1, . . . , Cn and D1, . . . , Dn for which

p(x)

q4(x)
=

C1x+D1

ax2 + bx+ c
+

C2x+D2

(ax2 + bx+ c)2
+ · · ·+ Cnx+Dn

(ax2 + bx+ c)n
. (8.15)

5. q(x) has form

q5(x) = q1(x)q2(x)q3(x)q4(x).

Then the decomposition is given by

p(x)

q5(x)
=
p1(x)

q1(x)
+
p2(x)

q2(x)
+
p3(x)

q3(x)
+
p4(x)

q4(x)
, (8.16)

where p1(x)/q1(x), p2(x)/q2(x), p3(x)/q3(x), and p4(x)/q4(x) are given by the right-hand
sides of equations (8.12), (8.13), (8.14), and (8.15), respectively.

The best understanding of the overall strategy can be attained by examining an abundance
of examples. Example 8.16 illustrates Case (1) of Theorem 8.18, as does the next example.

Example 8.19. Evaluate � 3

2

6x2 + 5x− 3

x3 + 2x2 − 3x
dx.

Solution. Factoring the denominator yields x(x + 3)(x − 1), which are three distinct linear
factors and so Case (1) applies here:

6x2 + 5x− 3

x(x+ 3)(x− 1)
=
A1

x
+

A2

x+ 3
+

A3

x− 1
.

Multiplying both sides by x(x+ 3)(x− 1), we obtain

6x2 + 5x− 3 = A1(x+ 3)(x− 1) + A2x(x− 1) + A3x(x+ 3)

= (A1x
2 + 2A1x− 3A1) + (A2x

2 − A2x) + (A3x
2 + 3A3x)

= (A1 + A2 + A3)x
2 + (2A1 − A2 + 3A3)x− 3A1

Equating coefficients of x2, coefficients of x, and constant terms, we obtain a system of
equations,

A1 + A2 + A3 = 6
2A1 − A2 + 3A3 = 5
3A1 = 3

From the third equation we obtain A1 = 1. Putting this into the first equation yields
1 + A2 + A3 = 6, and so A2 = 5− A3. Now from the second equation we have

2(1)− (5− A3) + 3A3 = 5 ⇒ 4A3 − 3 = 5 ⇒ A3 = 2,

and thus A2 = 5− A3 = 3.
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Turning our attention to the integral, we obtain� 3

2

6x2 + 5x− 3

x3 + 2x2 − 3x
dx =

� 3

2

Å
1

x
+

3

x+ 3
+

2

x− 1

ã
dx

=
[
ln |x|+ 3 ln |x+ 3|+ 2 ln |x− 1|

]3
2

= ln 3 + 3 ln 6 + 2 ln 2− ln 2− 3 ln 5− 2 ln 1

= ln 3 + 3 ln 6 + ln 2− 3 ln 5

= 4 ln 6− 3 ln 5

as the answer. ■

Example 8.20. Determine �
x2

(x+ 1)3
dx.

Solution. Here we have a repeated linear factor in the denominator of the integrand, and so in
accordance with Case (2) of Theorem 8.18 we obtain

x2

(x+ 1)3
=

B1

x+ 1
+

B2

(x+ 1)2
+

B3

(x+ 1)3
.

Multiplying both sides by (x+ 1)3 yields

x2 = B1(x+ 1)2 +B2(x+ 1) +B3,

whence we obtain
x2 = B1x

2 + (2B1 +B2)x+ (B1 +B2 +B3).

Equating coefficients of matching powers of x produces the system of equations

B1 = 1
2B1 + B2 = 0
B1 + B2 + B3 = 0

Putting B1 = 1 from the first equation into the second equation gives 2+B2 = 0, or B2 = −2.
Now the third equation becomes 1− 2 +B3 = 0, or B3 = 1. We return to the integral to obtain�

x2

(x+ 1)3
dx =

� Å
B1

x+ 1
+

B2

(x+ 1)2
+

B3

(x+ 1)3

ã
dx

=

� Å
1

x+ 1
− 2

(x+ 1)2
+

1

(x+ 1)3

ã
dx (8.17)

= ln |x+ 1|+ 2

x+ 1
− 1

2(x+ 1)2
+ C

■

In Example 8.20 we could also have determined the integral by using a u-substitution
approach: let u = x+ 1, so that x = u− 1 and�

x2

(x+ 1)3
dx =

�
(u− 1)2

u3
du =

� Å
1

u
− 2

u2
+

1

u3

ã
du,
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which can be seen to be the same integral as (8.17).

Example 8.21. Determine �
3x3 − x2 + 6x− 4

(x2 + 1)(x2 + 2)
dx.

Solution. The denominator is a product of distinct irreducible quadratic factors, and so in
accordance with Case (4) of Theorem 8.18 we obtain

3x3 − x2 + 6x− 4

(x2 + 1)(x2 + 2)
=
C1x+D1

x2 + 1
+
C2x+D2

x2 + 2
.

Multiplying both sides by (x2 + 1)(x2 + 2) yields

3x3 − x2 + 6x− 4 = (C1x+D1)(x
2 + 2) + (C2x+D2)(x

2 + 1),

whence we obtain

3x3 − x2 + 6x− 4 = (C1 + C2)x
3 + (D1 +D2)x

2 + (2C1 + C2)x+ (2D1 +D2).

Equating coefficients of matching powers of x produces the system of equations

C1 + C2 = 3
D1 + D2 = −1
2C1 + C2 = 6
2D1 + D2 = −4

Solving the system gives C1 = 3, C2 = 0, D1 = −3, and D2 = 2. Returning to the integral, we
obtain �

3x3 − x2 + 6x− 4

(x2 + 1)(x2 + 2)
dx =

� Å
C1x+D1

x2 + 1
+
C2x+D2

x2 + 2

ã
dx

=

� Å
3x− 3

x2 + 1
+

2

x2 + 2

ã
dx

=

�
3x

x2 + 1
dx−

�
3

x2 + 1
dx+ 2

�
1

x2 + (
√
2)2

dx

=
3

2
ln |x2 + 1| − 3 tan−1(x) + 2 · 1√

2
tan−1

Å
x√
2

ã
+ c,

where the first integral can be determined by using the substitution u = x2 + 1. Therefore�
3x3 − x2 + 6x− 4

(x2 + 1)(x2 + 2)
dx =

3

2
ln(x2 + 1)− 3 tan−1(x) +

√
2 tan−1

Å
x√
2

ã
+ c,

noting that |x2 + 1| = x2 + 1. ■

Example 8.22. Determine �
5x2 + 3x− 2

x4 + x3 − 2x2
dx.
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Solution. Factoring the denominator, the integrand is

5x2 + 3x− 2

x2(x+ 2)(x− 1)
,

so x+ 2 and x− 1 are distinct linear factors, and x is a repeated factor. According to Case (5)
of Theorem 8.18 we have

5x2 + 3x− 2

x2(x+ 2)(x− 1)
=

P1(x)

(x+ 2)(x− 1)
+
P2(x)

x2
=

Å
A1

x+ 2
+

A2

x− 1

ã
+

Å
B1

x
+
B2

x2

ã
,

employing the prescribed decompositions for Cases (1) and (2). Multiplying the left and right
sides of the equation by x2(x+ 2)(x− 1) yields

5x2 + 3x− 2 = A1x
2(x− 1) + A2x

2(x+ 2) +B1x(x+ 2)(x− 1) +B2(x+ 2)(x− 1),

and thus

5x2 + 3x− 2 = (A1 + A2 +B1)x
3 + (−A1 + 2A2 +B1 +B2)x

2 + (−2B1 +B2)x− 2B2.

Equating coefficients of matching powers of x produces the system of equations

A1 + A2 + B1 = 0
−A1 + 2A2 + B1 + B2 = 5

−2B1 + B2 = 3
2B2 = 2

The solution to the system is A1 = −1, A2 = 2, B1 = −1, B2 = 1. We now return to the
integral, �

5x2 + 3x− 2

x4 + x3 − 2x2
dx =

� Å −1

x+ 2
+

2

x− 1
+

−1

x
+

1

x2

ã
dx

= − ln |x+ 2|+ 2 ln |x− 1| − ln |x| − 1

x
+ C,

a relatively easy resolution. ■

Example 8.23. Determine �
x4 + 1

x(x2 + 1)2
dx.

Solution. The denominator of the integrand consists of a distinct linear factor x, and also a
repeated irreducible quadratic factor x2 + 1. In accordance with Case (5) of Theorem 8.18 we
obtain

x4 + 1

x(x2 + 1)2
=
P1(x)

x
+

P4(x)

(x2 + 1)2
=
A

x
+

Å
C1x+D1

x2 + 1
+
C2x+D2

(x2 + 1)2

ã
,

employing the prescribed decompositions of Cases (1) and (4). Multiplying the left and right
sides of the equation by x(x2 + 1)2 yields

x4 + 1 = A(x2 + 1)2 + (C1x+D1)x(x
2 + 1) + (C2x+D2)x

= (A+ C1)x
4 +D1x

3 + (2A+ C1 + C2)x
2 + (D1 +D2)x+ A.
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Equating coefficients gives A+ C1 = 1, D1 = 0, 2A+ C1 + C2 = 0, D1 +D2 = 0, and A = 1.
Thus D2 = 0, and

A+ C1 = 1 ⇒ 1 + C1 = 1 ⇒ C1 = 0

and
2A+ C1 + C2 = 0 ⇒ 2(1) + 0 + C2 = 0 ⇒ C2 = −2.

Turning to the integral, we obtain�
x4 + 1

x(x2 + 1)2
dx =

� Å
A

x
+
C1x+D1

x2 + 1
+
C2x+D2

(x2 + 1)2

ã
dx

=

� Å
1

x
− 2x

(x2 + 1)2

ã
dx = ln |x| −

�
2x

(x2 + 1)2
dx

= ln |x|+ 1

x2 + 1
+ C

where the last integral can be determined by letting u = x2 + 1 to get
�
(1/u2) du = −1/u. ■
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8.5 – Improper Riemann Integrals

In this section we undertake a study of improper integrals. Simply put, an improper
Riemann integral is any sort of “integral” that does not conform to the definition of a
Riemann integral as given by Definition 5.4, which requires an interval of integration [a, b] that
is closed and bounded, and also a bounded real-valued function f that is defined at every point
in the interval of integration so that [a, b] ⊆ Dom(f). If f : [0, 2] → R is given by

f(x) =

®
x3, if 0 ≤ x < 2

10, if x = 2

then the integral
� 2

0
f is a completely “proper” Riemann integral which can be evaluated using

either Definition 5.2 or Theorem 5.21, even though f has a discontinuity at 2. This is therefore
not the kind of integral we’re concerned with at present.

Suppose f is Riemann integrable on [a, x] for all x ≥ a. By definition we have� x

a

f ∈ R

for each x ≥ a. This observation leads us to ask whether
� x
a
f tends to some limiting value

L ∈ R as x→ ∞; that is, does the limit

lim
x→∞

� x

a

f

exist in R? Such a question arises frequently in applications, and so motivates the following
definition.

Definition 8.24. If f ∈ R[a, b] for all b ≥ a, then we define� ∞

a

f = lim
b→∞

� b

a

f

and say that
�∞
a
f converges to L if

�∞
a
f = L for some L ∈ R. Otherwise we say that

�∞
a
f

diverges.
If f ∈ R[a, b] for all a ≤ b, then we define� b

−∞
f = lim

a→−∞

� b

a

f

and say that
� b
−∞ f converges to L if

� b
−∞ f = L for some L ∈ R. Otherwise we say that� b

−∞ f diverges.

If an improper integral converges to some real number L then it is customary to say simply
that the integral “converges” or is “convergent.” An integral that “diverges” is also said to be

“divergent.” Any integral of the form
�∞
a
f ,

� b
−∞ f , or

�∞
−∞ f (see below) is called an improper

integral of the first kind.
The next proposition establishes linearity properties specifically for integrals of the form�∞

a
f that are identical in form to the linearity properties of the Riemann integral given in §5.3.

There are similar linearity properties for all types of improper integrals.
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Proposition 8.25. Suppose
�∞
a
f and

�∞
a
g are convergent and c ∈ R. Then the following

hold.

1.
�∞
a
cf is convergent, with � ∞

a

cf = c

� ∞

a

f.

2.
�∞
a
(f + g) is convergent, with� ∞

a

(f ± g) =

� ∞

a

f ±
� ∞

a

g.

The proof is a routine application of relevant laws of limits established back in Chapter 2,
and so left as an exercise.

Example 8.26. Determine whether � ∞

1

ln(x)

x2
dx

converges or diverges. Evaluate if convergent.

Solution. It will be easier to first determine the indefinite integral�
ln(x)

x2
dx.

We start with a substitution: let w = ln(x), so that dw = (1/x)dx and ew = eln(x) = x; now,�
ln(x)

x2
dx =

�
we−w dw.

Next, we employ integration by parts, letting u′(w) = e−w and v(w) = w to obtain�
we−w dw = −we−w +

�
e−w dw = −we−w − e−w + C.

Hence, �
ln(x)

x2
dx = − ln(x) · 1

x
− 1

x
+ C = − ln(x) + 1

x
+ C.

Now we turn to the improper integral,
� ∞

1

ln(x)

x2
dx = lim

b→∞

� b

1

ln(x)

x2
dx = lim

b→∞

ï
− ln(x) + 1

x

òb
1

= lim
b→∞

ï
− ln(b) + 1

b
+

ln(1) + 1

1

ò
= lim

b→∞

Å
b− ln(b) + 1

b

ã
LR
= lim

b→∞

Å
1− 1/b

1

ã
= 1,

using L’Hôpital’s Rule where indicated.
Therefore the improper integral is convergent, and its value is 1. ■
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Given an improper integral such as
�∞
a
f(x)dx, if f(x) ≥ 0 for all x ∈ [a,∞), then the value

of the integral can be naturally interpreted as being the area under the curve y = f(x) for x ≥ a.
If the integral is divergent (in this case it will equal ∞), then the area is said to be infinite; and
if the integral is convergent, then the area is set equal to the real number the integral converges
to. Thus the area under the curve y = ln(x)/x2, illustrated in Figure 35, is considered to be 1.
Thus, the shaded region has an infinite “perimeter” and yet a finite area!

Proposition 8.27. Suppose that f ∈ R[s, t] for all −∞ < s < t < ∞. If
� c
−∞ f and

�∞
c
f

converge for some c ∈ R, then for any ĉ ̸= c the integrals
� ĉ
−∞ f and

�∞
ĉ
f also converge, and

� ĉ

−∞
f +

� ∞

ĉ

f =

� c

−∞
f +

� ∞

c

f

Proof. Suppose
� c
−∞ f and

�∞
c
f converge for some c ∈ R, meaning the limits

lim
a→−∞

� c

a

f and lim
b→∞

� b

c

f

both exist. Let ĉ < c.
For all b > c we have � b

ĉ

f =

� c

ĉ

f +

� b

c

f,

where
� c
ĉ
f,
� b
c
f ∈ R since f is integrable on [ĉ, c] and [c, b], and so

� ∞

ĉ

f = lim
b→∞

� b

ĉ

f = lim
b→∞

Ç� c

ĉ

f +

� b

c

f

å
=

� c

ĉ

f + lim
b→∞

� b

c

f =

� c

ĉ

f +

� ∞

c

f. (8.18)

Observing that
� c
ĉ
f,
�∞
c
f ∈ R, we readily conclude that

�∞
ĉ
f ∈ R and hence

�∞
ĉ
f converges.

For all a < ĉ we have � ĉ

a

f =

� c

a

f −
� c

ĉ

f,

where
� c
a
f,
� c
ĉ
f ∈ R since f is integrable on [a, c] and [ĉ, c], and so� ĉ

−∞
f = lim

a→−∞

� ĉ

a

f = lim
a→−∞

Å� c

a

f −
� c

ĉ

f

ã
= lim

a→−∞

� c

a

f −
� c

ĉ

f =

� c

−∞
f −

� c

ĉ

f. (8.19)

Observing that
� c
−∞ f,

� c
ĉ
f ∈ R, we readily conclude that

� ĉ
−∞ f ∈ R and hence

� ĉ
−∞ f converges.

x

y

1

0.1

0.2 Area=
�∞
1

ln(x)/x2dx = 1

Figure 35. The area under the curve y = ln(x)/x2.
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Finally, combining (8.18) and (8.19), we obtain� ĉ

−∞
f +

� ∞

ĉ

f =

Å� c

−∞
f −

� c

ĉ

f

ã
+

Å� c

ĉ

f +

� ∞

c

f

ã
=

� c

−∞
f +

� ∞

c

f,

as desired. ■

Due to Proposition 8.27 we can unambiguously define an improper integral of the first kind
whose interval of integration is (−∞,∞).

Definition 8.28. Suppose that f ∈ R[s, t] for all −∞ < s < t < ∞. If
� c
−∞ f and

�∞
c
f both

converge for some −∞ < c <∞, then we define� ∞

−∞
f =

� c

−∞
f +

� ∞

c

f.

and say that
�∞
−∞ f converges. Otherwise we say

�∞
−∞ f diverges.

It should be stressed that
�∞
−∞ f can not be reliably evaluated simply by computing the limit

lim
b→∞

� b

−b
f,

as the next example illustrates.

Example 8.29. Show that � ∞

−∞

2x

1 + x2
dx

diverges, and yet

lim
b→∞

� b

−b

2x

1 + x2
dx = 0.

Solution. Letting u = 1 + x2 gives du = 2xdx. Then� b

0

2x

1 + x2
dx =

� 1+b2

1

1

u
du = [ln |u|]1+b

2

1 = ln(1 + b2)− ln(1) = ln(1 + b2),

and so � ∞

0

2x

1 + x2
dx = lim

b→∞

� b

0

2x

1 + x2
dx = lim

b→∞
ln(1 + b2) = ∞.

Thus � ∞

0

2x

1 + x2
dx

diverges, and therefore � ∞

−∞

2x

1 + x2
dx

diverges as well.
On the other hand, again employing the substitution u = 1 + x2 we find that� b

−b

2x

1 + x2
dx =

� 1+b2

1+b2

1

u
du = 0,
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and so

lim
b→∞

� b

−b

2x

1 + x2
dx = lim

b→∞
(0) = 0.

■

An improper integral of the second kind is an integral of the form� b

a

f,

where −∞ < a < b < ∞, for which there exists some p ∈ [a, b] such that p /∈ Dom(f). The
following definition establishes how such an integral is to be evaluated, if it can be evaluated at
all, in the case when p = a or p = b.

Definition 8.30. If f ∈ R[c, b] for all c ∈ (a, b] and a /∈ Dom(f), then we define� b

a

f = lim
c→a+

� b

c

f

and say that
� b
a
f converges to L if

� b
a
f = L for some L ∈ R. Otherwise we say that

� b
a
f

diverges.
If f ∈ R[a, c] for all c ∈ [a, b) and b /∈ Dom(f), then we define� b

a

f = lim
c→b−

� c

a

f

and say that
� b
a
f converges to L if

� b
a
f = L for some L ∈ R. Otherwise we say that

� b
a
f

diverges.

Very often if f is continuous on, say, (a, b] and a /∈ Dom(f), then f has a vertical asymptote
at a; that is, limx→a+ f(x) = ±∞. However, it could just be that a value for f is simply not
specified at a by construction. For example for the function

φ(x) =

®
3x2, if x < 5

4− 8x, if x > 5

it’s seen that φ(5) is left undefined, and so the integral
� 9

5
φ is an improper integral of the

second kind. By Definition 8.30 we obtain� 9

5

φ = lim
c→5+

� 9

c

(4− 8x)dx = lim
c→5+

[
4x− 4x2

]9
c
= lim

c→5+

[(
4(9)− 4(9)2

)
−
(
4c− 4c2

)]
=
(
4(9)− 4(9)2

)
−
(
4(5)− 4(5)2

)
= −208,

which shows that
� 9

5
φ is convergent.

Example 8.31. Determine whether � 0

−1

1

x2
dx

converges or diverges. Evaluate if convergent.
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Solution. The function f(x) = 1/x2 being integrated has a vertical asymptote at x = 0, which
is the right endpoint of the interval of integration [−1, 0]. By Definition 8.30 we obtain� 0

−1

1

x2
dx = lim

c→0−

� c

−1

1

x2
dx = lim

c→0−

ï
−1

x

òc
−1

= lim
c→0−

Å
−1

c
− 1

ã
= ∞,

which shows that the improper integral is divergent. ■

Example 8.32. Determine whether � 2

0

x√
4− x2

dx

converges or diverges. Evaluate if convergent.

Solution. Here x/
√
4− x2 has a vertical asymptote at x = 2, the right endpoint of the interval

of integration [0, 2]. By Definition 8.30� 2

0

x√
4− x2

dx = lim
c→2−

� c

0

x√
4− x2

dx,

and so, letting u = 4− x2 so that xdx = −1
2
du, we obtain

lim
c→2−

� c

0

x√
4− x2

dx = lim
c→2−

� 4−c2

4

−1/2√
u
du = lim

c→2−

Å
−1

2

[
2
√
u
]4−c2
4

ã
= lim

c→2−

Ä
2−

√
4− c2

ä
= 2−

√
4− 22 = 2.

Hence the improper integral is convergent, and its value is 2. ■

The next definition addresses the circumstance when a function f is not defined at some
point p in the interior of an interval of integration. Again, this is commonly due to f having a
vertical asymptote at p, so that

lim
x→p+

|f(x)| = ∞ or lim
x→p−

|f(x)| = ∞,

but other scenarios are possible.

Definition 8.33. Suppose that f ∈ R[a, c] for all c ∈ [a, p), f ∈ R[c, b] for all c ∈ (p, b], and

p /∈ Dom(f). If
� p
a
f and

� b
p
f both converge, then we define

� b

a

f =

� p

a

f +

� b

p

f.

and say that
� b
a
f converges. Otherwise we say

� b
a
f diverges.

Example 8.34. Determine whether � 3

−2

1

x4
dx

converges or diverges. Evaluate if convergent.
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Solution. Here 1/x4 has a vertical asymptote at x = 0, an interior point of the interval of
integration [−2, 3]. Now, by Definition 8.30� 3

0

1

x4
dx = lim

c→0+

� 3

c

1

x4
dx = lim

c→0+

ï
− 1

x3

ò3
c

= lim
c→0+

Å
− 1

27
+

1

c3

ã
= ∞,

which shows that
� 3

0
x−4dx is divergent. Thus, since� 3

0

x−4dx and

� 0

−2

x−4dx

cannot both be convergent, by Definition 8.33 it’s concluded that
� 3

−2
x−4dx is divergent. ■

The integral treated in Example 8.34, like all improper integrals of the second kind, does
not look improper at first glance. If one is careless and undertakes to evaluate the integral
by conventional means, one is likely to arrive at a reasonable-looking answer without ever
suspecting that something is amiss:� 3

−2

1

x4
dx =

ï
− 1

x3

ò3
−2

= − 1

27
+

1

−8
= − 35

216
,

which is incorrect! So, before attempting to evaluate a definite integral, it is necessary to check
that the integral is not improper in some way.

It is possible to have an integral that is improper in more than one sense, such as� ∞

0

1

x2
dx.

Here we have an integral of f over an unbounded interval [0,∞), so it’s an improper integral of
the first kind, and also f is undefined at 0, so it’s an improper integral of the second kind. Such
an integral is called a mixed improper integral.

Definition 8.35. If f ∈ R[s, t] for all a < s < t < ∞, a /∈ Dom(f), and
� c
a
f and

�∞
c
f both

converge for some c ∈ (a,∞), then we define� ∞

a

f =

� c

a

f +

� ∞

c

f

and say
�∞
a
f converges. Otherwise we say

�∞
a
f diverges.

If f ∈ R[s, t] for all −∞ < s < t < b, b /∈ Dom(f), and
� c
−∞ f and

� b
c
f both converge for

some c ∈ (−∞, b), then we define � b

−∞
f =

� c

−∞
f +

� b

c

f

and say
� b
−∞ f converges. Otherwise we say

� b
−∞ f diverges.

Example 8.36. Determine whether the mixed improper integral� ∞

0

1√
x(1 + x)

dx

converges or diverges. Evaluate if convergent.
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Solution. We start by determining the indefinite integral�
1√

x(1 + x)
dx.

Let u =
√
x, so that 1 + u2 = 1 + x and we replace dx with 2u du to obtain�

1√
x(1 + x)

dx =

�
2u

u(u2 + 1)
du = 2

�
1

u2 + 1
du

= 2arctan(u) + c = 2arctan(
√
x ) + c.

Now, � 1

0

1√
x(1 + x)

dx = lim
a→0+

� 1

a

1√
x(1 + x)

dx = lim
a→0+

[
2 arctan(

√
x )
]1
a

= lim
a→0+

2[arctan(1)− arctan(a)]= 2[arctan(1)− arctan(0)]

= 2
(π
4
− 0
)
=
π

2
,

and � ∞

1

1√
x(1 + x)

dx = lim
b→∞

� b

1

1√
x(1 + x)

dx = lim
b→∞

[
2 arctan(

√
x )
]b
1

= lim
b→∞

2
î
arctan(

√
b )− arctan(1)

ó
= 2
(π
2
− π

4

)
=
π

2
.

Since � 1

0

1√
x(1 + x)

dx and

� ∞

1

1√
x(1 + x)

dx

both converge, we conclude that� ∞

0

1√
x(1 + x)

dx =

� 1

0

1√
x(1 + x)

dx+

� ∞

1

1√
x(1 + x)

dx =
π

2
+
π

2
= π

by Definition 8.35. ■
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8.6 – Convergence Tests for Integrals

It can be difficult to determine by direct means whether an improper integral is convergent
or not, largely because definite integrals themselves can be difficult to evaluate. One tool to
remedy this is the Comparison Test for Integrals. Before stating the theorem, we establish a
lemma that will be needed to prove the theorem.

Lemma 8.37. Suppose the function f is monotone increasing on (a,∞). If

lim
x→∞

f(x) =M,

then f(x) ≤M for all x > a.

Proof. Suppose there exists some x0 > a such that f(x0) > M . Thus f(x0) =M + ϵ for some
ϵ > 0. Now, for any β > 0 we can let x1 = max{x0, β}+ 1. Since x1 > x0 and f is monotone
increasing, we have

f(x1) ≥ f(x0) =M + ϵ ⇒ f(x1)−M ≥ ϵ ⇒ |f(x1)−M | ≥ ϵ.

Observing that x1 > β also, we conclude that for any β > 0 there exists some x > β for which
|f(x)−M | ≥ ϵ, and therefore

lim
x→∞

f(x) ̸=M.

The contrapositive of the statement of the lemma is proven. ■

Theorem 8.38 (Comparison Test for Integrals). Suppose f ∈ R[a, x] for all x ≥ a, and
0 ≤ f ≤ g on [a,∞). If

�∞
a
g is convergent, then

�∞
a
f is convergent.

Proof. Suppose
�∞
a
g is convergent. By definition it follows that g ∈ R[a, x] for all x ≥ a,

and so we may define ψ : [a,∞) → R by ψ(x) =
� x
a
g. Similarly we define φ : [a,∞) → R by

φ(x) =
� x
a
f .

Now, g ≥ 0 on [a,∞) implies that � y

x

g ≥ 0

for any a ≤ x < y. Thus, for any x, y ∈ [a,∞) such that x < y we have

ψ(y) =

� y

a

g =

� x

a

g +

� y

x

g ≥
� x

a

g = ψ(x),

which shows that ψ is monotone increasing on [a,∞). Since f ≥ 0 on [a,∞), a similar argument
establishes that φ also is monotone increasing on [a,∞).

Since
�∞
a
g converges, there exists some M ∈ R such that

lim
x→∞

� x

a

g =M.

That is, ψ is monotone increasing on (a,∞) and

lim
x→∞

ψ(x) =M,

so ψ(x) ≤M for all x > a by Lemma 8.37.
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Finally, from the hypothesis that f ≤ g on [a,∞), we have

φ(x) =

� x

a

f ≤
� x

a

g = ψ(x) ≤M

for all x > a. It is now established that φ is both monotone increasing and bounded above on
(a,∞), and therefore limx→∞ φ(x) exists in R by Proposition 2.31. Since� ∞

a

f = lim
x→∞

� x

a

f = lim
x→∞

φ(x),

it follows that
�∞
a
f is convergent. ■

Proposition 8.39. Suppose f ∈ R[a, x] for all x ≥ a. If
�∞
a

|f | is convergent, then
�∞
a
f is

convergent.

Proof. Suppose that
�∞
a

|f | is convergent. Then |f | ∈ R[a, x] for all x ≥ a, and since the same
holds true for f by hypothesis, we have f + |f | ∈ R[a, x] for all x ≥ a by Proposition 5.17. Now,
since 0 ≤ f + |f | ≤ 2|f | on [a,∞), and � ∞

a

2|f |

is convergent by Proposition 8.25, the Comparison Test for Integrals implies that� ∞

a

(f + |f |)

is convergent. Then, because
�∞
a

−|f | is convergent by Proposition 8.25, it follows by Proposition
8.25 that � ∞

a

[
(f + |f |) + (−|f |)

]
is convergent. Of course (f + |f |) + (−|f |) = f on [a,∞), and thus we conclude that

�∞
a
f is

convergent. ■

Proposition 8.40 (p -Test for Integrals). Let a > 1. Then� ∞

a

1

xp
dx

is convergent if and only if p > 1.

Example 8.41. Show that � ∞

1

sinx

x
dx

converges.

Solution. Let t ∈ [1,∞) be arbitrary. Employing integration by parts with u(x) = 1/x and
v′(x) = sin x, we have� t

1

sinx

x
dx =

[
−cosx

x

]t
1
−
� t

1

cosx

x2
dx = cos(1)− cos t

t
−
� t

1

cosx

x2
dx. (8.20)
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We wish to show that the integral at right in (8.20) is convergent. Let

φ(x) =
cosx

x2
and ψ(x) =

1

x2
.

For any x ∈ [1,∞),

0 ≤ |φ(x)| = | cosx|
x2

≤ 1

x2
= ψ(x),

and thus 0 ≤ |φ| ≤ ψ on [1,∞). Also, since |φ| is continuous on [1,∞), Proposition 5.23 implies
that |φ| ∈ R[1, x] for all x ≥ 1. Observing that� ∞

1

ψ =

� ∞

1

1

x2
dx

converges by the p-Test, it follows by the Comparison Test that� ∞

1

|φ| =
� ∞

1

| cosx|
x2

dx

likewise converges. Now, since φ ∈ R[1, x] for all x ≥ 1, by Proposition 8.39� ∞

1

φ =

� ∞

1

cosx

x2
dx

also converges. That is, the limit

lim
t→∞

� ∞

1

cosx

x2
dx

exists in R; and since

lim
t→∞

Å
cos(1)− cos t

t

ã
= cos(1)

also exists in R, from (8.20) we conclude that� ∞

1

sinx

x
dx = lim

t→∞

� t

1

sinx

x
dx = lim

t→∞

Å
cos(1)− cos t

t

ã
− lim

t→∞

� t

1

cosx

x2
dx

exists in R. That is, � ∞

1

sinx

x
dx

is convergent. ■

Example 8.42. Show that � 1

0

sinx

x
dx

converges, and then conclude that the mixed improper integral� ∞

0

sinx

x
dx

is convergent.
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Solution. The integral is an improper integral of the second kind since the integrand is undefined
at 0. By definition, � 1

0

sinx

x
dx = lim

t→0+

� 1

t

sinx

x
dx.

Making the substitution u = x−1, so that formally −x−2dx is replaced with du, we have, for
any t ∈ (0, 1),� 1

t

sinx

x
dx = −

� 1

t

−x−2 sinx

x−1
dx = −

� 1

1/t

sin(1/u)

u
du =

� 1/t

1

sin(1/u)

u
du,

and thus� 1

0

sinx

x
dx = lim

t→0+

� 1/t

1

sin(1/u)

u
du = lim

t→∞

� t

1

sin(1/u)

u
du =

� ∞

1

sin(1/u)

u
du. (8.21)

Let

f(u) =
sin(1/u)

u
.

Since f is continuous on [1,∞), Proposition 5.23 implies that f ∈ R[1, x] for all x ≥ 1. In the
proof of Proposition 2.43 we derived the inequality 0 < sin θ < θ for all θ ∈ (0, π/2), and since
1/u ∈ (0, π/2) for all u ∈ [1,∞), it follows that 0 < sin(1/u) ≤ 1/u holds for all u ∈ [1,∞), and
hence

0 <
sin(1/u)

u
≤ 1

u2

on [1,∞). By the p-Test it is known that
�∞
1
x−2dx converges, and therefore by the Comparison

Test � ∞

1

sin(1/u)

u
du

likewise converges. Recalling (8.21), we conclude that� 1

0

sinx

x
dx

converges as desired.
Finally, because � ∞

1

sinx

x
dx

was found to converge in the previous example, by Definition 8.35 it follows that� ∞

0

sinx

x
dx

converges also, with � ∞

0

sinx

x
dx =

� 1

0

sinx

x
dx+

� ∞

1

sinx

x
dx.

■

Example 8.43. Show that � ∞

−∞

sinx

x
dx (8.22)

is convergent.
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Solution. Let t > 0. Making the substitution u = −x, and recalling that sin(−θ) = − sin θ in
general, we have� 0

−t

sinx

x
dx = −

� 0

t

sin(−u)
−u

du = −
� 0

t

sinu

u
du =

� t

0

sinu

u
du.

Hence � 0

−∞

sinx

x
dx = lim

t→∞

� 0

−t

sinx

x
dx = lim

t→∞

� t

0

sinx

x
dx =

� ∞

0

sinx

x
dx,

and since the integral at right is known to converge by Example 8.41 (which is to say it equals
a real number), it follows readily that � 0

−∞

sinx

x
dx

likewise converges. Thus, by Definition 8.28, the integral (8.22) converges, with� ∞

−∞

sinx

x
dx =

� ∞

0

sinx

x
dx+

� 0

−∞

sinx

x
dx = 2

� ∞

0

sinx

x
dx.

in particular. ■
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9
Sequences and Series

9.1 – Numerical Sequences

In mathematics what’s called a “sequence” is a function with domain consisting strictly of
some subset of integers, most commonly the natural numbers N = {1, 2, 3, . . .} or whole numbers
{0, 1, 2, . . .}. Some references may insist that the domain of a sequence must always be N, but
this is neither necessary nor necessarily desirable.

Definition 9.1. A sequence is a function f for which Dom(f) = {n ∈ Z : n ≥ m} for some
m ∈ Z. If f(n) = an for each n ≥ m, then f may be denoted by the symbols

(an)
∞
n=m or (am, am+1, am+2, . . .).

Here n is the index of the sequence, and an is the sequence’s nth term.

Letting I = {n ∈ Z : n ≥ m}, a sequence (an)
∞
n=m may also be denoted by (an)n∈I . Thus

the symbols (an)
∞
n=1 and (an)n∈N are equivalent. Frequently the simpler symbol (an) may be

used in the interests of brevity or generality.
Given a nonempty set S, if an ∈ S for all n, then we say (an) is a sequence in S. For our

purposes a numerical sequence is a sequence R; that is, a sequence (an) in which an ∈ R for
all n.

The most common way to define a sequence is to give an explicit formula for its nth term.
An example of an explicit formula for a sequence is

(n3)∞n=1 = (1, 8, 27, 81, 125, . . .),

where it is explicitly given that an = n3 for each n ≥ 1.
Another example of a sequence given by an explicit formula isÅ

n+ 1

n− 1

ã∞

n=2

=

Å
3, 2,

5

3
,
3

2
,
7

5
, . . .

ã
,

which starts with n = 2. The formula results in division by zero when n = 1. We may reindex
the sequence, so that the index starts at 1 instead of 2, if we replace each n with k + 1:Å

n+ 1

n− 1

ã∞
n=2

=

Å
(k + 1) + 1

(k + 1)− 1

ã∞

k+1=2

=

Å
k + 2

k

ã∞
k=1

=

Å
3, 2,

5

3
,
3

2
,
7

5
, . . .

ã
.
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n

an

10 20 30 40 50

1

2

3

−1

−2

−3

Figure 36. The first 50 terms of the alternating sequence an = 1
2
(−1)n

√
n, n ≥ 1.

Yet another example of an explicit formula for a sequence is(
(−1)n(3n+ 1)

)∞
n=0

= (1,−4, 7,−11, 13,−16, . . .),

while in Figure 36 the sequence Å
1

2
(−1)n

√
n

ã∞
n=1

is illustrated.
Another way to define a sequence is by giving a recurrence relation, also known as an

implicit formula. A recurrence relation starts off by specifying the first one or more terms
of a sequence (called the initial values), then provides a general rule for computing the next
term using the values of previous ones. An example would be

an+1 = 4an − 7, a1 = 2,

where we obtain

a2 = 4a1 − 7 = 4(2)− 7 = 1,

a3 = 4a2 − 7 = 4(1)− 7 = −3,

a4 = 4a3 − 7 = 4(−3)− 7 = −19,

and so on, generating the sequence (2, 1,−3,−19, . . .).
A rather famous sequence is the Fibonacci sequence, which is defined recursively as

an = an−1 + an−2, a0 = 0, a1 = 1,

so that

a2 = a1 + a0 = 1 + 0 = 1,

a3 = a2 + a1 = 1 + 1 = 2,

a4 = a3 + a2 = 2 + 1 = 3,
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and in general each term in the sequence is determined to be the sum of the previous two terms,
giving

(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .).

This sequence turns up in nature in all manner of disparate ways, and the terms of the sequence
are called “Fibonacci numbers.”

Example 9.2. Consider the sequence (1, 4, 9, 16, 25, . . .). Find an explicit formula for the nth
term of the sequence, and also find a recurrence relation that generates the sequence.

Solution. We can rewrite the sequence as

(12, 22, 32, 42, 52, . . .),

from which it becomes clear that the explicit formula is an = n2.
Finding a suitable recurrence relation may take a bit more reflection, but the idea is that

each term in the sequence is the square of a number 1 greater than the number squared in the
previous term, and so

an+1 = (
√
an + 1)

2
, a1 = 1

is the recurrence relation. ■

We now define various properties that sequences may possess that can sometimes be useful
in the course of studying them.

Definition 9.3. A sequence (an)
∞
n=m is decreasing if an+1 < an for all n ≥ m, and nonin-

creasing (or monotone decreasing) if an+1 ≤ an for all n ≥ m. Similarly, the sequence is
increasing if an+1 > an for all n ≥ m, and nondecreasing (or monotone increasing) if
an+1 ≥ an for all n ≥ m. A sequence that is either nonincreasing or nondecreasing is called
monotone.

Note that a decreasing sequence is also necessarily nonincreasing, and an increasing sequence
must also be nondecreasing.

Definition 9.4. A sequence (an)
∞
n=m is bounded if there exists some α > 0 such that |an| ≤ α

for all n ≥ m.

A sequence (an) is unbounded if it is not bounded, meaning for every α > 0 there can be
found some integer N for which |aN | > α. If there exists some α > 0 such that an ≤ α for all n,
then α is an upper bound for (an), and we say (an) is bounded above. If an ≥ α for all n,
then α is a lower bound for (an), and we say (an) is bounded below. Note that a sequence
is bounded if and only if it is both bounded above and bounded below.

Example 9.5. Show that the sequence

an = 2n2 − 3n+ 4, n ≥ 1.

is increasing and unbounded.
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Solution. For any n ≥ 1 we have

an+1 = 2(n+ 1)2 − 3(n+ 1) + 4 = (2n2 − 3n+ 4) + (4n− 1) = an + (4n− 1) > an,

where the inequality is justified since n ≥ 1 implies that 4n− 1 > 0. Therefore an+1 > an for all
n ≥ 1, and the sequence is increasing.

To show unboundedness it may help to perform a completing the square maneuver to obtain

an = 2

Å
n− 3

4

ã2
+

23

8
.

Now, the sequence bn = n− 3
4
is clearly unbounded for n ≥ 1. We show this nonetheless. Let

α > 0 be arbitrarily large, and suppose N is an integer such that N > α + 3
4
. Then

bN = N − 3

4
>

Å
α +

3

4

ã
− 3

4
= α,

and we conclude that for any α > 0 there exists some integer N such that bN > α. Finally, since

an = 2b2n +
23

8
,

it is clear that (an) is itself unbounded. ■

Example 9.6. Show that the sequence

an =
n+ 1

n− 1
, n ≥ 2

is decreasing and bounded.

Solution. We demonstrate that the sequence is decreasing with a chain of equivalencies: for
n ≥ 2,

an+1 < an ⇔ n+ 2

n
<
n+ 1

n− 1
⇔ (n− 1)(n+ 2) < n(n+ 1)

⇔ n2 + n− 2 < n2 + n ⇔ −2 < 0.

The argument is made by running through the steps backwards.
For boundedness we first note that, since the sequence is decreasing, we have

a2 > a3 > a4 > · · · ,

and hence a2 = 3 is an upper bound for (an)
∞
n=2. As for a lower bound, it is clear that an > 0

for all n ≥ 2, and so 0 is a lower bound. In fact, 1 is also a lower bound since

an > 1 ⇔ n+ 1

n− 1
> 1 ⇔ n+ 1 > n− 1 ⇔ 1 > −1

for all n ≥ 2. The sequence is thus both bounded below and bounded above, and therefore is
bounded. ■
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In the example above we found that 3 is an upper bound for

an =
n+ 1

n− 1
, n ≥ 2,

and since one of the terms in the sequence is 3, there can be no upper bound that is lower than
3. For this reason we call 3 the least upper bound for the sequence. Somewhat less obvious is
that 1 is the greatest lower bound for the sequence. The notions of least upper bound (or
supremum) and greatest lower bound (or infimum) were introduced in the context of sets
of real numbers in Chapter 1. In the present context the set in question is the range of the
function n 7→ an for n ≥ 2.
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9.2 – The Limit of a Sequence

Sequences, like functions, can have a limiting value—which should hardly be surprising since
sequences are functions of a specific kind.

Definition 9.7. A sequence (an) is said to be convergent if there is some L ∈ R with the
following property: For each ϵ > 0 there exists some N ∈ Z such that |an − L| < ϵ whenever
n > N . We write an → L or

lim
n→∞

an = L,

and say (an) converges to L (or has limit L). A sequence that is not convergent is divergent.

Definition 9.8. We define limn→∞ an = ∞ to mean that, for any α > 0, there exists some
N ∈ Z such that an > α whenever n > N . Similarly, limn→∞ an = −∞ means that, for any
α > 0, there exists some N ∈ Z such that an < −α whenever n > N .

It’s easy to see that if limn→∞ an equals ∞ or −∞, then (an) cannot be convergent. There
is a natural connection between limits of functions of a real variable (defined on intervals in R)
and limits of sequences (defined on subsets of Z) which the following theorem makes clear.

Theorem 9.9. Let f be a function, and suppose there exists some N ∈ Z such that [N,∞) ⊆
Dom(f) and f(n) = an for all integers n ≥ N . If limx→∞ f(x) = L for some L ∈ [−∞,∞],
then limn→∞ an = L.

Proof. Suppose that limx→∞ f(x) = L, and assume for now that −∞ < L < ∞. Let ϵ > 0.
Then there exists some β > 0 such that x > β implies |f(x)− L| < ϵ. Let N2 be any integer
greater than β, and choose N = max{N1, N2}. Suppose that n > N . Then

|an − L| = |f(n)− L| < ϵ

since f(n) = an for n ≥ N1 and |f(n)− L| < ϵ for n ≥ N2 > β. Therefore limn→∞ an = L.
Now assume L = ∞, so limx→∞ f(x) = ∞. Let α > 0. Then there exists some

β > 0 such that f(x) > α for all x > β. Let N2 be any integer greater than β, and choose
N = max{N1, N2}. Then for any n > N we have an = f(n) > α and we conclude that
limn→∞ an = ∞. The argument is similar if L = −∞. ■

Example 9.10. Find the limit of the sequenceÅ
ln(1/n)

n

ã∞
n=1

or determine that the sequence diverges.

Solution. Here we have an = ln(1/n)/n for n ∈ N. Define a function f by f(x) = ln(1/x)/x
for all x ∈ (0,∞).
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We now endeavor to evaluate the limit limx→∞ ln(1/x)/x. First notice that the limit has the
form ∞/∞. Since ln(1/x) and x are differentiable on (0,∞), and (x)′ = 1 ̸= 0 for all x ∈ (0,∞),
we can use the left-hand version of L’Hôpital’s Rule here. From

lim
x→∞

[ln(1/x)]′

(x)′
= lim

x→∞

−1/x

1
= 0

we obtain

lim
x→∞

ln(1/x)

x
= 0

by Theorem 7.34, and so since an = f(n) for all integers n ≥ 1, by Theorem 9.9 we determine
that limn→∞ an = 0 as well. ■

Because of Theorem 9.9 we can in practice work out many sequential limits just as if they
were limits of functions defined on intervals in R. As long as there can be found an integer N
and a function f defined on [N,∞) such that f(n) = an for all n ≥ N !

Example 9.11. Find the limit of the sequence

an =
√
3n2 + 19n+ 20−

√
3n2 + 4n,

or determine that the sequence diverges.

Solution. It’s readily seen that the function

f(x) =
√
3x2 + 19x+ 20−

√
3x2 + 4x

is such that f(n) = an for all n ≥ 1, so we can treat the sequential limit limn→∞ an in the same
manner as the limit limx→∞ f(x):

lim
n→∞

an = lim
n→∞

Ç√
3n2 + 19n+ 20−

√
3n2 + 4n

1
·
√
3n2 + 19n+ 20 +

√
3n2 + 4n√

3n2 + 19n+ 20 +
√
3n2 + 4n

å
= lim

n→∞

(3n2 + 19n+ 20)− (3n2 + 4n)√
3n2 + 19n+ 20 +

√
3n2 + 4n

= lim
n→∞

15n+ 20√
3n2 + 19n+ 20 +

√
3n2 + 4n

= lim
n→∞

15n+ 20√
3n2 + 19n+ 20 +

√
3n2 + 4n

· 1/n
1/n

= lim
n→∞

15 + 20/n√
3 + 19/n+ 20/n2 +

√
3 + 4/n

=
15

2
√
3
=

5
√
3

2

Therefore (an) converges to 5
√
3/2. ■

One might wonder whether Theorem 9.9 is the final word when it comes to evaluating
sequential limits. The difficulty is that there are some sequences (an) for which there cannot be
found a function f and an integer N such that [N,∞) ⊆ Dom(f) and f(n) = an for all n ≥ N .
So it is worthwhile developing more tools that should help with evaluating sequential limits
directly.

The next proposition makes clear that the limiting value of a convergent sequence is not
altered by making changes to a finite number of its terms.
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Proposition 9.12. If a sequence (an) converges to L, then adding or subtracting a finite number
of terms to or from (an) will result in a new sequence that also converges to L.

Proof. Suppose (an) converges to L. Adding m terms to (an), or subtracting m terms from
(an), results in a new sequence (bn) which, with proper reindexing, is such that bn = an for all
sufficiently large n, and thus

lim
n→∞

bn = lim
n→∞

an = L.

■

Remark. The above proposition, together with the technique of reindexing demonstrated in
the previous section, implies that just about any general result found to be true for a sequence
of the form (an)

∞
n=1 is also true for a sequence of the form (an)

∞
n=m with m ≠ 1. In these

notes the approach will be to prove results for (an)—where the first value of the index n is
unspecified—whenever feasible. But sometimes a definitive first value of n is necessary to make
clear arguments, in which case working with sequences of the form (an)

∞
n=m will be preferred.

Occasionally, however, we will set m = 1 to slightly simplify the narrative.

There are laws of sequential limits that look much the same as the laws of limits for functions
defined on an interval.

Theorem 9.13. Let (an) and (bn) be sequences, and let L,M ∈ R. If an → L and bn → M ,
then

1. lim
n→∞

can = cL = c lim
n→∞

an for any c ∈ R

2. lim
n→∞

(an ± bn) = L±M = lim
n→∞

an ± lim
n→∞

bn

3. lim
n→∞

anbn = LM = lim
n→∞

an · lim
n→∞

bn

4. lim
n→∞

an
bn

=
L

M
=

lim
n→∞

an

lim
n→∞

bn
, provided that M ̸= 0

Also there is a Squeeze Theorem for sequential limits.

Theorem 9.14 (Squeeze Theorem). For sequences (an), (bn), and (cn), suppose there exists
some N ∈ Z such that an ≤ bn ≤ cn for all n ≥ N . If

lim
n→∞

an = lim
n→∞

cn = L

for some L ∈ [−∞,∞], then limn→∞ bn = L as well.

Note that the L mentioned in the theorem may be −∞ or ∞. The proof of the theorem will
consider L ∈ R and L = ∞, and leave the case when L = −∞ to the reader.

Example 9.15. Find the limit of the sequence

bn =
3 + (−1)n

n2
,

or determine that the sequence diverges.
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Solution. Let an = 2/n2 and cn = 4/n2. For all n ≥ 1 we have

an =
2

n2
≤ bn =

3 + (−1)n

n2
≤ 4

n2
= cn,

where

lim
n→∞

an = lim
n→∞

2

n2
= 0 and lim

n→∞
cn = lim

n→∞

4

n2
= 0.

Thus we conclude that

lim
n→∞

bn = lim
n→∞

3 + (−1)n

n2
= 0

by Theorem 9.14. That is, (bn) converges to 0. ■

The factorial function
n 7→ n! = (1)(2)(3) · · · (n− 1)(n)

arises frequently in problems involving sequences. It grows very fast. Indeed “factorial growth”
is faster than any kind of exponential growth, so that in particular n!/np → ∞ as n→ ∞ for
any constant exponent p > 0. To show this we first prove the following.

Proposition 9.16. If limn→∞ an = ∞ and limn→∞ bn = L for some L ∈ (0,∞), then

lim
n→∞

anbn = ∞.

Proof. Suppose limn→∞ an = ∞ and limn→∞ bn = L for some L ∈ (0,∞). Let α > 0. Since
L > 0 and an → ∞, there exists some integer N1 such that an > 2α/L for all n > N1. Since
L/2 > 0 and bn → L, there exists N2 such that |bn − L| < L/2 for all n > N2, which implies
that bn > L/2 for all n > N2. Let N = max{N1, N2}, and suppose n > N . Both an > 2α/L
and bn > L/2 hold, and therefore

anbn >
2α

L
· L
2
= α.

By Definition 9.8 we conclude that anbn → ∞ as n→ ∞. ■

Example 9.17. Let p ≥ 1 be an integer. Show that

lim
n→∞

n!

np
= ∞.

Solution. We have

n!

np
= (n− p)! ·

Å
n− (p− 1)

n

ãÅ
n− (p− 2)

n

ã
· · ·
Å
n− 2

n

ãÅ
n− 1

n

ã
.

Let

an =

Å
n− (p− 1)

n

ãÅ
n− (p− 2)

n

ã
· · ·
Å
n− 2

n

ãÅ
n− 1

n

ã
and bn = (n− p)!. Since bn ≥ n− p for all n, and limn→∞(n− p) = ∞, the Squeeze Theorem
implies that limn→∞ bn = ∞. On the other hand an easy extension of Theorem 9.13(3) gives

lim
n→∞

an =

Å
lim
n→∞

n− (p− 1)

n

ãÅ
lim
n→∞

n− (p− 2)

n

ã
· · ·
Å
lim
n→∞

n− 2

n

ãÅ
lim
n→∞

n− 1

n

ã
= 1.
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Therefore

lim
n→∞

n!

np
= lim

n→∞
anbn = ∞

by Proposition 9.16. ■

Theorem 9.18. Every convergent sequence is bounded.

Proof. Suppose (an)
∞
n=1 converges, so limn→∞ an = L for some real L. Employing Definition

9.7 with ϵ = 1, it follows there exists some integer N such that |an − L| < 1 for all n > N , and
thus by the Reverse Triangle Inequality (see §1.6) we find |an| < |L|+ 1 holds for n > N . Now,
if we set

α = max{|a1|, |a2|, . . . , |aN |},

then we have |an| ≤ α for 1 ≤ n ≤ N , and hence |an| < α+ |L|+ 1 for all n ≥ 1. Therefore (an)
is bounded. ■

Thus, as we saw in Example 9.17, if a sequence is not bounded then it cannot be convergent.
The converse of this theorem is not true in general; that is, if a sequence is bounded, it does not
necessarily follow that it is convergent. However, a bounded sequence that is also monotone has
a happier ending.

Theorem 9.19 (Monotone Convergence Theorem). Every bounded monotone sequence is
convergent.

Proof. Suppose that (an)
∞
n=m is a bounded monotone increasing sequence. Then the set

{an : n ≥ m} ⊆ R has an upper bound, and so by the Completeness Axiom it has a least upper
bound α ∈ R. Now, let ϵ > 0. Then there exists some N ≥ m such that aN > α − ϵ. Since
(an) is monotone increasing with upper bound α, it follows that α− ϵ < an ≤ α for all n ≥ N ,
and therefore |an − α| < ϵ for all n ≥ N . This shows that limn→∞ an = α and therefore (an)
converges.

Next suppose that (an)
∞
n=m is a bounded monotone decreasing sequence. Then (−an)∞n=m is

a bounded monotone increasing sequence, so that limn→∞(−an) = L for some L ∈ R by the first
part of the proof, and then limn→∞ an = −L by Theorem 9.13(1). Therefore (an) converges. ■

The details of the proof of the Monotone Convergence Theorem actually deliver a stronger
result which is sometimes useful.

Corollary 9.20. Let (an)
∞
n=m be a bounded sequence. If (an) is monotone increasing, then

an → sup{an : n ≥ m}; and if (an) is monotone decreasing, then an → inf{an : n ≥ m}.

Example 9.21. Let (an)
∞
n=0 be the sequence given by the recurrence relation

an+1 =
3

4
an + 1, a0 = 0.

Show that the sequence is bounded and monotone, and find its limit.
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Solution. By inspection it can be seen that the terms of the sequence must all be nonnegative;
that is, an ≥ 0 for all n ≥ 0. Also, since a0 = 0, a1 = 1, a2 =

7
4
, a3 =

37
16
, it seems plausible that

the sequence is monotone increasing (i.e. nondecreasing). In fact, since

an+1 ≥ an ⇔ 3

4
an + 1 ≥ an ⇔ an ≤ 4 (9.1)

for any n ≥ 0, we can conclude that (an) is monotone increasing if we can show that an ≤ 4 for
all n.

Clearly 0 ≤ a0 ≤ 4, since a0 = 0 is given. For arbitrary n ≥ 0 suppose that 0 ≤ an ≤ 4.
Then

an+1 =
3

4
an + 1 ≤ 3

4
(4) + 1 = 4

and

an+1 =
3

4
an + 1 ≥ 3

4
(0) + 1 = 1 > 0,

so that 0 ≤ an+1 ≤ 4. By the principle of induction we conclude that 0 ≤ an ≤ 4 for all n ≥ 0,
and therefore (an) is a bounded sequence. Then, since an ≤ 4 is true for all n, by (9.1) we
conclude that an+1 ≥ an is also true for all n, and hence (an) is monotone increasing.

Next, since (an) is a bounded monotone sequence, the Monotone Convergence Theorem
implies that (an) converges to some α ∈ R. This is to say that limn→∞ an = α, and thus
limn→∞ an+1 = α also, and so

an+1 =
3

4
an + 1 ⇒ lim

n→∞
an+1 = lim

n→∞

Å
3

4
an + 1

ã
⇒ α =

3

4
α + 1 ⇒ α = 4.

That is, the sequence (an) has limit 4. ■

Definition 9.22. A subsequence of (an)
∞
n=m is a sequence (ank

)∞k=1 such that

m ≤ n1 < n2 < n3 < · · ·

holds. If limk→∞ ank
= L for some L ∈ R, then L is called a subsequential limit of (an)

∞
n=m.

If m = 1 (as it usually is), then the definition requires the values nk to be such that n1 ≥ 1
and nk+1 > nk for all k ≥ 1. This readily implies that nk ≥ k for all k, which is a fact we’ll
make use of shortly.

Consider the sequence an = n2, n ≥ 1,

(an)
∞
n=1 = (a1, a2, a3, . . .) = (1, 4, 9, 16, 25, 36, 49, 64, . . .).

We can define a subsequence (ank
)∞k=1 by setting nk = 2k for all k ≥ 1. This gives

ank
= a2k = (2k)2, k ≥ 1;

that is,

(ank
)∞k=1 = (an1 , an2 , an3 , . . .) = (a2, a4, a6, . . .) = (4, 16, 36, 64, . . .),

which is the subsequence consisting of the “even-numbered terms” of (an). Now, if we set
mk = 2k − 1 we obtain

amk
= a2k−1 = (2k − 1)2, k ≥ 1;
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that is,

(amk
)∞k=1 = (am1 , am2 , am3 , . . .) = (a1, a3, a5, . . .) = (1, 9, 25, 49, . . .),

which consists of the “odd-numbered terms” of (an).

Proposition 9.23. If (an) is a sequence that converges to L ∈ R, then every subsequence
(ank

)∞k=1 also converges to L.

Proof. Suppose limn→∞ an = L ∈ R. Let (ank
)∞k=1 be a subsequence. It must be shown that

limk→∞ ank
= L.

Let ϵ > 0. There exists some positive integer N such that |an − L| < ϵ for all n > N .
Suppose that k > N . Since nk ≥ k > N we obtain |ank

− L| < ϵ.
Therefore limk→∞ ank

= L. ■

Recall that because of Proposition 9.12 and the possibilities of reindexing a sequence, the
above proposition applies to sequences of the form (an)

∞
n=m for any integer m.

Corollary 9.24. If (an) has subsequences (amk
) and (ank

) such that

lim
k→∞

amk
= L1 and lim

k→∞
ank

= L2

for L1, L2 ∈ R with L1 ̸= L2, then (an) diverges.

Proof. If (an) does not diverge, then it must converge to some L ∈ R, and then by Proposition
9.23 we must have

lim
k→∞

amk
= L = lim

k→∞
ank

,

a contradiction. ■

It should also be clear that (an) must diverge if it has a subsequence that diverges. The next
example should serve to illustrate the utility of these results.

Example 9.25. Show that the sequence

an = (−1)n
3n

n+ 1

diverges.

Solution. One subsequence is (ank
)∞k=1 with nk = 2k,

(ank
)∞k=1 = (a2k)

∞
k=1 =

Å
(−1)2k

3(2k)

2k + 1

ã∞
k=1

=

Å
6k

2k + 1

ã∞
k=1

,

where

lim
k→∞

ank
= lim

k→∞

6k

2k + 1
=

6

2
= 3.

Another subsequence is (amk
)∞k=1 with mk = 2k − 1,

(amk
)∞k=1 = (a2k−1)

∞
k=1 =

Å
(−1)2k−1 3(2k − 1)

(2k − 1) + 1

ã∞
k=1

=

Å
−6k − 3

2k

ã∞
k=1

,
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where

lim
k→∞

amk
= lim

k→∞
−6k − 3

2k
= −6

2
= −3.

Since ank
→ 3 and amk

→ −3 as k → ∞, we conclude that (an) must diverge by Corollary
9.24. ■
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9.3 – Infinite Series

Let (an)
∞
n=1 be a sequence of real numbers. Let s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, and

in general

sn = a1 + a2 + · · ·+ an =
n∑
k=1

ak,

called the nth partial sum of (an). With these values we can construct the sequence of
partial sums associated with (an), which is the sequence (sn)

∞
n=1.

Definition 9.26. We define
∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

sn,

and call
∑∞

k=1 ak the infinite series associated with (an)
∞
n=1 (or simply a series). The

expression ak is referred to as the kth term of the series.
If
∑∞

k=1 ak = s for some s ∈ R (i.e. sn → s), then we say the series
∑∞

k=1 ak converges
and call s the sum of the series.

If
∑∞

k=1 ak does not exist in R (i.e. the sequence (sn)
∞
n=1 diverges), then we say the series∑∞

k=1 ak diverges.

So the symbol
∑∞

k=1 ak represents the limit of a sequence of partial sums (which may or may
not exist in R), and not actually a “sum” in the conventional sense. More generally a series can
have an index that starts at an integer other than 1: for any m ∈ Z we define

∞∑
k=m

ak = lim
n→∞

n∑
k=m

ak,

which is the infinite series associated with (an)
∞
n=m. The terminology changes little: defining

sn =
∑n

k=m ak for n ≥ m, if limn→∞ sn = s for some s ∈ R, we say the series
∑∞

k=m ak converges
to s and write

∑∞
k=m ak = s; otherwise the series diverges. If there is no chance for confusion

it’s often convenient to write
∑∞

k=m ak as
∑
ak in the interests of saving space. Other times

the symbol
∑
ak will be used in general statements, such as those found in theorems, when the

initial index value (whether it’s 0, 1, or something else) is simply not important.
When we speak here of “adding a term” to a series

∑∞
k=m ak, this will mean designating

some am−1 ∈ R and passing to a new series
∑∞

k=m−1 ak associated with (an)
∞
n=m−1. Similarly,

“subtracting a term” from
∑∞

k=m ak will mean removing am and passing to the series
∑∞

k=m+1 ak
associated with (an)

∞
n=m+1.

Proposition 9.27. If a series
∑
ak converges, then adding (resp. subtracting) a finite number

of real-valued terms to (resp. from)
∑
ak will result in a new series that also converges.

Thus, for any m > 0, a series
∑∞

k=0 ak is convergent if and only if
∑∞

k=m ak is convergent,
assuming that ak ∈ R for all k ≥ 0. This proposition is an immediate consequence of Proposition
9.12 and so the proof is left as an exercise for those interested.



226

Remark. Proposition 9.27 immediately implies that altering a divergent series by a finite
number of terms yields a series that is again divergent. Indeed, if it were possible to add a term
to a divergent series

∑
bk to obtain a convergent series

∑
ak, then subtracting the same term

from the convergent series
∑
ak would result in the divergent series

∑
bk—contradicting the

proposition!

An immediate consequence of Theorem 9.13 is the following.

Proposition 9.28. Let
∑
ak and

∑
bk be convergent series, and let c ∈ R. Then the following

hold.

1.
∑
cak is convergent, with ∑

cak = c
∑

ak.

2.
∑

(ak + bk) is convergent, with∑
(ak + bk) =

∑
ak +

∑
bk.

It is often difficult determining whether a series converges or not, but one kind of series that
can be considered immediately is a so-called telescoping series. This is a series associated
with a sequence (an) whose partial sums have terms that largely cancel out.

Example 9.29. Determine whether the series
∞∑
k=1

ln

Å
k + 1

k + 2

ã
converges or diverges.

Solution. For any integer n ≥ 1 we have
n∑
k=1

ln

Å
k + 1

k + 2

ã
=

n∑
k=1

[ ln(k + 1)− ln(k + 2)]

= [ln(2)− ln(3)] + [ln(3)− ln(4)] + [ln(4)− ln(5)] + · · ·

· · ·+ [ln(n)− ln(n+ 1)] + [ln(n+ 1)− ln(n+ 2)]

= ln(2)− ln(n+ 2).

Thus the nth partial sum of the associated sequence collapses, or “telescopes,” to become
ln(2)− ln(n+ 2). Now,

∞∑
k=1

ln

Å
k + 1

k + 2

ã
= lim

n→∞

n∑
k=1

ln

Å
k + 1

k + 2

ã
= lim

n→∞
[ ln(2)− ln(n+ 2)] = −∞,

which shows that the series diverges. ■

Another kind of series that can be easily analyzed is a geometric series, which has the
form

∑∞
k=0 ar

k for some nonzero constants a, r ∈ R. (Observe that if either a = 0 or r = 0 then
the series would simply converge to 0.)
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Lemma 9.30. For any r ̸= 1 and integer n ≥ 0,
n∑
k=0

rk = 1 + r + · · ·+ rn =
rn+1 − 1

r − 1
. (9.2)

Proof. Let r ̸= 1. Clearly the equation holds when n = 0. Let n ≥ 0 be arbitrary and suppose
that (9.2) holds. Then

1 + r + · · ·+ rn+1 = (1 + r + · · ·+ rn) + rn+1

=
rn+1 − 1

r − 1
+ rn+1 =

rn+1 − 1

r − 1
+
rn+1(r − 1)

r − 1

=
rn+1 − 1

r − 1
+
rn+2 − rn+1

r − 1

=
rn+2 − 1

r − 1
,

and thus by induction we conclude that (9.2) holds for all n. ■

Note that (9.2) holds even when r = 0, in which case the summation on the right becomes∑n
k=0 0

k and it is understood that 00 represents 1.

Proposition 9.31. Let a, r ∈ R such that a, r ̸= 0. If |r| < 1, then
∞∑
k=0

ark =
a

1− r
;

and if |r| ≥ 1, then the series diverges.

Proof. Suppose that 0 < |r| < 1, which implies that r ̸= 1. Using Lemma 9.30,
∞∑
k=0

rk = lim
n→∞

n∑
k=0

rk = lim
n→∞

rn+1 − 1

r − 1
.

Now, since −1 < r < 1 we have rn+1 → 0 as n→ ∞, and so by Theorem 9.13(4)
∞∑
k=0

rk =
limn→∞(rn+1 − 1)

limn→∞(r − 1)
=

0− 1

r − 1
=

1

1− r
.

Hence the series
∑∞

k=0 r
k converges, so by Proposition 9.28(1) we have

∞∑
k=0

ark = a

∞∑
k=0

rk = a · 1

1− r
=

a

1− r

as desired.
Finally, if |r| ≥ 1, then since a ̸= 0 we have

lim
n→∞

arn ̸= 0,

and so
∑∞

k=0 ar
k diverges by the Divergence Test in §9.4. ■
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Example 9.32. Determine whether the series
∞∑
k=1

3−k8k+1 (9.3)

converges or diverges.

Solution. We have
∞∑
k=1

3−k8k+1 =
∞∑
k=1

8k+1

3k
=

∞∑
k=1

8

Å
8

3

ãk
. (9.4)

Now, since
∞∑
k=0

8

Å
8

3

ãk
(9.5)

is a divergent geometric series by Proposition 9.31, it follows from Proposition 9.27 that the series
on the right-hand side of (9.4)—which is the series (9.5) with the zeroth term removed—must
also diverge. Therefore the series (9.3) diverges. ■
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9.4 – Divergence and Integral Tests

We now develop two tests that can be used to determine whether a series converges or
diverges. First there is the Divergence Test, which is often a quick way to spot a divergent
series.

Theorem 9.33 (Divergence Test). If lim
k→∞

ak ̸= 0, then the series
∑
ak diverges.

Proof. Suppose that
∑
ak converges. If sn is the nth partial sum of

∑
ak, then there exists

some s ∈ R such that limn→∞ sn = s. We also have limn→∞ sn−1 = s. Now, observing that
an = sn − sn−1, by Theorem 9.13(2) we obtain

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

Thus, if
∑
ak converges, then limn→∞ an = 0. This implies that if limn→∞ an ̸= 0, then

∑
ak

diverges. ■

Example 9.34. Determine whether the series
∞∑
k=1

1

10 + 3−k

converges or diverges.

Solution. Here ak = 1/(10 + 3−k), and so since 3−k → 0 as k → ∞, we obtain

lim
k→∞

ak = lim
k→∞

1

10 + 3−k
=

1

10 + 0
= 0.1.

Since limk→∞ ak = 0.1 ̸= 0, by the Divergence Test we conclude that the series diverges. ■

This test will not detect all divergent series, of course. There are plenty of series
∑
ak that

diverge despite the fact that ak → 0, such as the harmonic series
∑∞

k=1 1/k.
Recall that a function f is nonnegative on an interval I if f(x) ≥ 0 for all x ∈ I, and

nonincreasing on I if f(x1) ≥ f(x2) whenever x1, x2 ∈ I are such that x1 ≤ x2.

Theorem 9.35 (Integral Test). Let m ∈ Z, and suppose f is a function that is continuous,
nonnegative and nonincreasing on [m,∞). Then

∑∞
k=m f(k) converges if and only if

�∞
m
f(x)dx

converges.8

Proof. Suppose that
�∞
m
f(x)dx converges. Then there exists some α ∈ R for which

lim
b→∞

� b

m

f(x)dx = α, (9.6)

8It might be noticed that this version of the “Integral Test” is a wee bit more general than the version seen in
the textbook; in particular f need only be nonnegative (not positive) and nonincreasing (not strictly decreasing).
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where α ≥ 0 since
� b
m
f(x)dx ≥ 0 for all b ≥ m. If we define the sequence

an =

� n

m

f(x)dx, n ≥ m,

then (9.6) implies that (an)
∞
n=m is a sequence that converges to α and therefore by Theorem

9.18 it is also bounded. In fact (an)
∞
n=m is a nondecreasing sequence: for each n ≥ m,

an+1 =

� n+1

m

f(x)dx =

� n

m

f(x)dx+

� n+1

n

f(x)dx = an +

� n+1

n

f(x)dx ≥ an,

where � n+1

n

f(x)dx ≥ 0

since f(x) ≥ 0 for all x ∈ [n, n+ 1], and so it is not hard to see that α is an upper bound for
(an)

∞
n=m.
Now, certainly f(m) ≤ f(m) + α, and for each n > m,

n∑
k=m

f(k) = f(m) +
n∑

k=m+1

f(k) = f(m) +
n−1∑
k=m

f(k + 1) = f(m) +
n−1∑
k=m

� k+1

k

f(k + 1)dx

≤ f(m) +
n−1∑
k=m

� k+1

k

f(x)dx = f(m) +

� n

m

f(x)dx = f(m) + an ≤ f(m) + α.

This demonstrates that the nondecreasing (hence monotone) sequence

sn =
n∑

k=m

f(k), n ≥ m

is bounded: |sn| ≤ f(m) + α for all n ≥ m. By the Monotone Convergence Theorem (sn)
∞
k=m

converges, which is to say there is some s ∈ R such that limn→∞ sn = s. Therefore the series∑∞
k=m f(k) converges.
To show that the convergence of

∑∞
k=m f(k) implies the convergence of

�∞
k=m

f(x)dx, it is

easier to suppose that
�∞
m
f(x)dx diverges and then show that

∑∞
k=m f(k) must diverge. So,

suppose that
�∞
m
f(x)dx is divergent. Letting

F (b) =

� b

m

f(x)dx,

this means that limb→∞ F (b) does not exist in R. Because f(x) ≥ 0 for all x ∈ [m,∞), we find
that F is a nondecreasing function on [m,∞) and therefore by Corollary 2.2 limb→∞ F (b) = ∞.

Let α > 0. Since

lim
b→∞

� ∞

m

f(x)dx = ∞,

there is some b0 ≥ m such that
� b
m
f(x)dx > α for all b ≥ b0. Choose n0 ∈ Z such that

n0 ≥ b0 + 1 ≥ m+ 1. Suppose that n ≥ n0, so n ≥ m+ 1 and therefore n− 1 ≥ m. Now,

n∑
k=m

f(k) ≥
n−1∑
k=m

f(k) =
n−1∑
k=m

� k+1

k

f(k)dx ≥
n−1∑
k=m

� k+1

k

f(x)dx =

� n

m

f(x)dx > α
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where the second inequality holds since f(x) ≤ f(k) for all x ∈ [k, k+1], and the third inequality
holds since n > b0.

Since α > 0 is arbitrary, it follows that for every α > 0 there exists some integer n0 ≥ m
such that

∑n
k=m f(k) > α for all n ≥ n0. Therefore

lim
n→∞

n∑
k=m

f(k) = ∞,

and we conclude that
∑∞

k=m f(k) diverges. ■

Example 9.36. Determine whether the series

∞∑
k=1

ke−3k2

converges or diverges.

Solution. Let f(x) = xe−3x2 , which clearly is continuous and nonnegative on [1,∞). Now,

f ′(x) = (1− 6x2)e−3x2 ,

so we have f ′(x) < 0 for x > 1/
√
6 or x < −1/

√
6, which certainly shows that f is nonincreasing

on [1,∞) as well. The hypotheses of the Integral Test are therefore satisfied for m = 1.
Making the substitution u = −3x2, we obtain

� ∞

1

xe−3x2dx = lim
b→∞

� b

1

xe−3x2dx = lim
b→∞

� −3b2

−3

−1

6
eudu

= lim
b→∞

ï
−1

6

Ä
e−3b2 − e−3

äò
=

1

6e3
,

and thus the integral
�∞
1
xe−3x2dx converges. Therefore by the Integral Test

∑∞
k=1 ke

−3k2

converges as well. ■

A p-series is a series of the form
∞∑
k=1

1

kp
,

where p can be any real number. They arise often and will be handy when making use of the
comparison tests in the next section.

Proposition 9.37. The series
∞∑
k=1

1

kp

converges for p > 1 and diverges for p ≤ 1.
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Proof. Suppose that p > 1. The function f(x) = 1/xp is a continuous, nonnegative and
nonincreasing function on [1,∞), so by the Integral Test

∑∞
k=1 1/k

p converges if and only if�∞
1

1/xpdx converges. We have� ∞

1

1

xp
dx = lim

b→∞

� b

1

x−pdx = lim
b→∞

ï
1

1− p
x1−p
òb
1

= lim
b→∞

1

1− p

(
b1−p − 1

)
= lim

b→∞

1

1− p

Ç
1

b p−1 − 1

å
(1)
=

1

1− p
(0− 1) =

1

p− 1
,

where equality (1) holds since p− 1 > 0 implies that b p−1 → ∞ as b→ ∞, and thus the integral
converges. Therefore

∑∞
k=1 1/k

p converges.
Now suppose that 0 < p < 1. Then f(x) = 1/xp is still continuous, nonnegative and

nonincreasing on [1,∞); however, since 0 < 1− p < 1, we find that

lim
b→∞

1

1− p

Ä
b1−p − 1

ä
= ∞

since b1−p → ∞ as b → ∞. Thus
�∞
1

1/xpdx diverges, and by the Integral Test
∑∞

k=1 1/k
p

diverges as well.
What about p = 1? The function f(x) = 1/x still satisfies the hypotheses of the Integral

Test, so, since � ∞

1

1

x
dx = lim

b→∞

� ∞

1

1

x
dx = lim

b→∞
[ ln |x| ]b1 = lim

b→∞
ln(b) = ∞,

we conclude that
∞∑
k=1

1

k

(called the harmonic series) diverges.
The case when p = 0 is straightforward: since

lim
k→∞

1

kp
= lim

k→∞

1

k0
= lim

k→∞
(1) = 1 ̸= 0,

the series diverges by the Divergence Test.
Finally we come to p < 0: since −p > 0, we find that

lim
k→∞

1

kp
= lim

k→∞
k−p = ∞,

so again the series diverges by the Divergence Test. ■
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9.5 – Comparison, Root and Ratio Tests

The Direct Comparison Test enables one to determine whether a series converges or diverges
by comparing it to a series that is already known to converge or diverge.

Theorem 9.38 (Direct Comparison Test). Suppose there exists some k0 ∈ Z such that
0 ≤ ak ≤ bk for all k ≥ k0.

1. If
∑∞

k=k0
bk converges, then

∑
ak converges.

2. If
∑∞

k=k0
ak diverges, then

∑
bk diverges.

Proof. Suppose there is some integer k0 such that 0 ≤ ak ≤ bk for all k ≥ k0.
To prove part (1), suppose that

∑∞
k0=k

bk converges, so there exists some t ∈ R such that∑∞
k=k0

bk = t. Now, since bk ≥ 0 for each k ≥ k0, the sequence

n∑
k=k0

bk, n ≥ k0

is monotone increasing, so t must be the least upper bound for(
n∑

k=k0

bk

)∞

n=k0

by Corollary 9.20. Thus, recalling that ak ≤ bk for each k ≥ k0, we obtain

0 ≤
n∑

k=k0

ak ≤
n∑

k=k0

bk ≤ t

for each n ≥ k0. It’s now seen that the monotone increasing sequence(
n∑

k=k0

ak

)∞

n=k0

is bounded, and therefore by Theorem 9.19 this sequence converges. So, there is some s ∈ R
such that

∞∑
k=k0

ak = lim
n→∞

n∑
k=k0

ak = s,

which shows that the series
∑∞

k=k0
ak is convergent and hence, by Proposition 9.27, the series∑

ak converges. This proves (1).
Part (2) is equivalent to the statement “If

∑
bk converges, then

∑∞
k=k0

ak converges,” so
suppose that

∑
bk converges. The series

∑∞
k=k0

bk is obtained from
∑
bk by adding (resp.

subtracting) at most a finite number of terms to (resp. from)
∑
bk, so by Proposition 9.27∑∞

k=k0
bk also converges. Hence

∑
ak converges by part (1), and Proposition 9.27 implies that∑∞

k=k0
ak converges. ■
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Example 9.39. Use the Direct Comparison Test to determine whether the series
∞∑
k=1

2k + 5

5k3 + 3k2

converges or diverges.

Solution. For any k ≥ 1 we have 2k + 5 ≤ 2k + 5k = 7k, and from 5k3 + 3k2 ≥ 5k3 we obtain

1

5k3 + 3k2
≤ 1

5k3
.

Now, combining this result with 2k + 5 ≤ 7k yields

0 ≤ 2k + 5

5k3 + 3k2
≤ 7k

5k3 + 3k2
≤ 7k

5k3
=

7

5k2
≤ 7

k2

for all k ≥ 1. By Proposition 9.28(1), since
∑∞

k=1 1/k
2 is a convergent p-series we have

∞∑
k=1

7

k2
= 7

∞∑
k=1

1

k2
,

and so
∑∞

k=1 7/k
2 is also a convergent series. Therefore

∞∑
k=1

2k + 5

5k3 + 3k2

converges by the Direct Comparison Test. ■

Theorem 9.40 (Limit Comparison Test). Let
∑
ak and

∑
bk be series such that ak, bk > 0

for all k, and let limk→∞ ak/bk = L.

1. If L ∈ (0,∞), then
∑
ak and

∑
bk either both converge or both diverge.

2. If L = 0 and
∑
bk converges, then

∑
ak converges.

3. If L = ∞ and
∑
bk diverges, then

∑
ak diverges.

Proof. Suppose that L ∈ (0,∞). Since L/2 > 0 and limk→∞ ak/bk = L, there exists some
k0 ∈ Z such that k ≥ k0 implies that |ak/bk − L| < L/2. Thus for any k ≥ k0 we have

−L
2
<
ak
bk

− L <
L

2
,

which implies

0 <
L

2
<
ak
bk
<

3L

2
and finally

0 <
L

2
bk < ak <

3L

2
bk

since bk > 0. Now, if
∑
bk diverges, then

∑
(L/2)bk diverges also, and since 0 < (L/2)bk < ak

for all k ≥ k0 the Direct Comparison Test concludes that
∑
ak diverges. If

∑
bk converges, then∑

(3L/2)bk converges also, and since 0 < ak < (3L/2)bk for all k ≥ k0 the Direct Comparison
Test concludes that

∑
ak converges. Therefore

∑
ak and

∑
bk either both diverge or both

converges if L ∈ (0,∞).
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Next, suppose that L = 0 and
∑
bk converges. Since limk→∞ ak/bk = 0, there exists some

k0 ∈ Z such that k ≥ k0 implies that |ak/bk| < 1, where

|ak|
|bk|

< 1 ⇒ |ak| < |bk| ⇒ 0 < ak < bk

since ak, bk > 0. Because 0 < ak < bk for all k ≥ k0 and
∑
bk converges, by the Direct

Comparison Test
∑
ak also converges.

Finally, suppose that L = ∞ and
∑
bk diverges. Since limk→∞ ak/bk = ∞ there exists some

k0 ∈ Z such that k ≥ k0 implies that |ak/bk| > 1, where

|ak|
|bk|

> 1 ⇒ |ak| > |bk| ⇒ ak > bk > 0

since ak, bk > 0. Because 0 < bk < ak for all k ≥ k0 and
∑
bk diverges, by the Direct Comparison

Test
∑
ak also diverges. ■

Example 9.41. Use the Limit Comparison Test to determine whether the series
∞∑
k=1

7k3 − 3

k4 + 11

converges or diverges.

Solution. As k grows very large the constant terms in the fraction become negligible, so that its
value is very nearly equal to 7k3/k4 = 7/k. Since

∑
1/k is known to diverge by Proposition 9.37,

we might guess that the given series diverges as well and attempt to use the Direct Comparison
Test to prove it. However, constructing a winning string of inequalities to make this feasible is
not necessarily easy to do. So, we use the Limit Comparison Test, with

∑
ak being the given

series and
∑
bk being

∑
1/k. We evaluate L:

lim
k→∞

ak
bk

= lim
k→∞

Å
7k3 − 3

k4 + 11
÷ 1

k

ã
= lim

k→∞

7k4 − 3k

k4 + 11
= lim

k→∞

7− 3/k3

1 + 11/k4
= 7.

Hence L = 7 ∈ (0,∞), and so it follows from part (1) of the Limit Comparison Test that∑∞
k=1(7k

3 − 3)/(k4 + 11) diverges. ■

Example 9.42. Use the Limit Comparison Test to determine whether the series
∞∑
k=1

sin

Å
1

k

ã
converges or diverges.

Solution. Since

lim
x→0

sinx

x
= 1

by Lemma 3.18, by Proposition 2.29 we obtain

lim
x→∞

sin(1/x)

1/x
= 1.
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Then, letting ak = sin(1/k) and bk = 1/k for integers k ≥ 1, Theorem 9.9 implies that

lim
k→∞

ak
bk

= lim
k→∞

sin(1/k)

1/k
= lim

x→∞

sin(1/x)

1/x
= 1 ∈ (0,∞).

We have L = 1 ∈ (0,∞), and since the series
∑

1/k diverges it follows from part (1) of the
Limit Comparison Test that

∑∞
k=1 sin

(
1
k

)
also diverges. ■

A series
∑
ak is said to converge absolutely (or be absolutely convergent) if the series∑

|ak| converges. With the Direct Comparison Test we’re in a position to prove the following
useful result, which says that absolute convergence implies convergence.

Proposition 9.43. If
∑

|ak| converges, then
∑
ak converges.

Proof. Suppose that
∑

|ak| converges, so
∑

|ak| = s for some s ∈ R. Then
∑

2|ak| = 2s by
Proposition 9.28(1), so

∑
2|ak| converges also. Now, for each k we have |ak| = ±ak. If ak ≥ 0,

then |ak| = ak and we obtain

0 ≤ |ak|+ ak = 2|ak|.

If ak < 0, then |ak| = −ak and we obtain

0 = |ak|+ ak ≤ 2|ak|.

Hence

0 ≤ |ak|+ ak ≤ 2|ak|

for all k, and since
∑

2|ak| converges, by the Direct Comparison Test
∑

(|ak|+ak) must converge;
that is, ∑

(|ak|+ ak) = t

for some t ∈ R.
Finally, since

∑
|ak| and

∑
(|ak| + ak) are convergent series with

∑
|ak| = s and∑

(|ak|+ ak) = t, by Proposition 9.28(2)∑
ak =

∑[
(|ak|+ ak)− |ak|

]
=
∑

(|ak|+ ak)−
∑

|ak| = t− s ∈ R,

which shows that
∑
ak converges. ■

It is a curious fact that most calculus textbooks give versions of the Root and Ratio Tests
that are weaker than they have to be. So, here is where these notes come especially in handy,
for here will be presented what are almost—but not quite—the strongest versions of these very
important tests for infinite series convergence.

Theorem 9.44 (Root Test). Given the series
∑
ak, let ρ = lim

k→∞
k

»
|ak|.

1. If ρ ∈ [0, 1), then
∑

|ak| converges.
2. If ρ ∈ (1,∞], then

∑
ak diverges.
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Proof. Suppose that

lim
k→∞

k

»
|ak| = ρ (9.7)

for some ρ ∈ [0, 1). Let δ > 0 be sufficiently small so that r = ρ+ δ < 1. Then there exists some
integer k0 > 0 such that

0 ≤ k

»
|ak| < r < 1

for all k ≥ k0, whence 0 ≤ |ak| < rk for all k ≥ k0. Since 0 < r < 1,
∑∞

k=0 r
k is a convergent

geometric series by Proposition 9.31, so
∑∞

k=k0
rk converges by Proposition 9.27 and then the

Direct Comparison Test implies that
∑

|ak| converges.
Now suppose that (9.7) holds for some ρ ∈ (1,∞). Let δ > 0 be sufficiently small so that

r = ρ − δ > 1. Then there exists some integer k0 > 0 such that k
√
|ak| > r for all k ≥ k0,

which implies that |ak| > rk for all k ≥ k0. Now, since r > 1 we have limk→∞ rk = ∞, whence
limk→∞ |ak| = ∞ and so limk→∞ ak ̸= 0. Therefore

∑
ak diverges by the Divergence Test. ■

What is stronger about this version of the Root Test is that, unlike the book, the terms ak
of the series are not required to be nonnegative. That is, it is permissible to have ak < 0, which
means the test can be applied to quite a few more series! What has not changed is that if ρ = 1
then the test is inconclusive, but it is not necessary to spell this out in the statement of the
theorem.

Example 9.45. Use the Root Test to determine whether the series

∞∑
k=1

Ä√
k −

√
k − 1

äk
converges or diverges.

Solution. Here we have

lim
k→∞

k

…∣∣∣√k −√
k − 1

∣∣∣k = lim
k→∞

Ä√
k −

√
k − 1

ä
= lim

k→∞

Ç√
k −

√
k − 1

1
·
√
k +

√
k − 1√

k +
√
k − 1

å
= lim

k→∞

k − (k − 1)√
k +

√
k − 1

= lim
k→∞

1√
k +

√
k − 1

= 0.

Since ρ = 0 < 1, the Root Test concludes that the series converges. ■

Theorem 9.46 (Ratio Test). Given the series
∑
ak for which ak = 0 for at most a finite

number of k values, let ρ = lim
k→∞

|ak+1/ak|.

1. If ρ ∈ [0, 1), then
∑

|ak| converges.
2. If ρ ∈ (1,∞], then

∑
ak diverges.
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Proof. Suppose that limk→∞ |ak+1/ak| = ρ for some ρ ∈ [0, 1). Let δ > 0 be sufficiently small
so that r = ρ+ δ < 1. Then there exists some integer k0 > 0 such that 0 ≤ |ak+1/ak| < r < 1
for all k ≥ k0, so that

|ak0+1| < r|ak0 |,

|ak0+2| < r|ak0+1| ≤ r2|ak0|,

|ak0+3| < r|ak0+2| ≤ r3|ak0|,

and in general,

|ak0+k| < rk|ak0 |

for all k ≥ 0. From this we obtain

0 ≤ |ak| < |ak0 |rk−k0 =
|ak0|
rk0

rk (9.8)

for all k ≥ k0.
Since |ak0|/rk0 ̸= 0 and 0 < r < 1, Proposition 9.31 implies that

∞∑
k=0

|ak0|
rk0

rk

is a convergent geometric series, and thus so too is
∑∞

k=k0
(|ak0|/rk0)rk by Proposition 9.27.

Hence, in light of (9.8), the Direct Comparison Test implies that
∑

|ak| converges.
Now suppose limk→∞ |ak+1/ak| = ρ for some ρ ∈ (1,∞]. Let δ > 0 be sufficiently small so

that r = ρ− δ > 1. Then there’s some integer k0 > 0 such that 1 < r ≤ |ak+1/ak| for all k ≥ k0,
so that

|ak0+1| > r|ak0 |,

|ak0+2| > r|ak0+1| ≥ r2|ak0|,

|ak0+3| > r|ak0+2| ≥ r3|ak0|,
and in general,

|ak0+k| > rk|ak0| > 0

for all k ≥ 0. From r > 1 and |ak0 | > 0 we have limk→∞ rk|ak0 | = ∞, so that limk→∞ |ak0+k| = ∞
and we obtain limk→∞ ak ̸= 0. Hence

∑
ak diverges by the Divergence Test. ■

Remark. Given Proposition 9.43, whenever part (1) of the Ratio Test or Root Test is used to
conclude that

∑
|ak| converges, it immediately follows that

∑
ak converges as well.

Some books present a version of the Ratio Test which maintains that the terms of a series∑
ak must be positive, which is an unnecessarily restrictive hypothesis. All that is needed is to

require that the terms ak be nonzero for all but (at most) finitely many values of the index k,
as reflected in the statement of the Ratio Test above. If there are at most finitely many terms
ak equalling 0, then there will exist some integer k0 such that ak ̸= 0 for all k ≥ k0, and thus
there need be no worries that ak/ak+1 will be undefined due to division by 0.
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Example 9.47. Use the Ratio Test to determine whether the series
∞∑
k=1

15k

(k + 1)42k+1

converges or diverges.

Solution. We evaluate limk→∞ |ak+1/ak| for ak = 15k/[(k + 1)42k+1]:

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ak+1 ·
1

ak

∣∣∣∣
= lim

k→∞

∣∣∣∣ 15k+1

(k + 2)42k+3
· (k + 1)42k+1

15k

∣∣∣∣
= lim

k→∞

15(k + 1)

(k + 2)42
= lim

k→∞

15k + 15

16k + 32
=

15

16
.

Since ρ = 15/16 < 1, the Ratio Test concludes that the series converges (absolutely). ■

Example 9.48. Use the Ratio Test to determine whether the series
∞∑
k=1

(k!)2

(2k)!

converges or diverges.

Solution. Here we have

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ak+1 ·
1

ak

∣∣∣∣
= lim

k→∞

∣∣∣∣ ((k + 1)!)2

(2(k + 1))!
· (2k)!
(k!)2

∣∣∣∣ = lim
k→∞

(k + 1)!(k + 1)!

(2k + 2)!
· (2k)!
k!k!

= lim
k→∞

k!(k + 1) · k!(k + 1)

(2k)!(2k + 1)(2k + 2)
· (2k)!
k!k!

= lim
k→∞

(k + 1)2

(2k + 1)(2k + 2)

= lim
k→∞

k2 + 2k + 1

4k2 + 6k + 2
=

1

4
.

Since ρ = 1/4 < 1, the Ratio Test concludes that the series converges (absolutely). ■

Example 9.49. Use the Ratio Test to determine whether the series
∞∑
k=1

e−kk!

converges or diverges.

Solution. Here we have

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

e−(k+1)(k + 1)!

e−kk!
= lim

k→∞

e−ke−1k!(k + 1)

e−kk!
= lim

k→∞

k + 1

e
= ∞.

Since ρ = ∞, the Ratio Test concludes that the series diverges. ■
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9.6 – Alternating Series

If (bk) is a sequence such that bk > 0 for all k, then a series of the form∑
(−1)kbk or

∑
(−1)k+1bk

is called alternating. Thus, the terms of an alternating series alternate between positive and
negative values. An easy example is the series

∞∑
k=1

(−1)k+1 1

k
,

which it known as the alternating harmonic series. Less obviously alternating is

∞∑
k=1

cosπk√
k
, (9.9)

but notice that cos π = −1, cos 2π = 1, cos 3π = −1, and in general cos kπ = (−1)k, so in fact
(9.9) can be rewritten as

∞∑
k=1

(−1)k
1√
k
.

The foremost tool for determining whether an alternating series converges or not is the following.

Theorem 9.50 (Alternating Series Test). If (bk) is such that 0 < bk+1 ≤ bk for all k and
limk→∞ bk = 0, then the series ∑

(−1)k+1bk

converges.

The proof is pending, but first notice that the test applies equally well to the series
∑

(−1)kbk;
that is, if the test concludes that

∑
(−1)k+1bk converges, then by Proposition 9.28(1) we have

(−1)−1
∑

(−1)k+1bk =
∑

(−1)−1(−1)k+1bk =
∑

(−1)kbk,

and so it can be concluded that ∑
(−1)kbk

converges as well.

Example 9.51. Determine whether the series

∞∑
k=1

(−1)k+1 e
1/k

k

converges or diverges.
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Solution. Here we have bk = e1/k/k for k ≥ 1. Clearly bk > 0 for all k ≥ 1. To use the
Alternating Series Test to establish convergence, we must show that bk+1 ≤ bk for all k ≥ 1 (i.e.
{bk} is a nonincreasing sequence) and limk→∞ bk = 0.

First the limit. From limk→∞ 1/k = 0 and limk→∞ e1/k = e0 = 1 we obtain

lim
k→∞

bk = lim
k→∞

e1/k

k
= lim

k→∞

1

k
· lim
k→∞

e1/k = 0 · 1 = 0.

Next, observe that for each k ≥ 1 we have 1/(k + 1) < 1/k, which implies that e1/(k+1) < e1/k

since the exponential function is strictly increasing on its domain. As a result we obtain

bk+1 =
e1/(k+1)

k + 1
=

1

k + 1
· e1/(k+1) <

1

k
· e1/k = bk,

and so 0 < bk+1 ≤ bk for all k ≥ 1.
Therefore, by the Alternating Series Test, the series

∑∞
k=1(−1)k+1e1/k/k converges. ■

Example 9.52. Determine whether the series

∞∑
k=3

(−1)k+1k
2 − 4

k3 − 8

converges or diverges.

Solution. To use the Alternating Series Test to establish convergence, we first need to establish
that the sequence

bk = (k2 − 4)/(k3 − 8), k ≥ 3,

is such that 0 < bk+1 ≤ bk for all k ≥ 3. There are several ways to do this, but the direct
approach will be taken here. To commence, observe that

bk =
k2 − 4

k3 − 8
=

(k − 2)(k + 2)

(k − 2)(k2 + 2k + 4)
=

k + 2

k2 + 2k + 4
,

which makes clear that bk > 0 for all k ≥ 3. Moreover, we have the chain of equivalencies

bk+1 ≤ bk ⇔ (k + 1) + 2

(k + 1)2 + 2(k + 1) + 4
≤ k + 2

k2 + 2k + 4
⇔ k + 3

k2 + 4k + 7
≤ k + 2

k2 + 2k + 4

⇔ (k + 3)(k2 + 2k + 4) ≤ (k + 2)(k2 + 4k + 7)

⇔ 5k2 + 10k + 12 ≤ 6k2 + 15k + 14

⇔ k2 + 5k + 2 ≥ 0,

and so since k2 + 5k + 2 ≥ 0 is obviously true for k ≥ 3, it follows that bk+1 ≤ bk is true for
k ≥ 3.

The next thing to establish is that limk→∞ bk = 0, but this is easy:

lim
k→∞

bk = lim
k→∞

k2 − 4

k3 − 8
= lim

k→∞

k2 − 4

k3 − 8
· 1/k

3

1/k3
= lim

k→∞

1/k − 4/k3

1− 8/k3
=

0− 0

1− 0
= 0.
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Therefore, by the Alternating Series Test, we conclude that

∞∑
k=3

(−1)k+1k
2 − 4

k3 − 8

converges. ■

To prove Theorem 9.50 we first need the following result.

Lemma 9.53. Given a sequence (an)
∞
n=1, let sn =

∑n
k=1 ak. If there is some s ∈ R such that

s2n → s and s2n−1 → s as n→ ∞, then the series
∑∞

k=1 ak converges to s.

Proof. Suppose that s2n, s2n−1 → s as n→ ∞ for some s ∈ R. By definition

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

sn,

so the objective is to show that limn→∞ sn = s.
Fix ϵ > 0. Since limn→∞ s2n = s, there exists some integer N1 such that |s2n−s| < ϵ whenever

n > N1. Also, since limn→∞ s2n−1 = s, there exists some integer N2 such that |s2n−1 − s| < ϵ
whenever n > N2. Let N = max{2N1, 2N2 − 1}, and suppose that n > N .

If n is even, then n = 2m for some m ∈ Z, so that

n > N ⇒ 2m > 2N1 ⇒ m > N1,

and we obtain

|sn − s| = |s2m − s| < ϵ.

If n is odd, then n = 2m− 1 for some m ∈ Z, so that

n > N ⇒ 2m− 1 > 2N2 − 1 ⇒ m > N2,

and we obtain

|sn − s| = |s2m−1 − s| < ϵ.

Since |sn − s| < ϵ for n > N , we conclude that limn→∞ sn = s. Therefore
∑∞

k=1 ak = s. ■

In the following proof we’ll assume that the series in Theorem 9.50 is specifically of the form

∞∑
k=1

(−1)k+1bk,

since the structure of the proof is unchanged if the series is given as

∞∑
k=m

(−1)k+1bk

for any integer m ̸= 1.
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Proof of the Alternating Series Test. Suppose (bk)
∞
k=1 is such that 0 < bk+1 ≤ bk for all k

and limk→∞ bk = 0. Setting ak = (−1)k+1bk, we find that, for each n ≥ 1,

s2n : =
2n∑
k=1

ak = a1 + a2 + a3 + a4 + · · ·+ a2n−1 + a2n

= (b1 − b2) + (b3 − b4) + · · ·+ (b2n−1 − b2n) (9.10)

= b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n. (9.11)

From (9.10) it should be evident that s2n ≥ 0, since bk − bk+1 ≥ 0 for all k; and from (9.11) it
can be seen that s2n < b1, since

b2 − b3, b4 − b5, . . . , b2n−2 − b2n−1 ≥ 0

and b2n > 0. So the sequence (s2n)
∞
n=1 = (s2, s4, s6, . . .) is bounded. Morever (s2n) is monotone

increasing:

s2n =
2n∑
k=1

ak =
2n−2∑
k=1

ak + (a2n−1 + a2n) = s2n−2 + (b2n−1 − b2n) ≥ s2n−2,

and so by the Monotone Convergence Theorem there is some s ∈ R such that

lim
n→∞

s2n = s. (9.12)

As for the sequence (s2n−1)
∞
n=1 = (s1, s3, s5, . . .), we have

lim
n→∞

s2n−1 = lim
n→∞

(s2n − a2n) = lim
n→∞

(s2n + b2n) = lim
n→∞

s2n + lim
n→∞

b2n = s, (9.13)

where
lim
n→∞

b2n = 0

follows from limn→∞ bn = 0 by Proposition 9.23.
From (9.12) and (9.13) we conclude by Lemma 9.53 that limn→∞ sn = s, and therefore

∞∑
k=1

(−1)k+1bk = lim
n→∞

n∑
k=1

(−1)k+1bk = lim
n→∞

sn = s.

That is, the series converges. ■

Let
∑∞

k=m(−1)k+1bk be a convergent alternating series, so that
∞∑
k=m

(−1)k+1bk = s

for some s ∈ R. If

sn =
n∑

k=m

(−1)k+1bk

for each n ≥ m (where m is usually 0 or 1), then the absolute error in approximating s by sn is

Rn = |s− sn|
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and is called the nth remainder for the series.

Theorem 9.54 (Alternating Series Estimation Theorem). If
∑

(−1)k+1bk is a convergent
alternating series such that 0 ≤ bk+1 ≤ bk for all k, then Rn ≤ bn+1 for all n.

Proof. Suppose that
∞∑
k=1

(−1)k+1bk = s

for some s ∈ R, and 0 ≤ bk+1 ≤ bk for all k ≥ 1.
Let n ≥ 1 be an odd integer. Then

sn+1 = sn − bn+1 ≤ sn

shows that

sn+1 ≤ sn+m ≤ sn (9.14)

in the case when m = 1. Let m ≥ 1 be arbitrary and suppose that (9.14) holds. If m is odd,
then n+m+ 2 is even so that

sn+m+1 = sn+m + (−1)n+m+2bn+m+1 = sn+m + bn+m+1 ≥ sn+m ≥ sn+1,

and m+ 1 ≥ 2 is even so that

sn+m+1 = sn − bn+1 + bn+2 − bn+3 + bn+4 + · · · − bn+m + bn+m+1

= sn + (−bn+1 + bn+2)︸ ︷︷ ︸
≤0

+(−bn+3 + bn+4)︸ ︷︷ ︸
≤0

+ · · ·+ (−bn+m + bn+m+1)︸ ︷︷ ︸
≤0

≤ sn.

Hence we have

sn+1 ≤ sn+m+1 ≤ sn (9.15)

if m is odd. If m is even, then n+m+ 2 is odd so that

sn+m+1 = sn+m + (−1)n+m+2bn+m+1 = sn+m − bn+m+1 ≤ sn+m ≤ sn,

and m+ 1 ≥ 3 is odd so that

sn+m+1 = sn+1 + (bn+2 − bn+3)︸ ︷︷ ︸
≥0

+ · · ·+ (bn+m − bn+m+1)︸ ︷︷ ︸
≥0

≥ sn+1.

Hence (9.15) holds if m is even, and we conclude by the principle of induction that (9.14) holds
for all m ≥ 1 in the case when n is odd. By the Squeeze Theorem

lim
m→∞

sn+1 ≤ lim
m→∞

sn+m ≤ lim
m→∞

sn,

and therefore

sn+1 ≤ s ≤ sn (9.16)

if n is odd.
Next, suppose that n ≥ 1 is an even integer. Then

sn+1 = sn + (−1)n+2bn+1 = sn + bn+1 ≥ sn
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shows that
sn ≤ sn+m ≤ sn+1 (9.17)

in the case when m = 1. Fix m ≥ 1 and suppose (9.17) holds. If m is odd, then n+m+ 2 is
odd so that

sn+m+1 = sn+m + (−1)n+m+2bn+m+1 = sn+m − bn+m+1 ≤ sn+m ≤ sn+1,

and m+ 1 ≥ 2 is even so that

sn+m+1 = sn + (bn+1 − bn+2)︸ ︷︷ ︸
≥0

+ · · ·+ (bn+m − bn+m+1)︸ ︷︷ ︸
≥0

≥ sn.

Hence we have
sn ≤ sn+m+1 ≤ sn+1 (9.18)

if m is odd. If m is even, then n+m+ 2 is even so that

sn+m+1 = sn+m + (−1)n+m+2bn+m+1 = sn+m + bn+m+1 ≥ sn+m ≥ sn,

and m+ 1 ≥ 3 is odd so that

sn+m+1 = sn+1 + (−bn+2 + bn+3)︸ ︷︷ ︸
≤0

+ · · ·+ (−bn+m + bn+m+1)︸ ︷︷ ︸
≤0

≤ sn+1.

Hence (9.18) holds if m is even, and we conclude by the principle of induction that (9.17) holds
for all m ≥ 1 in the case when n is even. By the Squeeze Theorem

lim
m→∞

sn ≤ lim
m→∞

sn+m ≤ lim
m→∞

sn+1,

and therefore
sn ≤ s ≤ sn+1 (9.19)

if n is even.
From (9.16) we obtain

sn+1 − sn ≤ s− sn ≤ 0,

and thus |s− sn| ≤ |sn+1 − sn| if n is odd. From (9.19) we obtain

0 ≤ s− sn ≤ sn+1 − sn,

and thus |s− sn| ≤ |sn+1 − sn| if n is even. That is, for all n ≥ 1,

|s− sn| ≤ |sn+1 − sn| = |(−1)n+2bn+1| = bn+1,

and the proof is done. ■

The proof for Theorem 9.54 is easily adapted to suit an alternating series with an index k
that starts at some other integer other than 1, or one could simply reindex.

Example 9.55. Approximate the value of the convergent series
∞∑
k=1

(−1)k+1

(3k + 2)4

with an absolute error less than 10−5.
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Solution. We evaluate bk = (3k + 2)−4 for successive values of k until we obtain a number less
than 10−5:

b1 = [3(1) + 2]−4 = 5−4 = 1.60× 10−3

b2 = [3(2) + 2]−4 = 8−4 ≈ 2.44× 10−4

b3 = [3(3) + 2]−4 = 11−4 ≈ 6.83× 10−5

b4 = [3(4) + 2]−4 = 14−4 ≈ 2.60× 10−5

b5 = [3(5) + 2]−4 = 17−4 ≈ 1.20× 10−5

b6 = [3(6) + 2]−4 = 20−4 = 6.25× 10−6

Thus, by Theorem 9.54 we have

R5 = |s− s5| ≤ b6 = 6.25× 10−6 < 10−5,

which is to say that the approximation
∞∑
k=1

(−1)k+1

(3k + 2)4
≈ s5 = 5−4 − 8−4 + 11−4 − 14−4 + 17−4 ≈ 0.00141

has an absolute error that is less than 10−5. ■
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10
Series Functions

10.1 – Taylor Polynomials

Polynomial functions are well behaved. They are continuous everywhere, have continuous
derivatives of all orders everywhere, and repeated differentiation leads always to the zero function.
It also turns out that, given any function f that has continuous derivatives of all orders, and
given any x0 ∈ Dom(f), a polynomial function p can be found that approximates f to an
arbitrary degree of accuracy in some neighborhood of x0. The precise way of going about this is
to construct what is called a Taylor polynomial.

Definition 10.1. Let f be a function for which f ′(x0), f
′′(x0), . . . , f

(n)(x0) ∈ R. For n ≥ 0 the
nth-order Taylor polynomial for f at x0 is the polynomial function pn( · ;x0) given by

pn(x;x0) =
n∑
k=0

f (k)(x0)

k!
(x− x0)

k (10.1)

for all x ∈ R, where we define f (0) = f and (x− x0)
0 = 1.

For each 0 ≤ k ≤ n we call

f (k)(x0)

k!

in (10.1) the kth coefficient of pn(x;x0). Expanding the sum in (10.1) gives

pn(x;x0) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n,

which makes apparent that

pn(x0;x0) = f(x0), (10.2)

and also p0(x;x0) = f(x0) for all x.
The remainder Rn( · ;x0) associated with the nth-order Taylor polynomial for f at x0 is

given by

Rn(x;x0) = f(x)− pn(x;x0),
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and can be seen to be the resultant error when using pn to approximate f for any x ∈ Dom(f).
The absolute error in approximating f(x) with pn(x;x0) is

|Rn(x;x0)| = |f(x)− pn(x;x0)| .

Theorem 10.2 (Taylor’s Theorem). Suppose f has derivatives of all orders up to n+ 1 on
[a, b], and let x0 ∈ [a, b]. For each x ∈ [a, b] with x ̸= x0, there exists c between x and x0 such
that

f(x) = pn(x;x0) +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1. (10.3)

Proof. Let x ∈ [a, b] be such that x ̸= x0 (so here x is a constant). Let M be the number for
which

f(x) = pn(x;x0) +
M

(n+ 1)!
(x− x0)

n+1. (10.4)

To show is that there exists c between x and x0 such that M = f (n+1)(c). Define the function
g : [a, b] → R by

g(t) = −f(x) + pn(x; t) +
M

(n+ 1)!
(x− t)n+1.

Because f has derivatives of all orders up to n+ 1 on [a, b], all the terms in the polynomial

pn(x; t) = f(t) + f ′(t)(x− t) +
f ′′(t)

2!
(x− t)2 + · · ·+ f (n)(t)

n!
(x− t)n

are differentiable on [a, b], and hence g itself is differentiable on [a, b]. Now, from (10.4) we see
that g(x) = 0, while from (10.2) comes

g(x0) = −f(x0) + pn(x0;x0) = −f(x0) + f(x0) = 0,

and so by the Mean Value Theorem (Theorem 4.14) there exists c between x and x0 such that
g′(c) = 0. Since

g′(t) =
d

dt

[
−f(x) + f(t) +

n∑
k=1

f (k)(t)

k!
(x− t)k +

M

(n+ 1)!
(x− t)n+1

]

= f ′(t) +
n∑
k=1

Ç
f (k+1)(t)

k!
(x− t)k − f (k)(t)

(k − 1)!
(x− t)k−1

å
− M

n!
(x− t)n

=
n∑
k=0

f (k+1)(t)

k!
(x− t)k −

n−1∑
k=0

f (k+1)(t)

k!
(x− t)k − M

n!
(x− t)n

=
f (n+1)(t)

n!
(x− t)n − M

n!
(x− t)n,

it follows from g′(c) = 0 that

M

n!
(x− c)n =

f (n+1)(c)

n!
(x− c)n,

and therefore M = f (n+1)(c). ■
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Remark. Taylor’s Theorem still holds, and the proof is the same, if we assume the very slightly
weaker hypothesis that f has derivatives of all orders up to n on [a, b], and f (n) is differentiable
on (a, b) and continuous on [a, b]. If we do this, and we also set n = 1, then we find that Taylor’s
Theorem becomes precisely the statement of the Mean Value Theorem, with (10.3) becoming

f(x) = p0(x;x0) + f ′(c)(x− x0),

and hence

f ′(c) =
f(x)− f(x0)

x− x0
since p0(x;x0) = f(x0). Thus Taylor’s Theorem can be said to be a generalization of the Mean
Value Theorem.

Proposition 10.3. Suppose that f : [a, b] → R, f (n) is continuous on [a, b] and differentiable
on (a, b) for some n ≥ 0, a ≤ x0, x ≤ b with x ̸= x0, and I is the open interval with endpoints
x and x0. If pn is the nth-order Taylor polynomial for f with center x0 and there exists some
M ∈ R such that |f (n+1)(t)| ≤M for all t ∈ I, then

|Rn(x)| ≤M
|x− x0|n+1

(n+ 1)!
.

Proof. By Taylor’s Theorem there exists some c between x and x0 such that

Rn(x;x0) = f(x)− pn(x;x0) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1,

and since c ∈ I we obtain

|Rn(x;x0)| =
∣∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− x0)

n+1

∣∣∣∣∣ = ∣∣∣f (n+1)(c)
∣∣∣ |x− x0|n+1

(n+ 1)!
≤M

|x− x0|n+1

(n+ 1)!
,

as was to be shown. ■

Example 10.4. Find the nth-order Taylor polynomial for f(x) = (1 + x)−2 centered at 0 for
n = 1, 2, 3, 4, 5. Then find a general expression for pn(x; 0).

Solution. First we obtain the needed derivatives for f , along with their values at 0.

f ′(x) = −2(1 + x)−3 ⇒ f ′(0) = −2

f ′′(x) = 6(1 + x)−4 ⇒ f ′′(0) = 6

f ′′′(x) = −24(1 + x)−5 ⇒ f ′′′(0) = −24

f (4)(x) = 120(1 + x)−6 ⇒ f (4)(0) = 120

f (5)(x) = −720(1 + x)−7 ⇒ f (5)(0) = −720

Thus we have

p1(x; 0) = f(0) + f ′(0)x = 1− 2x,

p2(x; 0) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 = 1− 2x+ 3x2,
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Figure 37.

p3(x; 0) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 = 1− 2x+ 3x2 − 4x3,

p4(x; 0) = p3(x; 0) +
f (4)(0)

4!
= 1− 2x+ 3x2 − 4x3 + 5x4,

p5(x; 0) = p4(x; 0) +
f (5)(0)

5!
= 1− 2x+ 3x2 − 4x3 + 5x4 − 6x5.

Figure 37 shows the graphs of these Taylor polynomials. It can be seen that pn provides a better
approximation for f in the neighborhood of 0 as n increases. It can also be seen that the terms
in the Taylor polynomials fit a pattern, so that we may conjecture that

pn(x; 0) =
n∑
k=0

(−1)k(k + 1)xk

for each n ≥ 0. This can be proven formally by induction. ■

Example 10.5. Find the nth-order Taylor polynomial for f(x) = sin(x) centered at 0 for
n = 0, 1, 2, 3, 4, 5. Then find a general expression for pn(x).

Solution. First we obtain the needed derivatives for f , along with their values at 0.

f ′(x) = cos(x) ⇒ f ′(0) = 1

f ′′(x) = − sin(x) ⇒ f ′′(0) = 0

f ′′′(x) = − cos(x) ⇒ f ′′′(0) = −1

f (4)(x) = sin(x) ⇒ f (4)(0) = 0

f (5)(x) = cos(x) ⇒ f (5)(0) = 1
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As usual we define f (0)(x) = f(x), and so we have

p0(x; 0) = f(0) = 0,

p1(x; 0) = f(0) + f ′(0)x = x,

p2(x; 0) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 = x,

p3(x; 0) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 = x− x3

6
,

p4(x; 0) = p3(x; 0) +
f (4)(0)

4!
= x− x3

6
,

p5(x; 0) = p4(x; 0) +
f (5)(0)

5!
= x− x3

6
+

x5

120
.

If we write

p5(x; 0) = (0)
x0

0!
+ (1)

x1

1!
+ (0)

x2

2!
+ (−1)

x3

3!
+ (0)

x4

4!
+ (1)

x5

5!
+ · · · ,

then generally we have

pn(x; 0) =
n∑
k=0

σ(k)

k!
xk,

where σ is the function given by

σ(k) = (−1)Tk/2U
ï
(−1)k+1 + 1

2

ò
. (10.5)

In particular, σ(0) = 0, σ(1) = 1, σ(2) = 0, σ(3) = −1, σ(4) = 0, σ(5) = 1, and so on. ■

Example 10.6. Let f(x) = (1+x)−2 as in Example 10.4. Find an upper bound on the absolute
error that may be incurred by approximating f(0.1) using the 4th-order Taylor polynomial for
f with center 0.

Solution. The absolute error in question is |R4(0.1; 0)| = |f(0.1)− p4(0.1; 0)|. From Example
10.4 we found that f (5)(x) = −720(1 + x)−7, which certainly is continuous on [0, 0.1] and
differentiable on (0, 0.1). Now, for any 0 < t < 0.1,∣∣∣f (5)(t)

∣∣∣ = 720

|1 + t|7
≤ 720

|1 + 0|7
= 720,

and so by Proposition 10.3 we obtain an upper bound on |R4(x; 0)|:

|R4(x; 0)| ≤ (720)
|0.1− 0|5

(4 + 1)!
=

720(0.1)5

5!
= 6× 10−5.

Thus, if we use p4(0.1; 0) to estimate f(0.1), the absolute error will be no greater than 6× 10−5.
Of course, nothing here prevents us from actually calculating the absolute error in this case.

Since

f(0.1) = (1 + 0.1)−2 ≈ 0.826446281
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and
p4(0.1) = 1− 2(0.1) + 3(0.1)2 − 4(0.1)3 + 5(0.1)4 = 0.8265,

it can be seen that the absolute error is about 5.3719× 10−5. This is indeed less than the upper
bound 6× 10−5. ■

Example 10.7. Find an upper bound on the absolute error in approximating f(x) = (1 + x)−2

on the interval [−0.3, 0.3] using the 4th-order Taylor polynomial for f with center 0.

Solution. The goal here is to find some number N such that |R4(x; 0)| ≤ N for all x ∈ [−0.3, 0.3].
Example 10.4 gives an expression for f (5), which is seen to be continuous on [−0.3, 0.3] and
differentiable on (−0.3, 0.3), and so Proposition 10.3 can be used with x0 = 0 in order to
determine a value for N .

Fix x ∈ [−0.3, 0.3], and let I be the open interval with endpoints 0 and x. For any t ∈ I we
have ∣∣∣f (5)(t)

∣∣∣ = 720

|1 + t|7
≤ 720

|1 + (−0.3)|7
≈ 8742.7 < 8742.8,

since t ∈ I implies that −0.3 ≤ t ≤ 0.3, and so by Proposition 10.3 and the fact that |x| ≤ 0.3
we obtain

|R4(x; 0)| ≤ (8742.8)
|x|5

5!
≤ (8742.8)

0.35

5!
≈ 0.1770 < 0.1771.

Now, since x ∈ [−0.3, 0.3] is arbitrary, it follows that |R4(x; 0)| ≤ 0.1771 for all −0.3 ≤ x ≤ 0.3.
That is, 0.1771 serves as an upper bound on the absolute error in approximating f on [−0.3, 0.3]
using p4.

In the case when x = −0.3 we have f(−0.3) = (1− 0.3)−2 ≈ 2.0408 and p4(−0.3; 0) = 2.0185,
and so the absolute error is 0.0223—well less than 0.1771. ■
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10.2 – Power Series

Definition 10.8. An infinite series of the form
∞∑
k=0

ck(x− x0)
k (10.6)

is a power series with center x0, and the ck values are the coefficients of the power series.

Just as an infinite series as defined in Section 9.3 need not have its index k start at 1, the
index of a power series as defined here does not need to start at 0. However having the initial
value of k be 0 is the most common scenario.

Power series may be used to define functions. That is, we can define a function f by

f(x) =
∞∑
k=0

ck(x− x0)
k,

with the understanding that the domain of f consists of the set of all x ∈ R for which the series
converges. Define

S =

{
x ∈ R :

∞∑
k=0

ck(x− x0)
k ∈ R

}
to be the “set of convergence” for the series (10.6). As the next theorem makes clear, given any
power series (10.6) the set S can only ever be {x0}, (−∞,∞), or an interval with endpoints
x0 −R and x0 +R for some R > 0. Here R is called the radius of convergence of the power
series. We define R = 0 if S = {x0}, and R = ∞ if S = (−∞,∞).

Theorem 10.9. A power series
∑
ck(x− x0)

k exhibits one of three behaviors:

1. The series converges absolutely for all x ∈ R, so that S = (−∞,∞) and R = ∞.
2. The series converges only for x = x0, so that S = {x0} and R = 0.
3. For some 0 < R <∞ the series converges absolutely for all x ∈ (x0−R, x0+R) and diverges

for all x ∈ (−∞, x0 −R) ∪ (x0 +R,∞).

In part (3) of the theorem notice that nothing is said about whether the power series
converges at x = x0 ±R, and that is because nothing can be said in general. If part (3) applies
to a particular power series, then the set of convergence S of the series will be an interval of
convergence that may be of the form (x0 − R, x + R), [x0 − R, x + R), (x0 − R, x + R], or
[x0 −R, x+R]. The endpoints x0 −R and x0 +R will have to be investigated individually to
determine whether the series converges or diverges there.

To determine for what values of x a power series converges, we only need the tests for
convergence that were developed in the previous chapter.

Example 10.10. Find the interval of convergence of the power series
∞∑
k=1

(−1)k−1x
k

k3
, (10.7)

and state the radius of convergence.
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Solution. Clearly the series converges when x = 0. Assuming x ̸= 0, we can employ the Ratio
Test with ak = (−1)k−1xk/k3:

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(−1)kxk+1

(k + 1)3
· k3

(−1)k−1xk

∣∣∣∣ = lim
k→∞

∣∣∣∣ −k3x
(k + 1)3

∣∣∣∣ = lim
k→∞

k3

(k + 1)3
|x| = |x|,

since

lim
k→∞

k3

(k + 1)3
= 1.

Thus the series converges if |x| < 1, or equivalently −1 < x < 1. The Ratio Test is inconclusive
when x = −1 or x = 1, so we analyze these endpoints separately.

When x = −1 the series becomes
∞∑
k=1

(−1)k−1(−1)k

k3
=

∞∑
k=1

(−1)2k−1

k3
=

∞∑
k=1

−1

k3
.

Recall that
∑

1/k3 is a convergent p-series, and thus
∑

1/k3 = s for some s ∈ R. Now
Proposition 9.12 implies that

∞∑
k=1

−1

k3
= −

∞∑
k=1

1

k3
= −s,

which shows that
∑

−1/k3 also converges.
When x = 1 the series becomes

∞∑
k=1

(−1)k−1

k3
,

which is an alternating series
∑

(−1)k−1bk with bk = 1/k3. Since limk→∞ bk = 0 and

bk+1 =
1

(k + 1)3
<

1

k3
= bk

for all k, by the Alternating Series Test this series converges.
We conclude that the series (10.7) converges on the interval [−1, 1], and the radius of

convergence is R = 1
2
|1− (−1)| = 1. ■

Example 10.11. Find the interval of convergence of the power series
∞∑
k=1

(−1)k
(x+ 2)k

k · 2k
, (10.8)

and state the radius of convergence.

Solution. Clearly the series converges when x = −2. Assuming x ̸= −2, we can employ the
Ratio Test with

ak = (−1)k
(x+ 2)k

k · 2k
to obtain

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(−1)k+1(x+ 2)k+1

(k + 1) · 2k+1
· k · 2k

(−1)k(x+ 2)k

∣∣∣∣
= lim

k→∞

∣∣∣∣(−1)(x+ 2)

2(k + 1)
· k
1

∣∣∣∣ = lim
k→∞

k

2k + 2
|x+ 2|
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=
1

2
|x+ 2|.

Thus the series converges if 1
2
|x+ 2| < 1, which implies |x+ 2| < 2 and thus −4 < x < 0. The

Ratio Test is inconclusive when x = −4 or x = 0, so we analyze these endpoint separately.
When x = −4 the series becomes

∞∑
k=1

(−1)k(−2)k

k · 2k
=

∞∑
k=1

2k

k · 2k
=

∞∑
k=1

1

k
,

which is the harmonic series and therefore diverges.
When x = 0 the series becomes

∞∑
k=1

(−1)k2k

k · 2k
=

∞∑
k=1

(−1)k
1

k
,

which is an alternating series
∑

(−1)kbk with bk = 1/k. Since limk→∞ bk = 0 and

bk+1 =
1

k + 1
<

1

k
= bk

for all k, by the Alternating Series Test this series converges.
Therefore the series (10.8) converges on the interval (−4, 0], and the radius of convergence is

R = 1
2
|0− (−4)| = 2. ■

Example 10.12. Find the interval of convergence of the power series

∞∑
k=2

xk

(ln k)k
, (10.9)

and state the radius of convergence.

Solution. In this case it would be easier to use the Root Test with ak = xk/(ln k)k; so, for any
x ∈ R, we obtain

lim
k→∞

k

»
|ak| = lim

k→∞
k

 ∣∣∣∣ xk

(ln k)k

∣∣∣∣ = lim
k→∞

k

 
|x|k

| ln k|k
= lim

k→∞

|x|
| ln k|

= 0,

since ln k → ∞ as k → ∞. Thus, the series (10.9) converges for all real x, which implies that
the interval of convergence is (−∞,∞) and the radius of convergence is R = ∞. ■

Theorem 10.13. Suppose the series
∑∞

k=0 ck(x− x0)
k converges on an interval I, and define

f : I → R by f(x) =
∑∞

k=0 ck(x− x0)
k.

1. f is continuous on I.
2. f is differentiable on Int(I), with

f ′(x) =
∞∑
k=1

kck(x− x0)
k−1.

for all x ∈ Int(I).
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3. f is integrable on Int(I), with
�
f =

∞∑
k=0

ck
k + 1

(x− x0)
k+1 + c

for arbitrary constant c.

The first part of Theorem 10.13 states that, for any x ∈ Int(I),

lim
t→x

∞∑
k=0

ck(t− x0)
k = lim

t→x
f(t) = f(x) =

∞∑
k=0

ck(x− x0)
k =

∞∑
k=0

lim
t→x

ck(t− x0)
k, (10.10)

which is to say the limit of a convergent series can be carried out “termwise” so long as the limit
operates in the interior of the interval of convergence I of the series. If x is an endpoint of I then
the appropriate one-sided limit is executed in (10.10) instead. The second and third parts of
the theorem state that a convergent power series can be differentiated and integrated “termwise”
on the interior of I, meaning the differentiation or integration operator can be brought inside
the series:

d

dx

∞∑
k=0

ck(x− x0)
k =

∞∑
k=0

d

dx

[
ck(x− x0)

k
]
=

∞∑
k=0

kck(x− x0)
k−1 =

∞∑
k=1

kck(x− x0)
k−1,

and � [ ∞∑
k=0

ck(x− x0)
k

]
dx =

∞∑
k=0

ï�
ck(x− x0)

kdx

ò
+ c =

∞∑
k=0

ck
k + 1

(x− x0)
k+1 + c.

Moreover the new series that results from differentiating or integrating the old series will be
convergent on Int(I) as mentioned in the theorem, although nothing can be said in general
about the behavior of the new series at the endpoints of I.

Example 10.14. Show that
∞∑
n=1

(−1)n

n
= ln

(
1
2

)
.

Solution. Recall that
∞∑
n=0

xn =
1

1− x

for any x ∈ (−1, 1). Since − ln(1−x) is an antiderivative for (1−x)−1 on (−1, 1), for x ∈ (−1, 1)
the Fundamental Theorem of Calculus gives

� x

0

(
∞∑
n=0

tn

)
dt =

� x

0

1

1− t
dt =

[
− ln(1− t)

]x
0
= − ln(1− x). (10.11)

On the other hand Theorem 10.13(3) shows that

f(x) =
∞∑
n=0

xn+1

n+ 1
(10.12)
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is an antiderivative for
∑∞

n=0 x
n on (−1, 1), and so

� x

0

(
∞∑
n=0

tn

)
dt =

[
∞∑
n=0

tn+1

n+ 1

]x
0

=
∞∑
n=0

xn+1

n+ 1
(10.13)

for x ∈ (−1, 1). Combining (10.11) and (10.13) gives
∞∑
n=0

xn+1

n+ 1
= − ln(1− x) (10.14)

for x ∈ (−1, 1).
Using the Ratio Test and Alternating Series Test, it is straightforward to show that the

series in (10.12) converges on [−1, 1). Thus by Theorem 10.13(1) the function f is continuous
on [−1, 1), and so in particular

lim
x→−1+

∞∑
n=0

xn+1

n+ 1
= lim

x→−1+
f(x) = f(−1) =

∞∑
n=0

(−1)n+1

n+ 1
. (10.15)

But by (10.14) we also have

lim
x→−1+

∞∑
n=0

xn+1

n+ 1
= lim

x→−1+

[
− ln(1− x)

]
= − ln(2) (10.16)

since the natural logarithm function is continuous on its domain. Combining (10.15) and (10.16)
gives

∞∑
n=0

(−1)n+1

n+ 1
= − ln(2).

Now we simply observe that
∞∑
n=1

(−1)n

n
=

∞∑
n=0

(−1)n+1

n+ 1

and ln
(
1
2

)
= − ln(2) to obtain the desired result. ■
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10.3 – Taylor Series

Definition 10.15. Let f be a function that has derivatives of all orders on an open interval I
containing x0. Then the power series of the form

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k

is the Taylor series for f centered at x0. A Taylor series centered at 0 is called a
Maclaurin series.

Recalling the definition for the nth-order Taylor polynomial Pn(x) for f with center x0 given
in Section 10.1, it can be seen that

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k = lim
n→∞

Pn(x).

In what follows recall that Rn(x) = f(x)− Pn(x).

Theorem 10.16. Let Pn(x) be the nth-order Taylor polynomial for f centered at x0. If
limn→∞Rn(x) = 0 for all x on an open interval I containing x0, then

f(x) = lim
n→∞

Pn(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)

k

for all x ∈ I.

Proof. Suppose that limn→∞Rn(x) = 0 for all x on an open interval I. Then Pn(x) exists for
all n ≥ 0 and x ∈ I, which implies that f has derivatives of all orders on I and so the Taylor
series for f centered at x0 exists. Let x ∈ I. Then

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k = lim
n→∞

n∑
k=0

f (k)(x0)

k!
(x− x0)

k = lim
n→∞

Pn(x)

= lim
n→∞

[f(x)−Rn(x)] = lim
n→∞

f(x)− lim
n→∞

Rn(x)

= f(x)− 0 = f(x).

Therefore f(x) equals the value at x of Taylor series for f centered at x0. ■

Example 10.17. Show that

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!

for all x ∈ (−∞,∞).
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Solution. In Example 10.5 we determined that the nth-order Taylor polynomial centered at 0
for the sine function is

Pn(x; 0) =
n∑
k=0

σ(k)

k!
xk,

with σ defined by equation (10.5). Fix n ≥ 0. We have that sin(n) is continuous and differentiable
on (−∞,∞). Let x ≠ 0, and let I be the open interval with endpoints 0 and x. Since | sin(n+1)(t)|
is either | sin t| or | cos t|, it is clear that | sin(n+1)(t)| ≤ 1 for all t ∈ I. Therefore

|Rn(x; 0)| ≤ 1 · |x− 0|n+1

(n+ 1)!
=

|x|n+1

(n+ 1)!
(10.17)

by Proposition 10.3, and since n ≥ 0 is arbitrary we conclude that the inequality (10.17) holds
for all n ≥ 0. Observing that

lim
n→∞

|x|n+1

(n+ 1)!
= 0,

by the Squeeze Theorem we obtain

lim
n→∞

|Rn(x; 0)| = 0

and hence Rn(x; 0) → 0 as n→ ∞ for all x ̸= 0. However, because Pn(0; 0) = 0 = sin 0 for all
n ≥ 0, we have Rn(0; 0) = 0 for all n ≥ 0 and thus

lim
n→∞

Rn(x; 0) = 0

holds for all x ∈ (−∞,∞). So, by Theorem 10.16 we conclude that

sin(x) = lim
n→∞

Pn(x; 0) = lim
n→∞

n∑
k=0

σ(k)

k!
xk

for all x ∈ (−∞,∞).
Finally, it’s a straightforward enough matter to verify that, for any n ≥ 0,

2n+1∑
k=0

σ(k)

k!
xk =

n∑
k=0

(−1)kx2k+1

(2k + 1)!
,

and therefore

sin(x) = lim
n→∞

n∑
k=0

σ(k)

k!
xk = lim

n→∞

2n+1∑
k=0

σ(k)

k!
xk = lim

n→∞

n∑
k=0

(−1)kx2k+1

(2k + 1)!
=

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

as desired. ■



260

10.4 – Applications of Taylor Series

Example 10.18. Approximate the value of the definite integral� 0.2

0

sin(x2)dx

with an absolute error less than 10−10.

Solution. In Example 10.17 we found that

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!

for all x ∈ (−∞,∞), and thus we have

sin(x2) =
∞∑
k=0

(−1)k(x2)2k+1

(2k + 1)!
=

∞∑
k=0

(−1)kx4k+2

(2k + 1)!
(10.18)

for all −∞ < x <∞. In particular the series at right in (10.18) converges on (−∞,∞), and so
by Theorem 10.13(3)

� [ ∞∑
k=0

(−1)kx4k+2

(2k + 1)!

]
dx =

∞∑
k=0

(−1)kx4k+3

(4k + 3)(2k + 1)!
+ c

for all x ∈ (−∞,∞) and arbitrary constant c. Thus, by the Fundamental Theorem of Calculus,

� 0.2

0

sin(x2)dx =

� 0.2

0

[
∞∑
k=0

(−1)kx4k+2

(2k + 1)!

]
dx =

[
∞∑
k=0

(−1)kx4k+3

(4k + 3)(2k + 1)!

]0.2
0

=
∞∑
k=0

(−1)k(0.2)4k+3

(4k + 3)(2k + 1)!
−

∞∑
k=0

(−1)k(0)4k+3

(4k + 3)(2k + 1)!

=
∞∑
k=0

(−1)k
0.24k+3

(4k + 3)(2k + 1)!

We have arrived at an alternating series
∑

(−1)kbk with

bk =
0.24k+3

(4k + 3)(2k + 1)!

for k ≥ 0. Evaluating the first few bk values,

b0 = 0.23/(3 · 1!) ≈ 2.6667× 10−3

b1 = 0.27/(7 · 3!) ≈ 3.0476× 10−7

b2 = 0.211/(11 · 5!) ≈ 1.5515× 10−11

By the Alternating Series Estimation Theorem the approximation
∞∑
k=0

(−1)k
0.24k+3

(4k + 3)(2k + 1)!
≈ b0 − b1 =

0.23

3
− 0.27

42
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will have an absolute error that is less than b2 ≈ 1.5515 × 10−11 < 10−10. Therefore the
approximation � 0.2

0

sin(x2)dx ≈ 0.23

3
− 0.27

42

has an absolute error less than 10−10. In fact it will be less than 1.6× 10−11! ■
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11
Parametric and Polar Curves

11.1 – Parametric Equations

Definition 11.1. Parametric equations are a set of equations that define a list of quantitative
variables x1, . . . , xn as functions of independent variables t1, . . . , tm called parameters.

In the xy-plane there are two obvious quantitative variables: x and y, which together specify
a point (x, y). If we define x and y as functions of a single parameter t, then the resultant
equations x = f(t) and y = g(t) form a set of two parametric equations. Usually we also specify
an interval I for the parameter t, and write

(x, y) = (f(t), g(t)), t ∈ I (11.1)

to indicate that x = f(t) and y = g(t) for all t ∈ I. The graph of the parametric equations in
(11.1) is the set Γ of points in the xy-plane given by

Γ =
{
(f(t), g(t)) : t ∈ I

}
.

We call Γ a curve if both f and g are continuous on I.
Conversely, given a set of points C that is a curve in the xy-plane, if there exists an interval

I and continuous functions f, g : I → R such that the parametric equations (11.1) have graph
equal to C, then (11.1) is a parametrization of the curve C.

Example 11.2. The graph of the parametric equations

(x, y) = (sin 2t, 2 sin t), t ∈ [0, 2π],

is the curve in the xy-plane shown in Figure 38. In general curves defined by parametric
equations of the form

(x, y) =
(
A sin(at+ δ), B sin(bt)

)
, t ∈ [0, 2π],

for constants A,B, a, b, δ are called Lissajous curves. ■
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x

y

−2 2

Figure 38. A Lissajous curve.

Any real-valued function φ defined on an interval I has graph

Γ = {(x, φ(x)) : x ∈ I},

and it is easy to see that the parametric equations

(x, y) = (t, φ(t)), t ∈ I (11.2)

have the same graph Γ. We call (11.2) a parametrization of the function φ, and in general any
set of parametric equations whose graph equals the graph of φ is a parametrization of φ.

Recall that a function φ is continuously differentiable on an open interval I if φ is
differentiable on I and φ′ is continuous on I. Suppose we have parametric equations given by
(11.1), with f and g both continuously differentiable on Int(I). If f ′(τ) ̸= 0 for some τ ∈ Int(I),
then the continuity of f ′ implies there is some δ > 0 such that either f ′ > 0 on I0 := (τ −δ, τ +δ)
or f ′ < 0 on I0. Thus f is either increasing or decreasing on I0, and so is one-to-one there.
Letting f(I0) = J0, it follows that f : I0 → J0 has an inverse f−1 : J0 → I0 such that

f(t) = x ⇔ f−1(x) = t

for all t ∈ I0 and x ∈ J0, where J0 is an open interval by Lemma 7.8. Then

y = g(t) = g(f−1(x)) = (g ◦ f−1)(x) (11.3)

for all t ∈ I0 and x ∈ J0. We now see that y is a function of x, at least for x ∈ J0, and write

y(x) = (g ◦ f−1)(x)

for x ∈ J0.
Now, since f is one-to-one and differentiable on I0, with f

′(t) ̸= 0 for each t ∈ I0, Theorem
7.10 implies f−1 is differentiable at each x = f(t) ∈ J0 and

(f−1)′(x) =
1

f ′(f−1(x))
. (11.4)

Thus, by the Chain Rule, equations (11.3) and (11.4) imply that

y′(x) = (g ◦ f−1)′(x) = g′(f−1(x)) · (f−1)′(x) =
g′(f−1(x))

f ′(f−1(x))
(11.5)
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for all x ∈ J0. In particular we have

y′(f(τ)) =
g′(τ)

f ′(τ)
,

and since τ is an arbitrary point in Int(I) for which f ′(τ) ̸= 0, we have proven the following
theorem.

Theorem 11.3. Let I be an interval, let (x, y) = (f(t), g(t)) for all t ∈ I, and suppose f and g
are continuously differentiable on Int(I). Then

y′(f(t)) =
g′(t)

f ′(t)
(11.6)

for all t ∈ Int(I) such that f ′(t) ̸= 0.

So long as it’s understood that x = f(t), equation (11.6) may be written as

y′(x) =
g′(t)

f ′(t)
. (11.7)

It is common practice to denote parametric equations simply as (x(t), y(t)), so that x = x(t)
and y = y(t). Then (11.7) becomes

y′(x) =
y′(t)

x′(t)
or

dy

dx
=
dy/dt

dx/dt
.

To have y′(x) and y′(t) in the same formula can be confusing, but bear in mind that the symbol
y′(x) in (11.7) is really (g ◦ f−1)′(x), as we see in (11.5).

Theorem 11.3 allows us to compute the usual slope of a curve C defined by parametric
equations (x, y) = (f(t), g(t)) in the standard xy-plane, wherever the slope exists. By (11.6),
the curve C has a horizontal tangent line at the point (f(t), g(t)) if and only if y′(f(t)) = 0,
and the latter occurs if and only if g′(t) = 0 and f ′(t) ̸= 0. Also C has a vertical tangent line
at (f(t), g(t)) if and only if g′(t) ̸= 0 and f ′(t) = 0. The key to seeing this begins with the
observation that Theorem 11.3 has the following symmetrical result.

Corollary 11.4. Let I be an interval, let (x, y) = (f(t), g(t)) for all t ∈ I, and suppose f and
g are continuously differentiable on Int(I). Then

x′(g(t)) =
f ′(t)

g′(t)

for all t ∈ Int(I) such that g′(t) ̸= 0.

Example 11.5. Consider the curve C given by the parametric equations

(x, y) = (sin 2t, 2 sin t), t ∈ [0, 2π],

first considered in Example 11.2.

(a) Find an expression for the slope of C at any point (f(t), g(t)), t ∈ [0, 2π].
(b) Find the points on C where the tangent line is horizontal.
(c) Find the points on C where the tangent line is vertical.
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Solution.
(a) Here x = f(t) = sin 2t and y = g(t) = 2 sin t. By Theorem 11.3,

y′(f(t)) =
g′(t)

f ′(t)
=

cos t

cos 2t

for all t ∈ (0, 2π) such that cos 2t ̸= 0. What about the points on C corresponding to t = 0 and
t = 2π? These two values for t in fact correspond to the same point (0, 0):

(f(0), g(0)) =
(
sin(2 · 0), 2 sin 0

)
= (0, 0) =

(
sin(2 · 2π), 2 sin(2π)

)
= (f(2π), g(2π)).

In order to treat this point in a proper fashion using Theorem 11.3, we note that another
parametrization for C is

(x, y) = (sin 2t, 2 sin t), t ∈ [−π, π].
Theorem 11.3 now implies that

y′(f(t)) =
g′(t)

f ′(t)
=

cos t

cos 2t

for all t ∈ (−π, π) such that cos 2t ̸= 0, which includes t = 0 and hence the point (0, 0) ∈ C.
Therefore

y′(f(t)) =
cos t

cos 2t
(11.8)

for all t ∈ [0, 2π] such that cos 2t ̸= 0.

(b) To find points on C where the tangent line is horizontal, by (11.8) we find t ∈ [0, 2π] for
which cos t = 0 and cos 2t ̸= 0. The solutions are t = π

2
, 3π

2
, which yield the points(

f(π
2
), g(π

2
)
)
= (0, 2) and

(
f(3π

2
), g(3π

2
)
)
= (0,−2).

(c) To find points on C where the tangent line is vertical, by (11.8) we find t ∈ [0, 2π] for which
cos t ̸= 0 and cos 2t = 0. The solutions are t = π

4
, 3π

4
, 5π

4
, 7π

4
, which yield the points(

f(π
4
), g(π

4
)
)
=
(
sin π

2
, 2 sin π

4

)
=
(
1,
√
2
)
,
(
f(3π

4
), g(3π

4
)
)
=
(
− 1,

√
2
)
,(

f(5π
4
), g(5π

4
)
)
=
(
1,−

√
2
)
,
(
f(7π

4
), g(7π

4
)
)
=
(
− 1,−

√
2
)
.

See again Figure 38. ■
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11.2 – Polar Coordinates

In what follows we will say that two pairs of polar coordinates (r1, θ1) and (r2, θ2) are
equivalent, and write (r1, θ1) ∼ (r2, θ2), if they have the same rectangular coordinates. Thus
(1, 0) ∼ (1, 2π), since both lie at (x, y) = (1, 0); and (3, π/4) ∼ (−3, 5π/4), since both lie at
(x, y) = (3/

√
2, 3/

√
2).

Example 11.6. Find the smallest θ0 > 0 for which the set

S = {(r, θ) : 0 ≤ θ ≤ θ0 and r = 4 cos 3θ}

will equal the graph of the polar equation r = 4 cos 3θ.

Solution. When θ = 0 we find that r = 4 cos 0 = 4, so the point (r, θ) = (4, 0) lies on the graph
of the equation. If we denote r by f(θ), so that f(θ) = 4 cos 3θ, then what must be done is to
find the smallest θ0 > 0 such that (f(θ0), θ0) ∼ (4, 0). We start by examining the positive values
of θ for which f(θ) = 4 cos 3θ = ±4 (recall that both r = 4 and r = −4 imply a distance of 4
from the origin):

f(θ) = 4 ⇒ 4 cos 3θ = 4 ⇒ cos 3θ = 1 ⇒ 3θ = 2π, 4π, 6π, . . .

⇒ θ = 2π/3, 4π/3, 2π, . . . (11.9)

and

f(θ) = −4 ⇒ 4 cos 3θ = −4 ⇒ cos 3θ = −1 ⇒ 3θ = π, 3π, 5π, . . .

⇒ θ = π/3, π, 5π/3, . . . (11.10)

The smallest value in (11.9) which when paired with r = 4 gives coordinates equivalent to (4, 0)
is θ = 2π; that is, (4, 2π) ∼ (4, 0). The smallest value in (11.10) which when paired with r = −4
gives coordinates equivalent to (4, 0) is θ = π; that is, (−4, π) ∼ (4, 0). Thus we conclude

x

y

−3

3

Figure 39. The graph of the polar curve r = 4 cos 3θ, called a “rose.”
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that θ0 should be π, the smaller of the two θ values obtained. That is, S equals the graph of
r = 4 cos 3θ if θ0 = π. See Figure 39. ■
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11.3 – Calculus in Polar Coordinates

A curve given by a polar equation r = f(θ) can always be defined by parametric equations
using θ as the parameter and recalling that, in general, x = r cos θ and y = r sin θ:

x = r cos θ = f(θ) cos θ, y = r sin θ = f(θ) sin θ.

Letting g(θ) = f(θ) cos θ = x and h(θ) = f(θ) sin θ = y, and assuming that g and h are
continuously differentiable functions with g′ ̸= 0 on some open interval I, then by Theorem 11.3
we obtain

y′(x) =
h′(θ)

g′(θ)
=
f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
(11.11)

for all θ ∈ I. From this the following proposition results.

Proposition 11.7. Let f be a differentiable function at θ0. If

f ′(θ0) cos θ0 − f(θ0) sin θ0 ̸= 0,

then the slope of the tangent line to the curve with polar equation r = f(θ) at (f(θ0), θ0) is

f ′(θ0) sin θ0 + f(θ0) cos θ0
f ′(θ0) cos θ0 − f(θ0) sin θ0

.

Example 11.8. Find the points where the polar curve r = 2+2 sin θ has a horizontal or vertical
tangent line.

Solution. First, when θ = 0 we have r = f(θ) = 2, so the graph of the equation contains the
point (r, θ) = (2, 0). Setting f(θ) = 2 gives 2 + 2 sin θ = 2, or sin θ = 0, which has solution set
{0, π, 2π, . . .}; and setting f(θ) = −2 gives sin θ = −2, which has no solutions. From the set
{0, π, 2π, . . .} the smallest nonzero value that returns us to (2, 0) is 2π, and so the set

S = {(r, θ) : 0 ≤ θ ≤ 2π and r = 2 + 2 sin θ}

should produce the complete graph of r = 2+2 sin θ (which can be verified by actually producing
the graph). Thus, we need only entertain θ values in the interval [0, 2π] in our search for points
where the curve may have a horizontal or vertical tangent line.

By Proposition 11.7 the curve given by f(θ) = 2 + 2 sin θ has a horizontal tangent line
wherever

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
=

2 cos θ sin θ + (2 + 2 sin θ) cos θ

2 cos2 θ − (2 + 2 sin θ) sin θ
= 0,

which implies

2 cos θ sin θ + (2 + 2 sin θ) cos θ = 0 (11.12)

and

2 cos2 θ − (2 + 2 sin θ) sin θ ̸= 0. (11.13)

From (11.12) we obtain

(cos θ)(2 sin θ + 1) = 0.
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x

y
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3

Figure 40. The graph of r = 2 + 2 sin θ, called a “cardioid.”

From cos θ = 0 we obtain solutions π/2 and 3π/2 in [0, 2π], and from 2 sin θ + 1 = 0 we obtain
solutions 7π/6 and 11π/6 in [0, 2π]. The solution 3π/2 violates the condition (11.13) so we
discard it. Thus the curve has a horizontal tangent line at (4, π/2), (1, 7π/6), and (1, 11π/6).

To find points where the curve has a vertical tangent line, we find solutions to

2 cos2 θ − (2 + 2 sin θ) sin θ = 0.

which gives 2 sin2 θ + sin θ − 1 = 0, and thus

(2 sin θ − 1)(sin θ + 1) = 0.

From 2 sin θ − 1 = 0 we obtain solutions π/6, 5π/6, 13π/6, . . ., and from sin θ + 1 = 0 we obtain
solutions 3π/2, 7π/2, 11π/2, . . .. In the interval [0, 2π], then, we arrive at the points (3, π/6),
(3, 5π/6) and (0, 3π/2) ∼ (0, 0). See Figure 40 ■

Example 11.9. Find the points where the polar curve r = sin 2θ has a horizontal tangent line.

Solution. The entire curve is generated for 0 ≤ θ ≤ 2π, so we only search for values of θ in the
interval [0, 2π].

Set f(θ) = sin 2θ. To find where horizontal tangent lines reside, find θ for which

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
=

2 cos 2θ sin θ + sin 2θ cos θ

2 cos 2θ cos θ − sin 2θ sin θ
= 0,

which entails solving
2 cos 2θ sin θ + sin 2θ cos θ = 0.

Using the identities

sin 2t = 2 sin t cos t and cos 2t = cos2 t− sin2 t,

the equation becomes (sin θ)(2− 3 sin2 θ) = 0, so either sin θ = 0 or sin θ = ±
√
2/3.

Solving sin θ =
√

2/3 gives two solutions: θ1 = tan−1
√
2 (an angle in Quadrant I) and

θ2 = π − tan−1
√
2 (in Quadrant II).

Solving sin θ = −
√

2/3 gives θ3 = π−tan−1
Ä
−
√
2
ä
(in Quadrant III) and θ4 = tan−1

Ä
−
√
2
ä

(in Quadrant IV).
Putting the four angles θ1, θ2, θ3 and θ4 into r = sin 2θ and noting that

tan−1
(
−
√
2
)
= − tan−1

(√
2
)
,



270

we obtain four points:Ç
±2

√
2

3
,± tan−1

√
2

å
and

Ç
±2

√
2

3
, π ± tan−1

√
2

å
.

(These types of problems are seldom pleasant company.) Moving on to sin θ = 0, we obtain
θ = 0, π, which yields just one point, (0, 0), although the curve passes through the point
twice! ■



271

12
Vectors and Coordinates

12.1 – Euclidean Space in Rectangular Coordinates

By “the plane” we have always meant the set of all ordered pairs of real numbers. Such a
set we denote by R2, so that

R2 = {(x, y) : x, y ∈ R} .

As ever, an ordered pair (x, y) may be geometrically interpreted to be a point on the plane.
More precisely (x, y) is taken to be the rectangular coordinates of a point, unless a different
coordinate system has been specified such as the polar coordinate system introduced in §11.2.
Note that R2 = R× R, the Cartesian product of the set of real numbers R with itself.

We now move up one dimension. By “space” we mean here the set of all ordered triples of
real numbers. This set we denote by R3, which in fact equals R× R× R so that

R3 = {(x, y, z) : x, y, z ∈ R}.

An ordered triple (x, y, z) may naturally be regarded as a point in space. The coordinate
system assumed here is the three-dimensional rectangular coordinate system, which is
a natural extension of the two-dimensional rectangular coordinate system. The extension is
accomplished by the addition to a z-axis that is perpendicular to both the x-axis and y-axis.
Figure 41 illustrates two fundamentally different ways to do this, one way yielding a left-
handed coordinate system (at left in the figure), and the other way yielding a right-handed
coordinate system (at right in the figure). We will always assume a right-handed coordinate

y

x

z

x

y

z

Figure 41. A left-handed system at left, and a right-handed system at right.
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x0
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p = (x0, y0, z0)

x0

y0

z0

x

y

z

p = (x0, y0, z0)

Figure 42. Stereoscopic image of three-space containing point and line.

system! This is the system for which the xy-plane would appear to have the conventional
two-dimensional rectangular coordinate system from the perspective of someone looking “down”
at it from a point on the positive z-axis.

If p is a point in space with coordinates (x0, y0, z0), we write p = (x0, y0, z0). The location of
such a point p in the case when x0 > 0, y0 > 0, and z0 > 0 is illustrated in Figure 42, which is
stereoscopic to give the effect of depth. Unless another coordinate system has been specified such
as the cylindrical or spherical systems introduced in §12.5, we always assume the coordinates of
a point in space are rectangular coordinates.

Space equipped with the three-dimensional rectangular coordinate system is sometimes
called xyz-space, just as the plane equipped with the two-dimensional rectangular coordinate
system is called the xy-plane. It is fair to say the xy-plane is a subset of xyz-space, although in
xyz-space any point on the xy-plane must be expressed as an ordered triple with z-coordinate
equal to zero: (x, y, 0). Put another way, in xyz-space the xy-plane is the plane given by the
equation z = 0. Similarly x = 0 is the yz-plane, and y = 0 is the xz-plane. More will be said
about planes in space in §13.6.

In the two-dimensional rectangular coordinate system the xy-plane is partitioned into four
quadrants: Q1, Q2, Q3, Q4. In xyz-space there are eight octants denoted O1, . . . ,O8. Octants
O1, O2, O3, O4 lie above Q1, Q2, Q3, Q4, respectively, and octants O5, O6, O7, O8 lie below Q1,
Q2, Q3, Q4. So the first and fifth octants, for example, are the sets

O1 = {(x, y, z) : x > 0, y > 0, z > 0} and O5 = {(x, y, z) : x > 0, y > 0, z < 0}.

Let p0 = (x0, y0, z0) and p = (x, y, z) be two points in R3. A simple algebraic argument
that twice makes use of the Pythagorean Theorem shows that the distance between p0 and p,
denoted by d(p0, p), is given by the formula

d(p0, p) =
»

(x− x0)2 + (y − y0)2 + (z − z0)2. (12.1)

This is the natural extension of the distance formula in R2 as it is known from algebra.
Recall that in algebra a circle in R2 with center (x0, y0) ∈ R2 and radius r > 0, which we

shall denote by the symbol Cr(x0, y0), is defined to be the set of all points (x, y) ∈ R2 that are
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a distance r from (x0, y0). That is,

Cr(x0, y0) =
{
(x, y) ∈ R2 :

»
(x− x0)2 + (y − y0)2 = r

}
.

The natural extension of the notion of a circle in R2 is that of a sphere in R3. Specifically, a
sphere in R3 with center p0 = (x0, y0, z0) and radius r > 0, denoted by the symbol Sr(p), is the
set of all points p ∈ R3 that are a distance of r away from p0. That is,

Sr(p0) =
{
p ∈ R3 : d(p0, p) = r

}
,

where d(p0, p) is given by (12.1). To say a point (x, y, z) lies on the sphere Sr(p0) is equivalent
to saying d(p0, p) = r, which by (12.1) (squaring both sides) is equivalent to saying

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r2. (12.2)

We refer to (12.2) as the center-radius form of the equation of the sphere Sr(p0). The
following example illustrates the general technique for getting the equation of any sphere into
center-radius form.

Example 12.1. Describe the set of points that satisfies the equation

2x2 + 2y2 + 2z2 + 4x− 5y − 6z = 1
2
.

Solution. First divide by the coefficient of the squared terms, which in this case is 2, to get

x2 + y2 + z2 + 2x− 5
2
y − 3z = 1

4
.

Now,

(x2 + 2x) + (y2 − 5
2
y) + (z2 − 3z) = 1

4
(group by variable)

(x2 + 2x+ 1) + (y2 − 5
2
y + 25

16
) + (z2 − 3z + 9

4
) = 1

4
+ 1 + 25

16
+ 9

4
(complete the square)

(x+ 1)2 + (y − 5
4
)2 + (z − 3

2
)2 = 81

16
(factor each trinomial)

The last equation is in center-radius form. Comparing with (1), we see that the equation is that

for a sphere with center at (−1, 5/4, 3/2) and radius
√

81/16 = 9/4. ■

At least as important as spheres is the notion of an open ball in R3 centered at p0 ∈ R3

with radius r > 0, denoted by Br(p0) and defined to be the set of all points in R3 that are less
than r units from p0:

Br(p0) =
{
p ∈ R3 : d(p0, p) < r

}
.

The closed ball in R3 centered at p0 ∈ R3 with radius r > 0 is the set

Br(p0) =
{
p ∈ R3 : d(p0, p) ≤ r

}
.

Throughout the remainder of these notes we shall be working primarily in either R2 or R3,
though Rn will continue to be useful for the purposes of presenting certain results in a more
general form. Even in scientific applications there is frequent need to work in Rn for some n > 3.
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For example, we have only to consider relativity theory to see an instance when it’s necessary
to work in

R4 = {(x, y, z, t) : x, y, z, t ∈ R} ,
where x, y, and z represent spatial coordinates and t is time.
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12.2 – Vectors in Euclidean Space

Like a point in Rn, a vector in Rn is an ordered n-tuple of real numbers. However, to begin
with there is a difference in notation: vectors in Rn are presented as ordered lists of n real
numbers placed between angle brackets ⟨ and ⟩ instead of parentheses:

⟨x1, x2, . . . , xn⟩.

As with points, we may more compactly denote a vector by a single letter, but the difference is
we shall always use a bold-faced letter for the purpose. Thus the vector ⟨x1, x2, . . . , xn⟩ may
be denoted by x, and we write9

x = ⟨x1, x2, . . . , xn⟩.
We call x1, x2, . . . , xn the components, or coordinates, of the vector x. Vectors in Rn are
sometimes called coordinate vectors or euclidean vectors to distinguish them from other
kinds of vectors encountered in other realms of mathematics.

Two vectors x = ⟨x1, . . . , xn⟩ and y = ⟨y1, . . . , yn⟩ are said to be equal if xk = yk for all
1 ≤ k ≤ n, in which case we write x = y. The zero vector 0 is the vector whose coordinates
are all equal to 0: 0 = ⟨0, . . . , 0⟩.

For our purposes a scalar is always taken to be a real number, though in other contexts a
scalar could be a complex number.

Definition 12.2. Let x = ⟨x1, . . . , xn⟩ and y = ⟨y1, . . . , yn⟩ be vectors in Rn, and c ∈ R. Then
we define the sum of x and y to be the vector

x+ y = ⟨x1 + y1, . . . , xn + yn⟩,
and the scalar multiple of x by c to be the vector

cx = ⟨cx1, . . . , cxn⟩.
We also define the negative of x to be the vector −x = (−1)x, and the difference of x

and y to be the vector
x− y = x+ (−y).

All the operations in Definition 12.2 are known as vector operations. In explicit terms we
have

− x = (−1)x = (−1)⟨x1, . . . , xn⟩ =
〈
(−1)x1, . . . , (−1)xn

〉
= ⟨−x1, . . . ,−xn⟩,

and
x− y = x+ (−1)y = ⟨x1, . . . , xn⟩+ ⟨−y1, . . . ,−yn⟩ = ⟨x1 − y1, . . . , xn − yn⟩.

With Definition 12.2 it is straightforward to prove the following properties of vectors in Rn.

Proposition 12.3. Let x = ⟨x1, . . . , xn⟩ and y = ⟨y1, . . . , yn⟩ be coordinate vectors in Rn, and
a, b ∈ R. Then
1. a(x+ y) = ax+ ay
2. (a+ b)x = ax+ bx
3. (ab)x = a(bx)

9Vectors written by hand, when bold-facing is not necessarily practical, may be denoted with an arrow: #„x .
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Definition 12.4. Two nonzero vectors x,y ∈ Rn are parallel, written x ∥ y, if there exists
c ∈ R such that y = cx.

Aside from notation, how is a euclidean vector in Rn really different from a point in Rn? From
a mathematical standpoint there is no difference: both are ordered n-tuples of real numbers. The
sole difference is merely a matter of geometrical interpretation. The geometric interpretation
is simple: a vector ⟨x1, . . . , xn⟩ is thought of as an arrow in Rn with its tail located at any
arbitrary point (p1, . . . , pn) and its head located at (p1 + x1, . . . , pn + xn). Thus, so long as
⟨x1, . . . , xn⟩ ̸= 0, it is natural to think of ⟨x1, . . . , xn⟩ as an arrow with a fixed direction and
fixed length, but no fixed location in n-space. Put another way: many different arrows can
represent the same vector ⟨x1, . . . , xn⟩, as shown in Figure 43 in the R2 case. A point in Rn,
in contrast, has a fixed location but no direction or length. In physics, for instance, there are
many concepts (such as location) that are regarded as “point quantities,” and other concepts
(such as velocity and force) that are more naturally thought of as having direction and length.

In short, the difference between (x1, . . . , xn) and ⟨x1, . . . , xn⟩ is an artifice demanded by the
sciences and other fields in inquiry that use mathematics as a tool. Mathematics itself, however,
realizes many benefits by treating all n-tuples notationally as vectors, and letting context alone
tell us which vectors in an analysis are better pictured in the mind’s eye as points instead. The
practice of “treating all n-tuples as vectors” is carried out quite easily: any point x = (x1, . . . , xn)
in Rn is represented by (or converted to) the corresponding vector x = ⟨x1, . . . , xn⟩. We call the
vector x the position vector of the point x, since if the tail of the arrow for x is placed at the
origin o = (0, . . . , 0), then the arrow’s head will be located precisely at x. In this way the arrow
for x “points” to x.

Many times throughout these notes we shall indeed notationally present all n-tuples as
vectors. The convenience of doing so is too great to pass up, and the mathematics is never
compromised by the practice. To aid the intuition, however, we may still refer to some vectors
as “points” wherever it seems good to do so.

Given two points x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we can draw an arrow with
tail at x and head at y, and this arrow represents a vector denoted by # „xy. Since

y =
(
x1 + (y1 − x1), . . . , xn + (yn − xn)

)
,

# „ox

x
x

x

x

o

Figure 43. Different arrows, all representing vector x.
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u+ v

v

u
p

q

r

Figure 44.

it follows that
# „xy = ⟨y1 − x1, . . . , yn − xn⟩ = y − x.

In particular we have

# „ox = ⟨x1 − 0, . . . , xn − 0⟩ = ⟨x1, . . . , xn⟩ = x,

which is the position vector for x.
If p, q, and r are three points in Rn, and u = #„pq while v = #„qr, then it is straightforward to

verify that u+ v = #„pr. That is, u, v and u+ v are vectors whose representative arrows form a
triangle if their tails are placed at p, q, and p, respectively. See Figure 44.

There will arise occasions when many points, say m of them, must be referenced in an
analysis, and these will be denoted by employing subscripts: x1,x2, . . . ,xm. For each 1 ≤ k ≤ m
the vector xk in Rn will be taken to have components given by

xk = ⟨xk1, xk2, . . . , xkn⟩.

Another notational convention: In R2 we will usually write x = ⟨x, y⟩ instead of x = ⟨x1, x2⟩,
while in R3 we will usually write x = ⟨x, y, z⟩ rather than x = ⟨x1, x2, x3⟩.

The magnitude or norm of a vector x ∈ Rn, denoted by ∥x∥, is defined to be

∥x∥ =
√
x21 + · · ·+ x2n.

Geometrically, ∥x∥ is the length of any arrow in Rn that represents x, as is easily confirmed by
use of the n-space version of the distance formula. In similar fashion, the direction of a vector
is just the direction of any one of its arrows.

Often it is desirable to obtain a vector that has the same direction as some given vector
x = ⟨x1, . . . , xn⟩, but with a magnitude equal to 1 (which is called a unit vector). This is
easily accomplished by dividing x by its own magnitude to get a new vector

x̂ =
x

∥x∥
.

(Note: the “hat” accent ˆ will often be used to denote a unit vector.) It’s easy to verify that x̂
is a unit vector:

∥x̂∥ =

∥∥∥∥⟨x1, . . . , xn⟩∥x∥

∥∥∥∥=∥∥∥∥≠ x1
∥x∥

, . . . ,
xn
∥x∥

∑∥∥∥∥= Å x1
∥x∥

ã2
+ · · ·+

Å
xn
∥x∥

ã2
=

1

∥x∥
√
x21 + · · ·+ x2n =

1

∥x∥
· ∥x∥ = 1.
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Notice we can write x = ∥x∥x̂, so that any vector can be broken down into a product of its
magnitude and direction.

The standard unit vectors in R2 are i = ⟨1, 0⟩ and j = ⟨0, 1⟩, while in R3 they are
i = ⟨1, 0, 0⟩, j = ⟨0, 1, 0⟩, and k = ⟨0, 0, 1⟩.

If x and y are two points in Rn, then the distance (specifically the euclidean distance)
between them is defined to be

∥x− y∥ =
»
(x1 − y1)2 + · · ·+ (xn − yn)2 =

…∑n

i=1
(xi − yi)

2,

which is just a natural extension of the definitions of distance between points in R2 or R3 that
was given earlier.

Aside from giving vectors magnitudes and quantifying distances between vectors, the norm
operation ∥ · ∥ induces what’s called a “topology” on Rn, which for us starts with the idea of
an open ball. The open ball Bϵ(a) centered at the point a = ⟨a1, . . . , an⟩ with radius ϵ > 0 is
defined by

Bϵ(a) =

ß
x ∈ Rn

∣∣∣∣…∑n

i=1
(xi − ai)

2 < ϵ

™
= {x ∈ Rn : ∥x− a∥ < ϵ}, (12.3)

while the corresponding closed ball is

Bϵ(a) = {x ∈ Rn : ∥x− a∥ ≤ ϵ}.

These definitions are a generalization of the notions of an open and closed ball in R3 given in
the previous section, only now we make use of vector notation. We are now ready to set down a
solid definition for what exactly it means to be an “open set” in Rn.

Definition 12.5. A set U ⊆ Rn is open if, for each x ∈ U , there exists some ϵ > 0 such that
Bϵ(x) ⊆ U .

Any point x in a set S for which there can be found some ϵ > 0 such that Bϵ(x) ⊆ S is called
an interior point of S, so another way of defining an open set is to say it is a set that consists
entirely of interior points. The collection T of all the subsets of Rn that are open according to
Definition 12.5 forms what is called the standard topology on Rn. (In general, a topology
on any set of objects X is a collection of open subsets of X that satisfy certain properties.) In
particular Rn and the empty set ∅ are open sets. It should be easy to see that the open balls
defined by (12.3) are themselves open sets. The set of interior points of a set S is denoted by
S◦ or Int(S).

A neighborhood of a point x ∈ Rn is any open set that contains x. For instance Bϵ(x) is a
neighborhood of x for any ϵ > 0. We can now say that a set U ⊆ Rn is open if and only if for
every x ∈ U there exists some neighborhood N of x such that N ⊆ U .

Another important concept is that of a boundary point: a point x is a boundary point of
a set S if every open set that contains x contains at least one point in S and at least one point
not in S. Note that it’s possible for a boundary point of a set to not be an element of that set.
The set of boundary points of a set S is denoted by ∂S.

Definition 12.6. A set is closed if it contains all its boundary points.
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A hard look at Definition 12.5 should convince you that an open set U must not contain any
of its boundary points, for if x ∈ U were a boundary point, then no matter what ϵ > 0 we chose
we would not have Bϵ(x) ⊆ U since Bϵ(x)—being itself an open set that contains x—would
contain a point y /∈ U .

According to Definition 12.6, for any set S it must be that S ∪ ∂S is closed. Boundary
points and interior points taken together are called closure points, and it is common to define
S = S ∪ ∂S and call S the closure of S (i.e. the set of closure points of S).

We call a point x a limit point of a set S if every open set that contains x contains a point
y ∈ S such that y ̸= x. All interior points are limit points, but not all boundary points qualify
as limit points. It’s actually a fact that a set is closed if and only if it contains all its limit
points.

Example 12.7. Consider the set S = (1, 2) ∪ {3} in R. Only those points in the interval (1, 2)
are interior points. The points 1, 2, and 3 are boundary points. The closure points of S are
the points in [1, 2] ∪ {3} (all the interior points and boundary points put together). Only those
points in the interval [1, 2] are limit points. A boundary point that is not a limit point is called
an isolated point, so here the point 3 is an isolated point. Now notice that S is not an open
set because not all of its points are interior points, and S is also not a closed set because it does
not contain all its boundary points. A set that is not open is not necessarily closed! ■

The Cartestian product (a, b)× (c, d), called an open box, includes all points in the interior
of the rectangle pictured in Figure 1, but not the boundary points. In R2, just as any point x
in an open set U can be contained within an open ball Bϵ(x) such that Bϵ(x) ⊆ U , so too can
an open box (a, b)× (c, d) be found such that x ∈ (a, b)× (c, d) ⊆ U .

In applications vectors may represent velocities, forces, or some other physical quantity, and
it’s often convenient to analyze a problem by moving vectors arrows around so that the initial
point of one arrow is located at the terminal point of another arrow. Other times it may be
expedient to place the initial points of all arrows at the origin of a chosen coordinate system.
The very definition of vector addition is motivated by physical considerations: when two or
more forces act on an object it turns out to be the case that, when the forces are expressed
in component form, the net force that acts on the object is equal to the sum of the vectors as
given by the rule ⟨u1, u2⟩+ ⟨v1, v2⟩ = ⟨u1 + v1, u2 + v2⟩ from above.

Before considering some specific examples, there is an important concept that needs to be
made clear. Imagine two objects, U and V , situated on a plane at the origin (0, 0). Now, at
time t = 0, U starts moving at a constant velocity u = ⟨3, 2⟩ (3 units to the right and 2 units
up, per second), and V starts moving at a constant velocity v = ⟨−2,−1⟩. Letting Un and Vn
denote the positions of U and V at time t = n, the situation is depicted in Figure 45. Suppose
someone is riding on object U and observing object V over time. What does the person see? At
time t = 1, V is 5 units to the left and 3 units down from the location of U ; at t = 2, V is 10 to
the left and 6 down; at t = 3, V is 15 left and 9 down. Thus, it appears to this person that V is
traveling in such a way that it goes 5 units leftward and 3 units downward per second. (It may
even be that this observer is not even aware that U is moving!) We say that V has a velocity of
⟨−5,−3⟩ relative to U . By the same reasoning U has a velocity of ⟨5, 3⟩ relative to V . As
for the “actual” velocity u of U , we sometimes say it is the velocity of U relative to the plane.
In many physical settings the plane is called the “ground”.
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Figure 45. Objects in motion.

Suppose now we are told that an object W which also was set into motion from the origin
(0, 0) at time t = 0 has a velocity of w′ = ⟨−5,−1⟩ relative to U . Can we find w, the velocity of
W relative to the plane? At time t = 1, W will be 5 left and 1 down from U (located at the
point U1); at time t = 2, W will be 10 left and 2 down from U (now located at U2), and so on.
If we plot the positions of W with this information, we can figure out that w = ⟨−2, 1⟩ (see
Figure 45 again). But this is simply the sum of w′ and u:

w′ + u = ⟨−5,−1⟩+ ⟨3, 2⟩ = ⟨−2, 1⟩ = w.

Thus, in general, if we are told that an object U has velocity u relative to the plane and an
object W has velocity w′ relative to U , then to find the velocity w of W relative to the plane
we simply compute w′ + u. Keep this in mind in the examples to come.

Example 12.8. In still air, a parachute with a payload would fall vertically at a terminal speed
of 40 m/s. Find the direction and magnitude of its terminal velocity relative to the ground if it
falls in a steady wind blowing horizontally from west to east at 10 m/s.

Solution. Set up a rectangular coordinate system with the positive x-axis pointing east and
the positive y-axis pointing up into the sky. The velocity vector of the parachute, once it attains
terminal velocity in still air, is ⟨0,−40⟩, while the velocity vector of the wind is ⟨10, 0⟩. So,
the terminal velocity vector of the parachute in the wind will just be the sum of these vectors:
⟨0,−40⟩+ ⟨10, 0⟩ = ⟨10,−40⟩. This means for every 10 m the parachute goes east, it falls by
40 m. Calculating tan θ = 40

10
gives θ ≈ 75.96◦, so the parachute is drifting eastward along

a straight-line trajectory that makes a 75.96◦ angle with the ground. The magnitude of the
terminal velocity is

∥⟨10,−40⟩∥ =
»

102 + (−40)2 =
√
1700 m/s,

or approximately 41.23 m/s. ■
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Example 12.9. A boat is towed with a force of 150 lb with a rope that makes an angle of 30◦

to the horizontal. Find the horizontal and vertical components of the force.

Solution. Let F represent the force exerted on the boat, where we’re given that ∥F∥ = 150 lb.
Then F = ⟨Fx, Fy⟩, where the horizontal and vertical components of F, which are Fx and Fy,
are given by

Fx = ∥F∥ cos θ = 150 cos 30◦ = 150 ·
√
3

2
= 75

√
3 lb

and

Fy = ∥F∥ sin θ = 150 sin 30◦ = 150 · 1
2
= 75 lb.

We can write F = ⟨75
√
3 lb, 75 lb⟩, or simply F = ⟨75

√
3, 75⟩ if the use of pounds as a unit of

force is understood (the book is a little cavalier about this). ■

Example 12.10. An ant is walking due east at a constant speed of 2 mi/hr on a sheet of
paper that rests on a table. Suddenly the sheet of paper starts moving southeast at

√
2 mi/hr.

Describe the motion of the ant relative to the table.

Solution. The motion of the ant relative to the table is simply the motion of the ant as it would
be perceived by an observer who is at rest with respect to the table. As usual, coordinatize
the scene by making the tabletop the xy-plane, with the positive x-axis pointing east and the
positive y-axis pointing north. This coordinate system will remain static in relation to the table,
and in such a system the velocity vector of the ant is a = ⟨2, 0⟩ while the velocity vector of the
paper is p = ⟨1,−1⟩. The latter vector is justified by noting that southeast means 45◦ south of
east, so the velocity vector of the paper points 45◦ clockwise from our positive x-axis and has
length

√
2 — meaning it is the hypotenuse of a classic 45◦-45◦-90◦ right triangle, which has legs

of length 1. Now, both a and p are vectors that affect the position of the ant, and the net effect
will be given by the sum of these vectors: a+ p = ⟨3,−1⟩. That is, for every 3 miles the ant
travels east, it will travel 1 mile south. To get an angle, calculate tan θ = 3

1
to get θ ≈ 18.43◦;

that is, the direction the ant is traveling is about 18.43◦ south of east.
Finally, we have

∥⟨3,−1⟩∥ =
»
32 + (−1)2 =

√
10 ≈ 3.16 mi/hr

for the speed of the ant. ■

Example 12.11. A solid ball of osmium weighing 200 N and located at the point p = (0, 0,−10)
is suspended from three cables that are affixed to hooks located at points q1 = (3,−8, 0),
q2 = (3, 6, 0) and q3 = (−2, 0, 0), as shown in Figure 46. Find the tension in each of the
supporting cables pq1, pq2 and pq3.

Solution. The osmium ball is stationary, and therefore the forces acting upon it must cancel
out. If F1, F2 and F3 are the forces exerted by the cables pq1, pq2 and pq3, respectively, and Fg
is the force of gravity, then we obtain the equation

F1 + F2 + F3 + Fg = ⟨0, 0, 0⟩. (12.4)
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Figure 46. Solid ball of osmium, worth more than its weight in gold.

Thus, the forces Fi taken together constitute the “equal and opposite” force of the cables to the
pull of gravity. Let F1 = ∥F1∥, F2 = ∥F2∥ and F3 = ∥F3∥, which are the tension values that we
are to determine. It can be seen from Figure 46 that the direction of the force F1 must be the
same as the direction of the arrow #„pq1, F2 must be in the direction of #„pq2, and F3 must be in
the direction of #„pq3. Recalling that

Fi = ∥Fi∥F̂i = FiF̂i

for each i, where F̂i =
#„pqi/∥ #„pqi∥ is the unit vector which points in the direction of Fi, we obtain

F1 = F1

Å
#„pq1

∥ #„pq1∥

ã
= F1

Å⟨3,−8, 10⟩√
173

ã
≈ ⟨0.228F1,−0.608F1, 0.760F1⟩

F2 = F2

Å
#„pq2

∥ #„pq2∥

ã
= F2

Å⟨3, 6, 10⟩√
145

ã
≈ ⟨0.249F2, 0.498F2, 0.830F2⟩

F3 = F3

Å
#„pq3

∥ #„pq3∥

ã
= F3

Å⟨−2, 0, 10⟩√
104

ã
≈ ⟨−0.196F3, 0, 0.981F3⟩

Fg = ⟨0, 0,−200⟩

Putting all this into (12.4) gives a tidy little system of equations,

0 = 0.228F1 + 0.249F2 − 0.196F3

0 = −0.608F1 + 0.498F2

0 = 0.760F1 + 0.830F2 + 0.981F3 − 200

Solving this system yields the tension values F1 = 45.1 N, F2 = 55.0 N, and F3 = 122.4 N,
rounded to the tenths place. ■
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12.3 – The Dot Product

There are two common ways in which vectors can be “multiplied,” each way contrived to
yield practical results in the sciences. The easier kind of vector multiplication is called the
“dot product,” which is also known as the “scalar product” since the outcome of the product is
always a scalar quantity.

Definition 12.12. Let x and y be two vectors in Rn. Then the dot product of x and y is
given by

x · y = x1y1 + x2y2 + · · ·+ xnyn =
n∑
i=1

xiyi.

Thus, if x and y are vectors in a plane, then

x · y = ⟨x1, x2⟩ · ⟨y1, y2⟩ = x1y1 + x2y2.

Theorem 12.13. For any vectors x,y, z ∈ Rn and c ∈ R,
1. x · y = y · x
2. x · (y + z) = x · y + x · z
3. (cx) · y = c(x · y) = x · (cy)
4. x · x > 0 if x ̸= 0

Proof.
Proof of Part (2). We have

x · (y + z) = ⟨x1, . . . , xn⟩ ·
(
⟨y1, . . . , yn⟩+ ⟨z1, . . . , zn⟩

)
= ⟨x1, . . . , xn⟩ · ⟨y1 + z1, . . . , yn + zn⟩

=
n∑
i=1

xi(yi + zi) =
n∑
i=1

(xiyi + xizi)

=
n∑
i=1

xiyi +
n∑
i=1

xizi = x · y + x · z,

using the well-known summation property∑
(ai + bi) =

∑
ai +

∑
bi.

Proofs for the other dot product properties are left to the exercises. ■

There is a nice geometrical aspect of the dot product that is made explicit in the following
theorem.

Theorem 12.14. Let x,y ̸= 0 be vectors in Rn, and let 0 ≤ θ ≤ π be the angle between x and
y when they are represented as arrows with a common initial point. Then

x · y = ∥x∥∥y∥ cos θ.
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x

x− y
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Figure 47.

Proof. It’s sufficient to present the proof assuming that x and y are nonzero vectors in R2,
since in higher-dimensioned spaces the proof’s structure remains the same. Let 0 < θ < π. The
representative arrows for the vectors may be positioned so as to form a triangle as in Figure 47,
where θ is depicted as an acute angle.

By the Law of Cosines we obtain

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos θ,

and since we’re assuming that x = ⟨x1, x2⟩ and y = ⟨y1, y2⟩, we obtain x−y = ⟨x1− y1, x2− y2⟩
so that

(x1 − y1)
2 + (x2 − y2)

2 = (x21 + x22) + (y21 + y22)− 2∥x∥∥y∥ cos θ,
and hence

∥x∥∥y∥ cos θ = x1y1 + x2y2 = x · y.

In the cases when θ = 0 or θ = π we find that y = kx = ⟨kx1, kx2⟩ for some nonzero scalar
k; that is, x and y are parallel vectors, and we have

∥x∥∥y∥ cos θ = ∥x∥∥kx∥ cos θ = |k|(x21 + x22) cos θ. (12.5)

If θ = 0, then k > 0 so that |k| = k and cos θ = 1; and if θ = π, then k < 0 so that |k| = −k
and cos θ = −1. In either case, from (12.5) we obtain

∥x∥∥y∥ cos θ = k(x21 + x22) = ⟨x1, x2⟩ · ⟨kx1, kx2⟩ = x · y

as desired. ■

Example 12.15. Find the measure of the angle between x = ⟨−3, 7⟩ and y = ⟨5,−1⟩.

Solution. We have

x · y = (−3)(5) + (7)(−1) = −22,

∥x∥ =
»

(−3)2 + 72 =
√
58,

∥y∥ =
»

52 + (−1)2 =
√
26.

Thus
− 22 = x · y = ∥x∥∥y∥ cos θ =

√
58
√
26 cos θ = 2

√
377 cos θ,

which gives cos θ = −22/2
√
377 ≈ −0.5665 and therefore

θ ≈ arccos(−0.5665) ≈ 124.51◦

is the answer. ■
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θ θ

Figure 48.

Example 12.16. Find the measure of the angle between the diagonal of a cube and the diagonal
of one of its faces.

Solution. The diagonals in question are shown in Figure 48, along with the angle θ between
them. It will be convenient to regard the cube as existing in R3, with edges of length 1, and
the vertex where the two diagonals meet situated at the origin (0, 0, 0). We can then set up
coordinate axes such that the cube diagonal has endpoints (0, 0, 0) and (1, 1, 1), and the face
diagonal has endpoints (0, 0, 0) and (0, 1, 1). Thus the diagonals can be characterized as positions
vectors x = ⟨1, 1, 1⟩ and y = ⟨0, 1, 1⟩. Now,

cos θ =
x · y

∥x∥∥y∥
=

⟨1, 1, 1⟩ · ⟨0, 1, 1⟩√
12 + 12 + 12

√
02 + 12 + 12

=
2√
6
,

and so

θ = cos−1

Å
2√
6

ã
≈ 35.264◦

is the angle’s measure. ■

Definition 12.17. Two vectors x,y ∈ Rn are orthogonal if x · y = 0, and we write x ⊥ y.

Proposition 12.18. If x,y ̸= 0 are orthogonal vectors, then the angle between them is 90◦.

Proof. Let x and y be nonzero orthogonal vectors. Since the vectors are nonzero they can
be represented by arrows with a common initial point, and so there is an angle 0◦ ≤ θ ≤ 180◦

between them. By Theorem 12.14 and the orthogonality of the vectors we obtain

∥x∥∥y∥ cos θ = x · y = 0. (12.6)

Now, x,y ̸= 0 implies that ∥x∥, ∥y∥ ≠ 0, so we can divide (12.6) by ∥x∥∥y∥ to obtain
cos θ = 0, and therefore θ = 90◦. ■

Definition 12.19. Let y ̸= 0. The orthogonal projection of x onto y, projy x, is given
by projy x = (∥x∥ cos θ)ŷ.
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Figure 49. v is the orthogonal projection of x onto y.

There is a rational explanation for this definition. Let x and y be vectors that make an
angle 0 < θ < 90◦, as on the left-hand side of Figure 49. Consider the vector v in the figure.
We have cos θ = ∥v∥/∥x∥, so that ∥v∥ = ∥x∥ cos θ is the magnitude of v, while the direction of
v is seen to be ŷ. Hence

v = (∥x∥ cos θ)ŷ = projy x.

The right-hand side of Figure 49 illustrates the situation when 90◦ < θ < 180◦. We now
have ∥v∥ = ∥x∥ cos(180◦ − θ) = −∥x∥ cos θ, and the direction of v is −ŷ so that

v = (−∥x∥ cos θ)(−ŷ) = (∥x∥ cos θ)ŷ = projy x

once again.
If θ = 90◦ it’s easy to verify that v = projy x = 0, and the cases when θ is 0◦ or 180◦ are

left to the reader to check. We see, then, that projy x literally represents the projection of x
perpendicularly down onto y, much like a shadow that is cast by x when there is a light source
directly overhead.

Another notion that is hardly worth enshrining as a definition is that of the scalar com-
ponent of x in the direction of y, scaly x = ∥x∥ cos θ. There is scarcely any point to
remembering this formulation since it comes packaged in projy x,

projy x = (scaly x)ŷ;

nevertheless it is the sort of thing many mainstream textbooks get excited about so it needed a
mention.

Using ŷ = y/∥y∥ and ∥x∥ cos θ = (x · y)/∥y∥, other formulations of projy x are as follows:

projy x =

Å
x · y
∥y∥

ãÅ
y

∥y∥

ã
=

Å
x · y
∥y∥2

ã
y =

Å
x · y
y · y

ã
y (12.7)

Proposition 12.20. The vector x− projy(x) is orthogonal to y.

Proof. By Theorem 12.13(2) we have(
x− projy(x)

)
· y = x · y − projy(x) · y,

and then by equation (12.7),(
x− projy(x)

)
· y = x · y −

Å
x · y
y · y

ã
y · y = x · y − x · y = 0.

Therefore x− projy(x) ⊥ y. ■
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Example 12.21. Given x = ⟨4, 3, 0⟩ and y = ⟨1, 1, 1⟩, express x as the sum x = p+ n, where
p is parallel to y and n is orthogonal to y.

Solution. We start by obtaining p, which will be the orthogonal projection of x onto y:

p = projy x =

Å
x · y
y · y

ã
y =

7

3
⟨1, 1, 1⟩ =

≠
7

3
,
7

3
,
7

3

∑
.

Now, x−p is orthogonal to y by Proposition 12.20, and since x = p+ (x−p) we conclude that

n = x− p = ⟨4, 3, 0⟩ −
≠
7

3
,
7

3
,
7

3

∑
=

≠
5

3
,
2

3
,−7

3

∑
.

That is,

x = p+ n =

≠
7

3
,
7

3
,
7

3

∑
+

≠
5

3
,
2

3
,−7

3

∑
is the desired decomposition of x. ■

Example 12.22. In physics the work W done by a constant force F when it displaces an
object by d is given as

W = ∥F∥∥d∥ cos θ = F · d.

The metric unit of work (and energy in general) is the joule, symbol J, written in terms of
other SI units as J = N · m = kg · m2/s2. Depicted in Figure 50 is a situation in which
F = ⟨7.5, 9.5, 8.5⟩ moves an object from point p = (3, 2, 0) to q = (9, 12, 0). Letting p = ⟨3, 2, 0⟩
and q = ⟨9, 12, 0⟩, then we find that d = q− p = ⟨6, 10, 0⟩, and so

W = F · d = ⟨7.5, 9.5, 8.5⟩ · ⟨6, 10, 0⟩ = (7.5)(6) + (9.5)(10) + (8.5)(0) = 140 J

is the work performed. ■

x

y

z

F

q
d

p

x

y

z

F

q
d

p

Figure 50. The wonderments of work, in 3D no less.
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12.4 – The Cross Product

Definition 12.23. The cross product of u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩ is defined as

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ =
∣∣∣∣u2 u3
v2 v3

∣∣∣∣ i− ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ j+ ∣∣∣∣u1 u2
v1 v2

∣∣∣∣k
= (u2v3 − u3v2)i+ (u3v1 − u1v3)j+ (u1v2 − u2v1)k.

Since the cross product of two vectors produces another vector, it is sometimes called the
“vector product”. Unlike the dot product which works in any Rn, the cross product only makes
sense in R3. That is, u× v can only be calculated if u and v are ordered triples, and it turns
out that if w = u× v then w is orthogonal to both u and v! Thus, the cross product is most
often used to find a vector that is perpendicular to any two given vectors.

Theorem 12.24. Let u and v be vectors in R3, and let c ∈ R. Then
1. u× v = −(v × u)
2. u× (v +w) = (u× v) + (u×w)
3. c(u× v) = (cu)× v = u× (cv)
4. u× 0 = 0× u = 0
5. u× u = 0
6. u · (v ×w) = (u× v) ·w

The proofs for the various properties of the cross product given in Theorem 12.24 are fairly
straightforward and are left to the reader.

Proposition 12.25. If w = u× v, then w⊥u and w⊥v.

Proof. Suppose w = u× v. Then

w = ⟨u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1⟩

by definition of the cross product. By definition of the dot product,

w · u = (u2v3 − u3v2)u1 + (u3v1 − u1v3)u2 + (u1v2 − u2v1)u3

= u1u2v3 − u1u3v2 + u2u3v1 − u1u2v3 + u1u3v2 − u2u3v1

= (u1u2v3 − u1u2v3) + (u2u3v1 − u2u3v1) + (u1u3v2 − u1u3v2) = 0.

A similar argument will show that w · v = 0. Therefore w⊥u and w⊥v. ■

It’s easy to verify that i× j = k, as you might expect in light of Proposition 12.25. But be
careful, because as Proposition 12.25(1) tells us the cross product is not commutative: j× i = −k.
Its quirks notwithstanding, the cross product was invented precisely because it models many
physical phenomena. The next theorem gives a couple more properties of the cross product that
require a little more work to verify.
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Theorem 12.26. Let u and v be nonzero vectors in R3, and let θ be the angle between them.
Then

1. ∥u× v∥ = ∥u∥∥v∥ sin θ
2. u× v = 0 iff u = cv for some c ∈ R.

Example 12.27. A force F with magnitude 2000 N acts on a crankshaft that is 0.16 meters
long as shown at left in Figure 51. Find the torque on the crankshaft.

Solution. From physics, the torque τ is a vector quantity given by τ = r × F. The right
side of Figure 51 illustrates the situation in a conveniently placed coordinate system, so that
F = ⟨0, 0,−2000⟩ and the position vector is

r = ∥r∥r̂ = 0.16⟨0, cos 30◦, sin 60◦⟩ = 0.16

Æ
0,

√
3

2
,
1

2

∏
= ⟨0, 0.08

√
3, 0.08⟩.

Thus we obtain...

τ = r× F =

∣∣∣∣∣∣
i j k

0 0.08
√
3 0.08

0 0 −2000

∣∣∣∣∣∣ = (0.08
√
3)(−2000)i = −160

√
3 i

That is, τ = ⟨−160
√
3, 0, 0⟩, and in particular ∥τ∥ = 277.1 N·m. ■
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12.5 – Cylindrical and Spherical Coordinates
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13
Curves and Surfaces

13.1 – Vector-Valued Functions

Definition 13.1. Let S ⊆ R and n ≥ 2, and suppose xk : S → R for each 1 ≤ k ≤ n. A
vector-valued function of one variable is a function r : S → Rn given by

r(t) =
〈
x1(t), . . . , xn(t)

〉
for all t ∈ S.

We say r is continuous at t0 ∈ S if for all ϵ > 0 there exists some δ > 0 such that, for any
t ∈ S,

|t− t0| < δ ⇒ ∥r(t)− r(t0)∥ < ϵ.

Finally, we write
lim
t→t0

r(t) = a

if
lim
t→t0

∥r(t)− a∥ = 0.

Proposition 13.2. Let r(t) = ⟨x1(t), . . . , xn(t)⟩. If
lim
t→t0

x1(t) = a1, . . . , lim
t→t0

xn(t) = an

for a1, . . . , an ∈ R, then
lim
t→t0

r(t) = ⟨a1, . . . , an⟩.

Proof. Let ϵ > 0. For each 1 ≤ i ≤ n, since xi(t) → ai as t→ t0, there exists some δi > 0 such
that

0 < |t− t0| < δi ⇒ |xi(t)− ai| < ϵ/
√
n.

Choose
δ = min{δ1, . . . , δn}.

Suppose that 0 < |t− t0| < δ. Then

[xi(t)− ai]
2 < ϵ2/n



292

for each 1 ≤ i ≤ n, and so∥∥r(t)− ⟨a1, . . . , an⟩
∥∥ =

∥∥〈x1(t)− a1, . . . , xn(t)− an
〉∥∥

=
»

[x1(t)− a1]2 + · · ·+ [xn(t)− an]2

<

(
n∑
i=1

ϵ2

n

)1/2
= (ϵ2)1/2 = ϵ,

which completes the proof. ■

The conclusion of Proposition 13.2 is most succinctly written as follows:

lim
t→t0

〈
x1(t), . . . , xn(t)

〉
=

≠
lim
t→t0

x1(t), . . . , lim
t→t0

xn(t)

∑
.

Theorem 13.3. A vector function r(t) = ⟨x1(t), . . . , xn(t)⟩ is continuous at t0 if and only if
the functions x1, . . . , xn are continuous at t0.

A curve in Rn is a continuous vector-valued function r : I → Rn for which the domain I ⊆ R
is an interval. For S ⊆ Rn, a curve in S is a curve r : I → Rn such that Ran(r) ⊆ S. A planar
curve is a curve in a plane; that is, there is a plane P ⊆ Rn such that Ran(r) ⊆ P . Clearly any
curve in R2 is necessarily a planar curve. A curve that is not planar is called nonplanar.

Any set C ⊆ Rn for which there exists a curve r : I → Rn such that Ran(r) = C is also
called a curve, in which case we say that

r(t) =
〈
x1(t), . . . , xn(t)

〉
, t ∈ I,

is a parametrization of C. The independent variable t is the parameter. Thus for each t ∈ I
the vector r(t) is the position vector of a point in the set C, which we naturally identify with
the point itself. In explicit terms, if (a1, . . . , an) is a point on C, then there exists some t0 ∈ I
such that

r(t0) = ⟨a1, . . . , an⟩.

A parametrized curve is a curve C for which a parametrization r(t), t ∈ I, has been given.
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Figure 52. Stereoscopic image of a helical curve.
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Common kinds of curves are lines, line segments, rays, circles, ellipses, parabolas, triangles,
rectangles, and helixes.

Example 13.4. A helix is a nonplanar curve in R3 that coils around an axis rather like a spring.
An example of a helix is shown in Figure 52, and an example of a parametrization for the helix
is

r(t) =
〈
3 cos(3t), 3 sin(3t), t

〉
, t ∈ [0, 2π].

This is not the only parametrization possible! ■

Example 13.5. The circle in R3 lying in the xy-plane with center at 0 = ⟨0, 0, 0⟩ and radius 1,
which we will denote by C1(0), is simply the set of points

C1(0) = {(x, y, 0) : x2 + y2 = 1}.

The set C1(0) is in fact a curve, and it will become a parametrized curve once we give it a
parametrization r(t), t ∈ I. Consider the following functions:

r1(t) = ⟨cos t, sin t, 0⟩, t ∈ [0, 2π] (13.1)

r2(t) = ⟨cos(−t), sin(−t), 0⟩, t ∈ [0, 2π] (13.2)

r3(t) = ⟨cos 2t, sin 2t, 0⟩, t ∈ [0, 2π] (13.3)

r4(t) = ⟨cos t, sin t, 0⟩, t ∈ [0, 4π] (13.4)

All four functions are continuous vector-valued functions on an interval domain, and therefore
all are curves. Moreover, since all the functions have range equal to C1(0), it follows that each
function is a parametrization of C1(0). ■

Definition 13.6. Two parametrizations r and ρ are equal (written r = ρ) if Dom(r) = Dom(ρ),
and r(t) = ρ(t) for each t in the common domain.

Notice that this definition is just the definition for what it means to say any two functions
(vector-valued or otherwise) are equal. Now, the parametrization (13.4) doesn’t equal the others
since its domain is [0, 4π] while the domains of (13.1), (13.2) and (13.3) are all [0, 2π]. To see
that the others differ from one another, note that r1(π/2) = (0, 1, 0), r2(π/2) = (0,−1, 0), and
r3(π/2) = (−1, 0, 0). All different! Or just look at the “big picture”, and notice that (13.1)
goes once counterclockwise around the circle C1(0, 0, 0) as t goes from 0 to 2π, (13.2) goes once
clockwise, and (13.3) goes twice counterclockwise. Yes, (13.4) also goes twice counterclockwise
like (13.3), but it does so more “slowly”: viewing t as time in seconds, (13.3) runs its laps in 2π
seconds whilst (13.4) takes 4π seconds.

The nuances of the terminology are delicate here, and before going further they should be
sorted out. What we’ve just done is examine four different algebraic parametrizations (r1, r2,
r3, and r4) for the same geometric curve C1(0, 0, 0). In general if r is a parametrization for a
curve C, and the occasion warrants making a distinction between the two, we will refer to the
set of points C as the “curve” and the function r as a “parametrization.”
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Let us now examine lines, remembering that two points uniquely determine a line. We begin
with the case of a line ℓ in R2 containing points (x0, y0) and (x1, y1). Recall that such a line has
slope

m =
y1 − y0
x1 − x0

,

generally referred to as “rise over run.” Starting from the point (x0, y0), we can arrive at any
other point (x, y) on ℓ by adding real numbers ∆x (the “run”) and ∆y (the “rise”) to x0 and y0,
respectively: (x, y) = (x0 +∆x, y0 +∆y). But the rise over the run must equal m: ∆y/∆x = m,
which is to say ∆y = m∆x. Thus

(x, y) = (x0 +∆x, y0 +m∆x) =

Å
x0 +∆x, y0 +

y1 − y0
x1 − x0

∆x

ã
.

Now, if we let t ∈ R be such that (x1 − x0)t = ∆x, we obtain

(x, y) =

Å
x0 + (x1 − x0)t, y0 +

y1 − y0
x1 − x0

(x1 − x0)t

ã
=
(
x0 + (x1 − x0)t, y0 + (y1 − y0)t

)
. (13.5)

Since (x, y) is an arbitrary point on ℓ, we find that all points on ℓ must be expressible as the
rightmost ordered pair in (13.5), and therefore

ℓ =
{(
x0 + (x1 − x0)t, y0 + (y1 − y0)t

)
: t ∈ R

}
. (13.6)

The findings above motivate the following definition, which naturally extends the pattern in
(13.6) to lines in R3.

Definition 13.7. The line in R3 containing points (x0, y0, z0) and (x1, y1, z1) is the set

L =
{(
x0 + (x1 − x0)t, y0 + (y1 − y0)t, z0 + (z1 − z0)t

)
: t ∈ R

}
.

Define the vectors

r0 = ⟨x0, y0, z0⟩ and v = ⟨x1 − x0, y1 − y0, z1 − z0⟩.

Then, for any t ∈ R,

r0 + tv =
〈
x0 + t(x1 − x0), y0 + t(y1 − y0), z0 + t(z1 − z0)

〉
is the position vector of the point in the set L in Definition 13.7, and therefore

r(t) = r0 + tv, t ∈ R, (13.7)

is a parametrization for the line L. Behold how r(t) = vt+ r0, which is merely a rearrangement
of (13.7), bears a striking resemblance to the familiar old function f(x) = mx+ b that models a
line in the xy-plane! We see that v, called the direction vector of the line L, takes the place
of slope m. Indeed, L is seen to be fully determined by its direction vector v and the point
(x0, y0, z0) represented by r0.

An alternate parametrization for the line L that doesn’t look as much akin to f(x) = mx+ b
is given by

r̃(t) = r0 + t3v, −∞ < t <∞,

and still another is
ř(t) = r0 − 2tv, −∞ < t <∞.
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Play with these, and notice that r, r̃ and ř all trace out the same line. The first two, you
might notice, move in the same direction along L, while the third parametrization moves in the
opposite direction. Thus a parametrized curve that traces a given curve (like L) has what’s
called an orientation. So again, any given curve (a set of points) in R3 has innumerable
parametrizations, which is to say it can be traced by innumerable parametrized curves, each
parametrized curve having one of two possible orientations.

Related to a line is a line segment, which is a piece of a line with two endpoints.

Definition 13.8. The line segment in R3 from p0 = (x0, y0, z0) to p1 = (x1, y1, z1) is the set

[p0, p1] =
{(
x0 + t(x1 − x0), y0 + t(y1 − y0), z0 + t(z1 − z0)

)
: t ∈ [0, 1]

}
.

This definition corresponds to the usual idea of a line segment in geometry. If we let

v = ⟨x1 − x0, y1 − y0, z1 − z0⟩

and (as before) r0 = ⟨x0, y0, z0⟩, then a fine parametrization for the line segment in Definition
13.8 is given by

r(t) = r0 + tv, t ∈ [0, 1].

Example 13.9. Find a parametrization for the line L passing through (−1, 4,−3) and having
direction given by ⟨3, 2, 3⟩.

Solution. We have r0 = ⟨−1, 4,−3⟩ and v = ⟨3, 2, 3⟩. So, referring to (13.7), we obtain

r(t) = ⟨−1, 4,−3⟩+ t⟨3, 2, 3⟩, t ∈ R,
or alternatively

r(t) = ⟨−1 + 3t, 4 + 2t,−3 + 3t⟩, t ∈ R,
as a parametrization. ■
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13.2 – The Calculus of Vector-Valued Functions

In keeping with the notion of derivative for a real-valued function of a single variable, the
derivative of a vector function r(t) = ⟨x1(t), . . . , xn(t)⟩ at t0 is defined to be

r′(t0) = lim
t→t0

r(t)− r(t0)

t− t0
, (13.8)

provided that the limit exists. The following theorem furnishes an easy way to find the derivative
of r wherever it exists.

Theorem 13.10. Let r(t) = ⟨x1(t), . . . , xn(t)⟩. Then r′(t0) exists if and only if x′k(t0) exists for
all 1 ≤ k ≤ n, in which case

r′(t0) = ⟨x′1(t0), . . . , x′n(t0)⟩.

Proof. Suppose that r′(t0) exists. Since

r(t)− r(t0)

t− t0
=

≠
x1(t)− x1(t0)

t− t0
, . . . ,

xn(t)− xn(t0)

t− t0

∑
,

by (13.8) and Proposition 13.2 we obtain

r′(t0) =

≠
lim
t→t0

x1(t)− x1(t0)

t− t0
, . . . , lim

t→t0

xn(t)− xn(t0)

t− t0

∑
, (13.9)

and so the existence of r′(t0) implies the existence of each limit on the right-hand side. That is,

x′i(t0) = lim
t→t0

xi(t)− xi(t0)

t− t0
(13.10)

exists for each 1 ≤ i ≤ n, and equations (13.9) and (13.10) taken together yield

r′(t0) = ⟨x′1(t0), . . . , x′n(t0)⟩

as desired.
The proof of the converse is straightforward and so is left as an exercise. ■

Example 13.11. The derivative of

r(t) =
〈
(t+ 1)−1, arctan(2t), ln(t+ 1)

〉
is

r′(t) =

≠
− 1

(t+ 1)2
,

2

1 + 4t2
,

1

t+ 1

∑
,

recalling that arctan′(x) = 1/(1 + x2). ■

We say that r is differentiable on an interval I if r′(t) exists for all t ∈ I. If, in addition,
r′ is continuous on I, then we say r is continuously differentiable on I. If I is [a, b], or
some other interval that is not open, then we define r′ at the endpoints a and b by appropriate
one-sided limits,

r′(a) = lim
t→a+

r(t)− r(a)

t− a
and r′(b) = lim

t→b−

r(t)− r(b)

t− b
,
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provided the limits exist. If r′(a) exists we say r is right-differentiable at a, and if r′(b)
exists we say r is left-differentiable at b. (Sometimes the symbols r′+(a) and r′−(b) to denote
right-hand and left-hand derivatives, respectively.)

Definition 13.12. Let I be an interval, and let r : I → Rn be a continuous function. We say r
is smooth on I if it is continuously differentiable on I, and r′(t) ̸= 0 for all t ∈ Int(I). We say
r is piecewise smooth on I if I may be partitioned into subintervals I1, . . . , In such that r is
smooth on Ik for each 1 ≤ k ≤ n.

A curve C is called smooth if it admits a smooth parametrization, and piecewise smooth
if it admits a piecewise smooth parametrization. Whenever a curve is said to be smooth it is
assumed that any parametrization given for the curve is itself smooth.

Definition 13.13. If r′(t) ̸= 0, then r′(t) is called the tangent vector for r at the point
corresponding to r(t). The unit tangent vector for r at r(t) is

T(t) =
r′(t)

∥r′(t)∥
.

Example 13.14. Find the unit tangent vector for the curve given by r(t) = ⟨sin t, cos t, e−t⟩,
−π ≤ t ≤ π, at the point r(0).

Solution. From r′(t) = ⟨cos t,− sin t,−e−t⟩ and the observation that t = 0 at the point r(0),
we obtain

T(0) =
r′(0)

∥r′(0)∥
=

⟨1, 0,−1⟩√
2

=

≠
1√
2
, 0,− 1√

2

∑
as the unit tangent vector. ■

Example 13.15. Consider the curve r(t) = ⟨
√
t, 1, t⟩, t > 0. Find all the points on the curve

at which r and r′ are orthogonal.

Solution. We have

r′(t) =

≠
1

2
√
t
, 0, 1

∑
for t > 0. By definition r(t) and r′(t) are orthogonal when r(t) · r′(t) = 0, so we must find all
t > 0 for which (√

t
)Å 1

2
√
t

ã
+ (1)(0) + (t)(1) =

1

2
+ t = 0.

Clearly this only occurs for t = −1/2; but −1/2 is not in the domain of r, so we conclude that
r and r′ are never orthogonal. ■

If u,v : I → Rn are vector functions defined on some interval I, f : I → R is a scalar
function, and c ∈ R, then we define cu, fu, u+ v, u · v, and u× v to be the functions given by

(cu)(t) = cu(t), (fu)(t) = f(t)u(t), (u+ v)(t) = u(t) + v(t), (u · v)(t) = u(t) · v(t),

and
(u× v)(t) = u(t)× v(t)
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for all t ∈ I. Notice that only u · v is not a vector function!

Theorem 13.16. Let I ⊆ R be an interval. Let u,v : I → Rn be vector functions and f : I → R
a scalar function such that u, v, and f are differentiable at t ∈ Int(I).

1. Constant Rule: If c : R → Rn is a constant vector function, then c′ = 0.
2. Constant Multiple Rule: If c ∈ R, then (cu)′(t) = cu′(t).
3. Sum Rule: (u+ v)′(t) = u′(t) + v′(t).
4. Product Rule: (fu)′(t) = f ′(t)u(t) + f(t)u′(t).
5. Dot Product Rule: (u · v)′(t) = u′(t) · v(t) + u(t) · v′(t).
6. Cross Product Rule: (u× v)′(t) = u′(t)× v(t) + u(t)× v′(t).

Theorem 13.17 (Chain Rule). Let I, J ⊆ R be intervals. Let f : I → J and r : J → Rn. If f
is differentiable at t ∈ Int(I) and r is differentiable at f(t) ∈ Int(J), then r ◦ f is differentiable
at t, and

(r ◦ f)′(t) = r′(f(t))f ′(t).

Proof. Since r maps to Rn there exist scalar functions x1, . . . , xn : J → R for which

r(τ) = ⟨x1(τ), . . . , xn(τ)⟩

for all τ ∈ J . Suppose that t ∈ Int(I), f(t) ∈ Int(J), f is differentiable at t, and r is differentiable
at f(t). From the last supposition it follows by Theorem 13.10 that xi is differentiable at f(t)
for each 1 ≤ i ≤ n, and so by Theorem 3.21 (the Chain Rule for scalar functions) we have

(xi ◦ f)′(t) = x′i(f(t))f
′(t) (13.11)

for each i. Now, for any τ ∈ I we have

(r ◦ f)(τ) = r(f(τ)) =
〈
x1(f(τ)), . . . , xn(f(τ))

〉
=
〈
(x1 ◦ f)(τ), . . . , (xn ◦ f)(τ)

〉
,

and hence by another application of Theorem 13.10 together with equation (13.11),

(r ◦ f)′(t) =
〈
(x1 ◦ f)′(t), . . . , (xn ◦ f)′(t)

〉
=
〈
x′1(f(t))f

′(t), . . . , x′n(f(t))f
′(t)
〉

=
〈
x′1(f(t)), . . . , x

′
n(f(t))

〉
f ′(t) = r′(f(t))f ′(t).

This completes the proof. ■
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13.3 – Objects in Motion

Definition 13.18. Let I be an interval, and let the position of an object O in R3 at time t be
given by r(t) = ⟨x(t), y(t), z(t)⟩ for all t ∈ I. The velocity of O at time t is

v(t) = r′(t) = ⟨x′(t), y′(t), z′(t)⟩,
with the speed being the scalar ∥v(t)∥. The acceleration of O at time t is

a(t) = v′(t) = ⟨x′′(t), y′′(t), z′′(t)⟩.

Example 13.19. Consider an object in motion along a cycloid trajectory as given by the
position function r(t) = ⟨t− sin t, 1− cos t⟩, t ∈ [0, 4π].

(a) Graph the trajectory.
(b) Find the velocity and speed of the object. At what points on the trajectory does the object

move fastest? Slowest?
(c) Find the acceleration of the object and show that ∥a(t)∥ is constant.

Solution.

(a) The trajectory is seen to have a cusp at x = 2π, which happens to be the point cor-responding
to t = 2π.

x

y

4 8 4π

2

(b) The velocity of the object is given by v(t) = r′(t) = ⟨1− cos t, sin t⟩, and the speed is

v(t) = ∥v(t)∥ =
»
(1− cos t)2 + sin2 t =

√
2− 2 cos t.

The object is moving fastest at the points where 2−2 cos t = 4, which implies that cos t = −1.
Solutions in the interval [0, 4π] are t = π, 3π, with corresponding points being (π, 2) and
(3π, 2).

The object is moving slowest when 2−2 cos t = 0, which implies that cos t = 1. Solutions
are t = 0, 2π, 4π, with corresponding points being (0, 0), (2π, 0) and (4π, 0).

(c) Here a(t) = v′(t) = ⟨sin t, cos t⟩, so that

a(t) = ∥a(t)∥ =
√

sin2 t+ cos2 t = 1,

a constant. ■
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13.4 – Arc Length

In all that follows in this section, and in any situation when the length of a curve C is under
consideration, we assume that C is given a parametrization r(t), t ∈ I, that either never passes
through the same point on C more than once (i.e. r is one-to-one), or else passes through only
a finite number of points on C more than once. Thus, we wouldn’t entertain a parametrization
of an ellipse that runs twice around the ellipse if we’re interested in determining the length of
the elliptical path.

Suppose a curve C in R2 has a parametrization given by the vector-valued position function
r(t) = ⟨f(t), g(t)⟩, t ∈ [a, b], as depicted in Figure 53. What is the length L(C) of the curve?
We could get a reasonable approximation by choosing points p0, p1, . . . , pn, connecting them by
line segments [pi−1, pi] for 1 ≤ i ≤ n, and then summing the lengths of the line segments:

L(C) ≈
n∑
i=1

L([pi−1, pi]). (13.12)

This so-called polygonal approximation approach, also depicted in Figure 53, should be
expected to give “better” results as the number of approximating line segments is increased.

The general procedure for arriving at a value for L(C) given a curve C that lies in a plane
now follows. Assume C to be a smooth curve in R2 with two endpoints (i.e. C is a path with
a “beginning” and an “end”). Then C admits a smooth parametrization r(t) = ⟨f(t), g(t)⟩,
t ∈ [a, b]. Let P ∈ P[a, b], which is to say that P is a partition of [a, b] by points t0, t1, . . . , tn,
with

a = t0 < t1 < t2 < · · · < tn−1 < tn = b,

to give subintervals [ti−1, ti] for 1 ≤ i ≤ n. Define xi = f(ti) and yi = g(ti) for each i, so that
pi(xi, yi) is the point corresponding to r(ti):

r(ti) = ⟨f(ti), g(ti)⟩ = ⟨xi, yi⟩ 7→ pi

If we let ∆xi = |xi − xi−1| and ∆yi = |yi − yi−1|, then from Figure 54 it can be seen that

L([pi−1, pi]) =
»

(∆xi)2 + (∆yi)2,

r(t)

0 x

y

p0

p1

p2

(f(t), g(t)) pi−1

pi

pn

C

Figure 53. A polygonal approximation of the curve C.
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p0

p1

p2

pi−1

pi

|∆yi|

|∆xi|

(f(t), g(t))

Figure 54. Determining the distance between pi−1 and pi.

and so from (13.12)

L(C) ≈
n∑
i=1

»
(∆xi)2 + (∆yi)2.

As before, let ∥P∥ denote the mesh of the partition P ; that is, if ∆ti = |ti − ti−1| then
∥P∥ = max1≤i≤n∆ti. We define the arc length of C (often just called the length) to be given
by

L(C) = lim
∥P∥→0

n∑
i=1

L([pi−1, pi]) = lim
∥P∥→0

n∑
i=1

»
(∆xi)2 + (∆yi)2. (13.13)

Referring to Definition 13.12, the smoothness of r on [a, b] easily implies that r is continuous
on [a, b] and differentiable on (a, b), which in turn implies that the component functions f and
g are both continuous on [a, b] and differentiable on (a, b). Thus f and g are continuous on
[ti−1, ti] and differentiable on (ti−1, ti) for each i. By the Mean Value Theorem, then, there
exists some τi ∈ (ti−1, ti) such that

f ′(τi) =
f(ti)− f(ti−1)

ti − ti−1

,

which gives xi − xi−1 = f ′(τi)(ti − ti−1), or equivalently ∆xi = f ′(τi)∆ti. Similarly, there exists
some τ̂i ∈ (ti−1, ti) such that ∆yi = g′(τ̂i)∆ti. Now (13.13) becomes

L(C) = lim
∥P∥→0

n∑
i=1

»
[f ′(τi)]2 + [g′(τ̂i)]2∆ti. (13.14)

A quick inspection of this equation suggests that

L(C) =
� b

a

»
[f ′(t)]2 + [g′(t)]2dt =

� b

a

∥r′(t)∥dt, (13.15)

but the sum on the right-hand side of (13.14) is not actually a Riemann sum since, in general,
τi ≠ τ̂i. It turns out that (13.15) is in fact true, as given in the theorem that follows. The proof
of the theorem is included for the sake of completeness, but it will utilize the concept of uniform
continuity, which is not included in a standard calculus sequence. It can safely be skipped.

Theorem 13.20. If r(t), t ∈ [a, b], is a smooth parametrization of a curve C, then

L(C) =
� b

a

∥r′(t)∥dt
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It will suffice to prove the result for C ⊆ R2, so that r(t) = ⟨f(t), g(t)⟩ and L(C) is given by
(13.15), since the treatment in the case when C ⊆ R3 and r(t) = ⟨f(t), g(t), h(t)⟩ is formally
the same.

Proof. We start by showing that

lim
∥P∥→0

(
n∑
i=1

»
[f ′(τi)]2 + [g′(τ̂i)]2∆ti −

n∑
i=1

»
[f ′(τi)]2 + [g′(τi)]2∆ti

)
= 0. (13.16)

To accomplish this we show that, for every ϵ > 0, there exists some δ > 0 such that, if P ∈ P [a, b]
with 0 < ∥P∥ < δ, then∣∣∣∣∣

n∑
i=1

»
[f ′(τi)]2 + [g′(τ̂i)]2∆ti −

n∑
i=1

»
[f ′(τi)]2 + [g′(τi)]2∆ti

∣∣∣∣∣ < ϵ.

Fix ϵ > 0. Define F : [a, b]× [a, b] → R by

F (u, v) =
»
[f ′(u)]2 + [g′(v)]2.

Since r is smooth on [a, b], both f ′ and g′ are continuous on this interval, and thus F is
continuous on [a, b] × [a, b]. Now, since [a, b] × [a, b] is a closed and bounded set, it follows
that F is uniformly continuous on this set, and so there exists some δ > 0 such that, for any
(u1, v1), (u2, v2) ∈ [a, b]× [a, b] with |(u1, v1)− (u2, v2)| < δ, we obtain

|F (u1, v1)− F (u2, v2)| <
ϵ

(b− a)
.

Now, suppose that P ∈ P[a, b] is such that 0 < ∥P∥ < δ. For each 1 ≤ i ≤ n we choose
sample points τi, τ̂i ∈ [ti−1, ti] ⊆ [a, b], so (τi, τi), (τi, τ̂i) ∈ [a, b] × [a, b], and by the distance
formula

|(τi, τ̂i)− (τi, τi)| =
»

(τi − τi)2 + (τ̂i − τi)2 = |τ̂i − τi| ≤ ∆ti ≤ ∥P∥ < δ.

Hence |F (τi, τ̂i)− F (τi, τi)| < ϵ/(b− a) holds for each i, and so∣∣∣∣∣
n∑
i=1

»
[f ′(τi)]2 + [g′(τ̂i)]2∆ti −

n∑
i=1

»
[f ′(τi)]2 + [g′(τi)]2∆ti

∣∣∣∣∣
≤

n∑
i=1

∣∣∣»[f ′(τi)]2 + [g′(τ̂i)]2 −
»
[f ′(τi)]2 + [g′(τi)]2

∣∣∣∆ti
=

n∑
i=1

|F (τi, τ̂i)− F (τi, τi)|∆ti

<

n∑
i=1

ϵ

b− a
∆ti =

ϵ

b− a
· (b− a) = ϵ,

which proves (13.16).
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Now, the function
√

[f ′(t)]2 + [g′(t)]2 is continuous and therefore integrable on [a, b], which
means the limit

lim
∥P∥→0

n∑
i=1

»
[f ′(τi)]2 + [g′(τi)]2∆ti =

� b

a

»
[f ′(t)]2 + [g′(t)]2dt (13.17)

exists in R. Thus, adding equations (13.16) and (13.17) together and employing the appropriate
limit law, we obtain

lim
∥P∥→0

n∑
i=1

»
[f ′(τi)]2 + [g′(τ̂i)]2 =

� b

a

»
[f ′(t)]2 + [g′(t)]2dt,

whereupon a reference to equation (13.14) completes the proof. ■

Example 13.21. Find the length of the curve C given by r(t) = ⟨t2, 2t, ln(t)⟩, 1 ≤ t ≤ e.

Solution. First, we have r′(t) = ⟨2t, 2, 1/t⟩, and so

∥r′(t)∥ =
»

(2t)2 + 22 + (1/t)2 =
»
4t2 + 4 + 1/t2 =

…
1

t2
(4t4 + 4t2 + 1)

=
1

t

»
(2t2 + 1)2 =

2t2 + 1

t
= 2t+

1

t
.

Next, we compute

L(C) =
� e

1

∥r′(t)∥dt =
� e

1

Å
2t+

1

t

ã
dt =

[
t2 + ln |t|

]e
1
= e2,

using Theorem 13.20. ■

Example 13.22. Find the length of the curve C given by

r(t) =

≠
1

2
t2,

8

3
(t+ 1)3/2

∑
, 0 ≤ t ≤ 2.

Solution. First we have

L(C) =
� 2

0

∥r′(t)∥dt =
� 2

0

√
t2 + 16t+ 16dt

=

� 2

0

»
(t+ 8)2 + 48dt =

� 10

8

√
x2 + a2dx, (13.18)

where we make the substitution x = t+ 8 and let a =
√
48. Let’s forget the limits of integration

for the moment and make the substitution x = a sec θ, so that� √
x2 + a2dx =

� √
a2 sec2 θ + a2 · a sec θ tan θ dθ = a2

�
| tan θ| sec θ tan θ dθ,

where the identity sec2 θ + 1 = tan2 θ is used. In our integral for L(C) we have 8 ≤ x ≤ 10,
which implies that 8/a ≤ sec θ ≤ 10/a and therefore sec θ > 0. Thus, regarded as an angle,
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θ is ensconced in Quadrant I (i.e. 0 < θ < π/2), which informs us that tan θ > 0 and hence
| tan θ| = tan θ. We press on...� √

x2 + a2dx = a2
�

tan θ sec θ tan θ dθ = 48

�
tan2 θ sec θ dθ.

The integral on the right-hand side was determined in an example in section 8.2, so that� √
x2 + a2dx = 48

ï
sec θ tan θ

2
− 1

2
ln | sec θ + tan θ|+K

ò
for arbitrary constant K. From sec θ = x/a we construct the triangle

θ
a

√
x2 − a2

x

which reveals that tan θ =
√
x2 − a2/a. Noting that a =

√
48 = 4

√
3, we progress...� √

x2 + a2dx = 24 sec θ tan θ − 24 ln(sec θ + tan θ) +K

=
24x

√
x2 − a2

a2
− 24 ln

Ç
x

a
+

√
x2 − a2

a

å
+K

=
x
√
x2 − 48

2
− 24 ln

Ç
x+

√
x2 − 48

4
√
3

å
+K (13.19)

Let F (x) be (13.19) with K = 0. Referring back to (13.18), we obtain

L(C) = F (10)− F (8)

=

ñ
10
√
52

2
− 24 ln

Ç
10 +

√
52

4
√
3

åô
−
ñ
8
√
16

2
− 24 ln

Ç
8 +

√
16

4
√
3

åô
= 10

√
13− 24 ln

Ç
5 +

√
13

2
√
3

å
− 16 + 24 ln

√
3

= 24 ln

Ç
√
3 · 2

√
3

5 +
√
13

å
+ 10

√
13− 16 = 10

√
13− 16− 24 ln

Ç
5 +

√
13

6

å
,

using the property that ln(u/v) = − ln(v/u). ■

A geometric property of a smooth curve C is a property that is independent of the smooth
vector function r that is chosen to parametrize C. That is, different smooth parametrizations of
C either result in no change in the property’s value, or else a mere change in the value’s sign.
The unit tangent vector T of section 12.6 is one such property. Another is the arc length L(C)
we have just defined.

Often the most convenient way to parametrize a curve C is by arc length. A curve C is
parametrized by arc length if it has parametrization r(s), s ∈ I, such that for every s0, s1 ∈ I
with s0 < s1 we have

L
(
r([s0, s1])

)
= L

(
[s0, s1]

)
;
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that is, the piece of the curve given by r(s), s ∈ [s0, s1], has arc length equal to the length of
[s0, s1], which of course is just s1 − s0. In particular, if I = [a,∞) and s ≥ a, then the curve
given by r(u), u ∈ [a, s], has arc length of s− a. Finally, if a = 0 as is most typical, then the
curve given by r(u), u ∈ [0, s], has arc length s.

The next objective is to fashion a way to take any given smooth parametrization r(t), t ∈ I,
for a curve C and obtain a parametrization in terms of arc length s. Such a “re-parametrization”
procedure is common in the study of curves.

By Theorem 13.20, if r(t), t ∈ [a,∞), is a smooth parametrization for a curve C, then for
each t ≥ a the arc length s(t) of the curve given by r(u), u ∈ [a, t], is

s(t) =

� t

a

∥r′(u)∥ du. (13.20)

From this we obtain

s′(t) =
d

dt

� t

a

∥r′(u)∥ du = ∥r′(t)∥ (13.21)

by the Fundamental Theorem of Calculus, since the smoothness of r on [a,∞) implies the
continuity of ∥r′∥ on [a,∞). Now, if r(t), t ∈ [a,∞), happens to already be a parametrization
for C in terms of arc length, then for each t ≥ a the arc length s(t) of the curve r(u), u ∈ [a, t]
is t− a. That is,

t− a =

� t

a

∥r′(u)∥ du

by (13.20), and differentiation leads by the Fundamental Theorem of Calculus to

∥r′(t)∥ =
d

dt

� t

a

∥r′(u)∥ du = (t− a)′ = 1.

Replacing t with s, we have proven the forward implication of the following result.

Proposition 13.23. Let C be a smooth curve. Then r(s), s ∈ I is a parametrization for C in
terms of arc length if and only if ∥r′(s)∥ = 1 for all s ∈ I.

Proof. Only the reverse implication remains to be proven. Suppose ∥r′(s)∥ = 1 for all s ∈ I.
Let s0, s1 ∈ I with s0 < s1. By Theorem 13.20 the length of the piece of the curve C given by
r(s), s ∈ [s0, s1], denoted by r([s0, s1]), is

L
(
r([s0, s1])

)
=

� s1

s0

∥r′(s)∥ds =
� s1

s0

ds = s1 − s0 = L
(
[s0, s1]

)
.

Therefore r(s), s ∈ I is a parametrization for C in terms of arc length. ■

Equation (13.20) is the key to finding a parametrization of C in terms of arc length s given
a parametrization in terms of some other parameter t, as the next example illustrates.

Example 13.24. A curve C is given by the parametrization

r(t) = ⟨t2, 2t2, 4t2⟩, t ∈ [1, 4]. (13.22)

Find a parametrization of C in terms of arc length.
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Solution. For each 1 ≤ t ≤ 4, the arc length s(t) of the curve given by r(u) = ⟨u2, 2u2, 4u2⟩,
u ∈ [1, t], is

s(t) =

� t

1

∥r′(u)∥ du =

� t

1

∥⟨2u, 4u, 8u⟩∥ du =

� t

1

√
84u2 du

=
√
84

� t

1

u du = 2
√
21
[
1
2
u2
]t
1
=

√
21(t2 − 1),

by equation (13.20). Thus when t = 1 we have s = 0, and when t = 4 we have s = 15
√
21. That

is, 1 ≤ t ≤ 4 corresponds to 0 ≤ s ≤ 15
√
21. Solving

s =
√
21(t2 − 1)

for t2 yields

t2 =
s√
21

+ 1,

and so from the original parametrization (13.22) for C we obtain a new parametrization in
terms of arc length s:

ρ(s) =

≠
s√
21

+ 1,
2s√
21

+ 2,
4s√
21

+ 4

∑
, s ∈

î
0, 15

√
21
ó
,

which is a new function entirely and so is named ρ instead of r. ■
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13.5 – Curvature and Normal Vectors

The unit tangent vector T(t) = r′(t)/∥r′(t)∥ introduced in section 12.6 is a vector function
that indicates the direction that a curve C parametrized by r(t) = ⟨x(t), y(t), z(t)⟩ is heading at
each point where r′(t) is defined and nonzero (i.e. at any point where C is “smooth”). So at
the point (x(t), y(t), z(t)) ∈ C the curve is heading in the direction given by the vector T(t).
As an encore, we’d like a way to quantify a couple other properties of C wherever possible: (1)
How “bent” is C at a given point; and (2) in what direction is r(t) “bending” at that point?
The measure of the first property is called curvature, while the second property is given by what
is called the principal unit normal vector.

Definition 13.25. Let C be a smooth curve parametrized in terms of arc length by r(s), s ∈ I.
The curvature of C at r(s) is

κ(s) = ∥T′(s)∥ .

More generally, if C is a curve with smooth parametrization r(t), t ∈ I, then we will use the
symbol κ(t) to denote the curvature of C at r(t). Then, if ρ(s), s ∈ J , is a parametrization for
C in terms of arc length, and we define s : I → J by s = s(t) as in equation (13.20) such that
r(t) = ρ(s(t)) for all t ∈ I, then it becomes clear that

κ(s) = κ(s(t))︸ ︷︷ ︸
Curvature at ρ(s(t))

= κ(t).︸ ︷︷ ︸
Curvature at r(t)

(13.23)

What remains to do is develop a useful formula for computing κ(t) when t is not the arc length
parameter.

Theorem 13.26. Let C be a curve with smooth parametrization r(t), t ∈ I. Then

κ(t) =
∥T′(t)∥
∥r′(t)∥

for any t ∈ I such that ∥r′(t)∥ ≠ 0.

Note from Definition 13.12 that if r(t), t ∈ I, is given to be smooth, then ∥r′(t)∥ ̸= 0 for all
t ∈ Int(I). That is, ∥r′(t)∥ = 0 may only be the case if t is an endpoint of the interval I.

Proof. Let ρ(s), s ∈ J , be a parametrization for C in terms of arc length. Define unit tangent

vector functions T and ‹T by

T(t) =
r′(t)

∥r′(t)∥
for t ∈ I, and ‹T(s) =

ρ′(s)

∥ρ′(s)∥
for s ∈ J . By (13.20) arc length s can be cast as a function of the parameter t so that
r(t) = ρ(s(t)) for all t ∈ I, and in particular

T(t) = ‹T(s(t)) = (‹T ◦ s)(t).
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Differentiating and employing Theorem 13.17 gives

T′(t) = (‹T ◦ s)′(t) = ‹T′(s(t))s′(t).

From this we obtain T′(t) = ‹T′(s(t))∥r′(t)∥, since s′(t) = ∥r′(t)∥ by equation (13.21). Now, if
t ∈ I is such that ∥r′(t)∥ ≠ 0, then ‹T′(s(t)) =

T′(t)

∥r′(t)∥
,

and by equation (13.23) we finally have

κ(t) = κ(s(t)) = ∥‹T′(s(t))∥ =

∥∥∥∥ T′(t)

∥r′(t)∥

∥∥∥∥= ∥T′(t)∥
∥r′(t)∥

as was to be shown. ■

Example 13.27. Find the curvature of the circle with radius R.

Solution. The circle may be centered at the origin and thus parametrized by

r(t) = ⟨R cos t, R sin t⟩, t ∈ [0, 2π].

We have

r′(t) = ⟨−R sin t, R cos t⟩,
so that

T(t) =
r′(t)

∥r′(t)∥
=

⟨−R sin t, R cos t⟩√
R2 sin2 t+R2 cos2 t

=
R⟨− sin t, cos t⟩

R
= ⟨− sin t, cos t⟩

and hence

T′(t) = ⟨− cos t,− sin t⟩.
Finally we obtain

κ(t) =
∥T′(t)∥
∥r′(t)∥

=

√
cos2 t+ sin2 t

R
=

1

R

for all 0 ≤ t ≤ 2π. ■

In light of Example 13.27, we see that if a curve C has curvature κ at some point p, then
that means the curve “bends” to the same degree as a circle of radius 1/κ at p. Hence a greater
curvature value corresponds to a circle of smaller radius; that is, the larger κ is at some point p
on C, the more “bent” C is at p.

Example 13.28. Let C be a curve with parametrization

r(t) = ⟨cosh t, sinh t, t⟩, t ∈ (−∞,∞).

Find the curvature of C at r(t) for all t ∈ (−∞,∞).
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Solution. Let −∞ < t <∞ be arbitrary. We have

r′(t) = ⟨sinh t, cosh t, 1⟩,
and thus

∥r′(t)∥ =
√
sinh2 t+ cosh2 t+ 1 =

√
2 cosh2 t =

√
2 cosh t,

using the hyperbolic identity cosh2 t − sinh2 t = 1 and recalling that cosh t > 0 for all t ∈ R.
Now,

T(t) =
r′(t)

∥r′(t)∥
=

⟨sinh t, cosh t, 1⟩√
2 cosh t

=
1√
2
⟨tanh t, 1, sech t⟩,

whence

T′(t) =
1√
2
⟨sech2 t, 0,− tanh t sech t⟩ = sech t√

2
⟨sech t, 0,− tanh t⟩,

and finally

∥T′(t)∥ =
sech t√

2

√
sech2 t+ tanh2 t =

sech t√
2

=
1√

2 cosh t
,

using the hyperbolic identity sech2 t+ tanh2 t = 1. By Theorem 13.26 the curvature of C at r(t)
is

κ(t) =
∥T′(t)∥
∥r′(t)∥

=

Å
1√

2 cosh t

ãÅ
1√

2 cosh t

ã
=

1

2 cosh2 t
=

sech2 t

2
,

or equivalently

κ(t) =
2

(et + e−t)2
,

recalling the definition sech t = 2/(et + e−t). ■

Example 13.29. Find the point at which f(x) = ex attains a maximum curvature, and then
find the maximum curvature.

Solution. The vector function r(t) = ⟨t, et⟩, t ∈ (−∞,∞), yields the same curve. We have

r′(t) = ⟨1, et⟩ and ∥r′(t)∥ =
√
1 + e2t,

so that

T(t) =
r′(t)

∥r′(t)∥
=

1√
1 + e2t

⟨1, et⟩ =
≠

1√
1 + e2t

,
et√

1 + e2t

∑
,

which yields

T′(t) =

≠
− e2t

(1 + e2t)3/2
,

et

(1 + e2t)3/2

∑
=

et

(1 + e2t)3/2
⟨−et, 1⟩,

and thus

∥T′(t)∥ =
et

(1 + e2t)3/2

√
e2t + 1 =

et

1 + e2t
.

Finally we obtain

κ(t) =
∥T′(t)∥
∥r′(t)∥

=
et

1 + e2t
· 1√

1 + e2t
=

et

(1 + e2t)3/2

as the curvature of the curve at the point (t, et).
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To find the value of t for which κ(t) attains a maximum value, we first find κ′(t):

κ′(t) =
(1 + e2t)3/2et − et · 3

2
(1 + e2t)1/2 · 2e2t

(1 + e2t)3
=

et − 2e3t

(1 + e2t)5/2
.

Now we set κ′(t) = 0 to obtain
et − 2e3t

(1 + e2t)5/2
= 0,

and hence
et − 2e3t = 0.

From this comes the equation e2t = 1/2, which has solution

t =
1

2
ln

Å
1

2

ã
= − ln(2)

2
.

Thus the curve has maximum curvature at the point

r

Å
− ln(2)

2

ã
=

≠
− ln(2)

2
, e− ln(2)/2

∑
=

≠
− ln(2)

2
,

1√
2

∑
.

The value of the maximum curvature is

κ
(
−1

2
ln(2)

)
=

e− ln(2)/2

[1 + e− ln(2)]
3/2

=
1/
√
2

(1 + 1/2)3/2
=

2
√
3

9
.

This is about 0.385, which is a curvature corresponding to a circle with radius approximately
2.60. ■
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13.6 – Planes and Quadric Surfaces

The solution set S ⊆ R3 of an equation of the form

A1x
2 + A2y

2 + A3z
2 + A4xy + A5xz + A6yz + A7x+ A8y + A9z + A10 = 0 (13.24)

is called a quadric surface in R3. Here A1, . . . , A10 represent constant coefficients, with at
least one of A1, . . . , A9 not equal to 0. (If A1, . . . , A9 are all 0, then the solution set for (13.24)
is either R3 or ∅ depending on whether A10 is 0 or not.)

Example 13.30. In §12.1 we found that the sphere with center (a, b, c) and radius r is the set
of points (x, y, z) ∈ R3 that satisfy the equation

(x− a)2 + (y − b)2 + (z − c)2 = r2.

As this equation may be written as

x2 + y2 + z2 − 2ax− 2by − 2cz + (a2 + b2 + c2)− r2 = 0,

we see that a sphere is a quadric surface for which A1 = A2 = A3 = 1, A4 = A5 = A6 = 0,
A7 = −2a, A8 = −2b, A9 = −2c, and A10 = a2 + b2 + c2 − r2. ■

Definition 13.31. The plane in R3 containing the point p0 = (x0, y0, z0) and having normal
vector n = ⟨a, b, c⟩ ≠ 0 is the set {

p ∈ R3 : n · #   „p0p = 0
}
.

If plane P has normal vector n1 and plane Q has normal vector n2, then P is parallel to Q
(written P ∥ Q) if n1 ∥ n2, and P is perpendicular to Q (written P ⊥ Q) if n1 ⊥ n2. Also,
a vector v is parallel to a plane with normal vector n if v ⊥ n, and v is orthogonal to a
plane with normal vector n if v ∥ n. We see that by definition a normal vector for a plane is
orthogonal to the plane. Finally, it is straightforward to check that if P is a plane containing
points p and q, then v is parallel to P if and only if v is parallel to #„pq.

Proposition 13.32. The plane determined by the point p0 = (x0, y0, z0) and normal vector
n = ⟨a, b, c⟩ is given by the equation

a(x− x0) + b(y − y0) + c(z − z0) = 0. (13.25)

This means that the solution set of the equation (13.25) is equal to the set of points given in
Definition 13.31. It also means that a set P ⊆ R3 is a plane if and only if it is the solution set
to an equation of the form ax+ by + cz = d, where a, b, c, and d are constants such that a, b,
and c are not all zero. Thus planes, like lines in Chapter 12, could be defined in terms of point
sets without any mention of vectors.

Proof. For any p = (x, y, z) we have

n · #   „p0p = 0 ⇔ ⟨a, b, c⟩ · ⟨x− x0, y − y0, z − z0⟩ = 0

⇔ a(x− x0) + b(y − y0) + c(z − z0) = 0,
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and we’re done. ■

The equation x = 0, which defines a line in R2, defines a plane in R3. If we write it as

1(x− 0) + 0(y − 0) + 0(z − 0) = 0,

it can be seen that x = 0 is the plane determined by the point (0, 0, 0) and normal vector
⟨1, 0, 0⟩. This plane is the set of points {(x, y, z) | x = 0}, which is otherwise known as the
yz-plane. Similarly, y = 0 is the xz-plane, and z = 0 is the xy-plane. See Figure 55.

In general three noncollinear points uniquely determine a plane, as illustrated in the example
that follows.

Example 13.33. Find an equation of the plane that contains the points p0 = (−1, 1, 1),
p1 = (0, 0, 2), and p2 = (3,−1,−2).

Solution. We need to find a normal vector n for the plane, which is a vector such that n · #   „p0p = 0
for all points p in the plane. Recall that the cross product of two vectors u and v yields a vector
w that is orthogonal to both u and v. The vectors of interest here are #     „p0p1 = ⟨1,−1, 1⟩ and
#     „p0p2 = ⟨4,−2,−3⟩, where

#     „p0p1 × #     „p0p2 =

∣∣∣∣∣∣
i j k
1 −1 1
4 −2 −3

∣∣∣∣∣∣ =
∣∣∣∣−1 1
−2 −3

∣∣∣∣ i− ∣∣∣∣1 1
4 −3

∣∣∣∣ j+ ∣∣∣∣1 −1
4 −2

∣∣∣∣k
= 5i− 7j+ 2k = ⟨5,−7, 2⟩

We let n = ⟨a, b, c⟩ = ⟨5,−7, 2⟩, which, together with (a, b, c) = (−1, 1, 1) and Proposition 13.32,
enables us to obtain the equation

5(x+ 1)− 7(y − 1) + 2(z − 1) = 0,

or 5x− 7y + 2z = −10. ■

It might be asked how we know that the vector n found in this example really is “the” normal
vector for the plane. The reasoning is as follows. If vector n′ is the normal vector for the given

x

y

z

x

y

z

Figure 55. Parts of the xy-, xz- and yz-planes in green, red and blue, respectively,
as viewed from Octant I.
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Figure 56. An ellipsoid.

plane, then n′ must (by definition) be orthogonal to both #     „p0p1 and #     „p0p2, and thus n′ must be
parallel to n = ⟨5,−7, 2⟩. This means that n′ = kn for some k ̸= 0. Now, the set of points p
which satisfy n′ · #   „p0p = 0 must be the same set that satisfies n · #   „p0p = 0, since

n′ · #   „p0p = 0 ⇔ (kn) · #   „p0p = 0 ⇔ k(n · #   „p0p) = 0 ⇔ n · #   „p0p = 0.

Corollary to this analysis is that, given a point p0 and nonzero vector n, the plane that is
determined is not altered if n is replaced by some parallel vector kn (k ̸= 0 of course).

From a geometrical standpoint it should be clear that the intersection P ∩Q of two planes
P and Q in R3 can only be one of three things: P ∩ Q can be a plane if P = Q, and then
P ∩Q = P = Q; or P ∩Q = ∅ if P ̸= Q but P is parallel to Q; or P ∩Q can be a line if P and
Q are not parallel. The next examples illustrates this third (and most common) situation.

Example 13.34. Find an equation of the line where the planes P : x + 2y − 3z = 1 and
Q : x+ y + z = 2 intersect.

Solution. It’s easy to see that P and Q are not parallel, so they must intersect on a line. The
intersection of P and the plane z = 0 is the set of points on the line ℓ0 : x+ 2y = 1, and the
intersection of Q and z = 0 is the line ℓ′0 : x+ y = 2. So the point that is an element of ℓ0 ∩ ℓ′0
must be a point in P ∩Q. We find this point by finding the solution to the system x+ 2y = 1,
x+ y = 2, which is (3,−1). Thus (3,−1, 0) ∈ P ∩Q, since we are on the plane where z is 0.

Next, the intersection of P and the plane z = 1 is the line ℓ1 : x+2y = 4, and the intersection
of Q and z = 1 is the line ℓ′1 : x + y = 1. Again, a point in ℓ1 ∩ ℓ′1 is a point in P ∩ Q. The
system x+ 2y = 4, x+ y = 1 has solution (−2, 3), and thus (−2, 3, 1) ∈ P ∩Q (recall we’re now
on the plane where z is 1).

So the line of intersection for P and Q contains points r0 = (3,−1, 0) and r1 = (−2, 3, 1).
Let v = #     „r0r1 = ⟨−5, 4, 1⟩. An equation for the line is thus

r(t) = r0 + tv = ⟨3,−1, 0⟩+ t⟨−5, 4, 1⟩,
or simply

r(t) = ⟨−5t+ 3, 4t− 1, t⟩,
for −∞ < t <∞. ■
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14
Partial Derivatives

14.1 – Multivariable Functions

A real-valued function of several variables, or multivariable function, is a function f
for which Dom(f) = D for some D ⊆ Rn (where n ≥ 2), and Ran(f) ⊆ R. Thus, for each
(x1, x2, . . . , xn) ∈ D we have f(x1, x2, . . . , xn) ∈ R, and we write

f : D ⊆ Rn → R.

Unless other considerations are in play that give us cause to restrict the domain of a function f
to some smaller set, we take Dom(f) to be the set

Dom(f) = {x ∈ Rn : f(x) ∈ R},

where we make use of the symbol x to denote (x1, . . . , xn) as described in §13.0. Thus

Ran(f) = {y ∈ R : y = f(x) for some x ∈ Dom(f)}

= {f(x) : x ∈ Dom(f)}.

Most times we will be working with either a function of two independent variables x and y
(so Dom(f) is in R2), or three independent variables x, y and z (so Dom(f) ⊆ R3).

Example 14.1. The function f : D ⊆ R2 → R is defined by the rule

f(x, y) =
√

36− 9x2 − 4y2.

Find the set D for which D = Dom(f), and then find Ran(f).

Solution. By definition we have

Dom(f) =
{
(x, y) ∈ R2 :

√
36− 9x2 − 4y2 ∈ R

}
,

which requires that (x, y) be such that 36− 9x2 − 4y2 ≥ 0, and hence 9x2 + 4y2 ≤ 36. Dividing
by 36 gives

x2

4
+
y2

9
≤ 1,
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and since x2/4 + y2/9 = 1 is an ellipse centered at the origin with vertices at (−2, 0), (2, 0),
(0,−3), and (0, 3), it’s concluded that Dom(f) consists of all points lying either on the ellipse
or in the region bounded by the ellipse, as shown in Figure 57.

As for the range of f , first note that 9x2 + 4y2 ≥ 0 for any (x, y) ∈ R2, and then

− 9x2 − 4y2 ≤ 0 ⇒ 36− 9x2 − 4y2 ≤ 36 ⇒ 0 ≤
√

36− 9x2 − 4y2 ≤ 6.

That is, 0 ≤ f(x, y) ≤ 6 is always the case, which shows that Ran(f) ⊆ [0, 6]. Now, suppose
that z ∈ [0, 6]. We would like to find some (x, y) ∈ Dom(f) such that f(x, y) = z; that is,√

36− 9x2 − 4y2 = z,

or equivalently

z2 = 36− 9x2 − 4y2.

To simplify matters suppose that y = x, so that z2 = 36− 13x2. Because z ∈ [0, 6] implies that
36− z2 ≥ 0, it is possible to solve z2 = 36− 13x2 to obtain real-valued solutions for x:

z2 = 36− 13x2 ⇒ x2 =
36− z2

13
⇒ x = ±

…
36− z2

13
.

Therefore

(x, y) =

Ç…
36− z2

13
,

…
36− z2

13

å
is a point in the domain of f that is easily verified to give f(x, y) = z, so z ∈ Ran(f) and we
have shown that [0, 6] ⊆ Ran(f). Therefore Ran(f) = [0, 6]. ■

Example 14.2. Find the domain and range of g(x, y) = arcsin(x+ 2y).

Solution. The domain of g will be dictated by the domain of the arcsine function, which is
[−1, 1]. Thus,

Dom(g) = {(x, y) : −1 ≤ x+ 2y ≤ 1} =
{
(x, y) : −1

2
x− 1

2
≤ y ≤ −1

2
x+ 1

2

}
, (14.1)

as shown in Figure 58.

x

y

2

1

Dom(f)

−1 0 1 −1 0 1
0

2

4

6

x y

z

Figure 57. Left: The domain of f . Right: The part of the surface z = f(x, y)
that lies over the square pictured on the left.
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x

y

1

-1

2

Figure 58. The domain of g.

As for the range of g, consider the cross-section of the domain that we obtain when we set
y = 0. We obtain g(x, 0) = arcsin(x), and from (14.1) it’s seen that −1 ≤ x ≤ 1. It’s known
that as x increases from −1 to 1, arcsin(x) increases from −π/2 to π/2. Thus g(x, y) attains all
values in the interval [−π/2, π/2], and since it’s also known that this constitutes the entirety of
the arcsine function’s possible output, we conclude that Ran(g) = [−π/2, π/2]. ■

Example 14.3. Find the domain and range of

h(x, y) =

√
x+ y − 3

x+ y − 9
.

Solution. To avoid division by zero and square roots of negatives, we need

Dom(h) = {(x, y) : x+ y ≥ 0 and x+ y ̸= 9},

which is the region in R2 shown in Figure 59.
To find the range of h, it helps to carry out the following manipulation:

h(x, y) =

√
x+ y − 3

(
√
x+ y )2 − 32

=

√
x+ y − 3

(
√
x+ y − 3)(

√
x+ y + 3)

=
1√

x+ y + 3
,

x

y

6

12

3−3

Figure 59. The domain of h.
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for x+ y ̸= 9. It can be seen that the global maximum value of h is h(0, 0) = 1/3, and then as
x+ y → ∞ we have h(x, y) → 0+; however, since x+ y ̸= 9, it follows that h(x, y) cannot ever
equal 1/(

√
9 + 3) = 1/6. Hence Ran(h) =

(
0, 1

6

)
∪
(
1
6
, 1
3

]
. ■
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14.2 – Limits and Continuity

The definition of a limit for a function of two variables is similar to that for a limit of a
single-variable function. Remember that to say a limit “exists” means that it equals some real
number.10

Definition 14.4. Let (a, b) be a limit point of Dom(f) ⊆ R2. Then f has limit L ∈ R as (x, y)
approaches (a, b), written

lim
(x,y)→(a,b)

f(x, y) = L,

if for any ϵ > 0 there exists some δ > 0 such that, for any (x, y) ∈ Dom(f),

0 <
»

(x− a)2 + (y − b)2 < δ ⇒ |f(x, y)− L| < ϵ.

It is necessary to require that (a, b) be a limit point of the domain of the function f so as to
avoid undesirable situations where, say, f(x, y) =

√
x+ y has all real numbers as its limit at the

point (−1,−1), even though f isn’t defined anywhere near (−1,−1)! (This can happen because,
in formal logic, the statement “If P, then Q” is considered true, by default, whenever P is false.)

Using the notation established at the beginning of §13.0, we now define the limit of a
real-valued function f of n independent variables x1, . . . , xn, which is to say Dom(f) ⊆ Rn and
f(x1, . . . , xn) ∈ R.

Definition 14.5. Let c be a limit point of Dom(f) ⊆ Rn. Then f has limit L ∈ R as x
approaches c, written

lim
x→c

f(x) = L,

if for any ϵ > 0 there exists some δ > 0 such that, for any x ∈ Dom(f),

0 < ∥x− c∥ < δ ⇒ |f(x)− L| < ϵ

If n = 1 in Definition 14.5, then we obtain the definition of limit given in §2.2 (for which x
becomes x and c becomes c). If n = 2, then we obtain Definition 14.4.

To evaluate a limit of a function of two independent variables using Definition 14.4 directly
requires constructing a so-called ϵ-δ argument, illustrated in the following example.

Example 14.6. Prove that

lim
(x,y)→(0,0)

3x2y

x2 + y2
= 0

Solution. First observe that the domain of the function

f(x, y) =
3x2y

x2 + y2

is R2 \ {(0, 0)} (i.e. all of R2 except for the origin), so as (x, y) approaches (0, 0) it always
remains in Dom(f).

10Sometimes we say a limit “exists in R” to emphasize this, or to be more specific in situations when limits
might equal other kinds of numbers. We do not entertain other kinds of numbers here.
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Let ϵ > 0. Choose δ = ϵ/3. Suppose that

0 <
√
x2 + y2 < δ.

Then, observing that
x2

x2 + y2
≤ 1

for (x, y) ̸= (0, 0), we obtain

|f(x, y)| = 3x2|y|
x2 + y2

≤ 3|y| = 3
√
y2 ≤ 3

√
x2 + y2 < 3δ = 3 · ϵ

3
= ϵ.

We have now shown that, for any (x, y) ̸= (0, 0),

0 <
»

(x− 0)2 + (y − 0)2 < δ ⇒
∣∣∣∣ 3x2y

x2 + y2
− 0

∣∣∣∣ < ϵ.

Therefore

lim
(x,y)→(0,0)

3x2y

x2 + y2
= 0

by Definition 14.4. ■

Two things that make an ϵ-δ argument difficult, in particular, is that the value L of a limit
must be known ahead of time, and so too must the value of δ (which will always depend on ϵ in
some way). In this section we will develop various tools that will enable us to evaluate limits
without resorting to ϵ-δ arguments. The first such tool is as follows.

Theorem 14.7. Let c ∈ Rn be a limit point of Dom(f), suppose there is an open set U
and function φ such that c ∈ U and f(x) = φ(x) for all x ∈ U ∩ Dom(f) with x ̸= c.
If limx→c φ(x) = L, then limx→c f(x) = L.

Proof. Let ϵ > 0. Since c ∈ U and U is open, there exists some δ1 > 0 such that Bδ1(c) ⊆ U .
Since limx→c φ(x) = L, there exists some δ2 > 0 such that, for any x ∈ Dom(φ),

0 < ∥x− c∥ < δ2 ⇒ |φ(x)− L| < ϵ.

Choose δ = min{δ1, δ2}. Let x ∈ Dom(f) be arbitrary, and suppose that 0 < ∥x− c∥ < δ.
From 0 < ∥x − c∥ < δ1 comes x ∈ U ∩ Dom(f) with x ̸= c, and thus φ(x) = f(x). Since
x ∈ Dom(φ) with 0 < ∥x− c∥ < δ2, we have |φ(x)−L| < ϵ. Combining these results, we obtain
|f(x)− L| < ϵ. ■

Limits of real-valued multivariable functions obey the same basic laws as limits of single-
variable functions, with largely the same proofs. For this reason the proof of the following
theorem is omitted, though the reader is invited to compare it with Theorem 2.12.

Theorem 14.8 (Laws of Limits). For any c ∈ Rn and r, L,M ∈ R, if limx→c f(x) = L and
limx→c g(x) =M , then

1. lim
x→c

r = r

2. lim
x→c

rf(x) = rL = r lim
x→c

f(x)
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3. lim
x→c

[
f(x) + g(x)

]
= L+M = lim

x→c
f(x) + lim

x→c
g(x)

4. lim
x→c

[
f(x)g(x)

]
= LM = lim

x→c
f(x) · lim

x→c
g(x)

5. Provided that M ̸= 0,

lim
x→c

f(x)

g(x)
=

L

M
=

lim
x→c

f(x)

lim
x→c

g(x)
.

6. For any integer n > 0,

lim
x→c

[f(x)]n = Ln =
[
lim
x→c

f(x)
]n
.

7. For any integer m > 0,

lim
x→c

m

»
f(x) =

m
√
L = m

√
lim
x→c

f(x),

provided L > 0 if m is even.

An important property of functions that can be a great aid in evaluating limits is continuity,
which in the case of multivariable functions is defined as follows.

Definition 14.9. Let f be a function and c ∈ Dom(f). Then f is continuous at c if for
every ϵ > 0 there exists some δ > 0 such that, for any x ∈ Dom(f),

∥x− c∥ < δ ⇒ |f(x)− f(c)| < ϵ.

If f is continuous at every point in a set S, then f is said to be continuous on S. If f is
continuous at every point in its domain, then f is said to be continuous on its domain or
simply continuous.

So a function cannot be continuous at any point not in its domain, which makes sense. An
immediate consequence of this definition is the following theorem.

Theorem 14.10. If c is a limit point of Dom(f), then f is continuous at c if and only if

lim
x→c

f(x) = f(c)

Typically calculus textbooks give the definition for continuity as “The function f is continuous
at c ∈ Dom(f) if limx→c f(x) = f(c),” which is not equivalent to Definition 14.9 since it requires
that c be a limit point of Dom(f) whereas Definition 14.9 does not. In particular Definition 14.9
implies that a function is continuous, by default, at any isolated point of its domain. However,
the discrepancy does not present us with any problems since in these pages we shall only ever
be considering functions with domains consisting entirely of limit points.

Proposition 14.11. Rational, radical, trigonometric, exponential and logarithmic functions of
two or more variables are continuous on their domains, as are functions that are combinations
of these.
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x

y
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2−1 3−2

(2, 7)

U

Figure 60. A neighborhood for the point (2, 7).

The proof of this proposition is not of great concern at this moment, but the implications
are far-reaching: if f is any one of the five types of functions mentioned in the proposition, and
a point c is both in the domain of f and is a limit point of Dom(f), then the limit of f(x) as x
approaches c can be evaluated by direct substitution: limx→c f(x) = f(c).

Example 14.12. Evaluate

lim
(x,y)→(2,7)

√
x+ y − 3

x+ y − 9
.

Solution. Let

h(x, y) =

√
x+ y − 3

x+ y − 9
.

The domain of h was determined in Example 14.3 and illustrated in Figure 59. It can be seen from
Figure 60 that, although (2, 7) /∈ Dom(h), (2, 7) is a limit point of Dom(h). Consider any open
set U containing (2, 7), such as the one depicted in Figure 60. For all (x, y) ∈ U ′ = U ∩Dom(h)
we have √

x+ y − 3

x+ y − 9
=

√
x+ y − 3

(
√
x+ y − 3)(

√
x+ y + 3)

=
1√

x+ y + 3
,

since
√
x+ y − 3 ̸= 0 on U ′. Thus if we define the function

φ(x, y) =
1√

x+ y + 3
,

we see that h(x, y) = φ(x, y) for all (x, y) ∈ U ′. Now, if lim(x,y)→(2,7) φ(x, y) exists, then

lim
(x,y)→(2,7)

h(x, y) = lim
(x,y)→(2,7)

φ(x, y)

by Theorem 14.7.
The function φ is a combination of rational and radical functions, and so since (2, 7) ∈

Dom(φ), Proposition 14.11 implies that

lim
(x,y)→(2,7)

φ(x, y) = φ(2, 7) =
1

6
.

Therefore

lim
(x,y)→(2,7)

√
x+ y − 3

x+ y − 9
= lim

(x,y)→(2,7)
h(x, y) =

1

6
,
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and we’re done. ■

It may seem that the process for evaluating the limit in Example 14.12 is rather lengthy and
laborious, but this is only because every step is presented, along with the full justification for
each step. The next example goes a little quicker.

Example 14.13. Evaluate

lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1− 1

.

Solution. The domain of the function is

{(x, y) : (x, y) ̸= (0, 0)};

that is, all of R2 except for the origin. For any (x, y) ̸= (0, 0),

x2 + y2√
x2 + y2 + 1− 1

=
x2 + y2√

x2 + y2 + 1− 1
·
√
x2 + y2 + 1 + 1√
x2 + y2 + 1 + 1

=
(x2 + y2)

Ä√
x2 + y2 + 1 + 1

ä
x2 + y2

=
√
x2 + y2 + 1 + 1,

and so by Theorem 14.7 we obtain

lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1− 1

= lim
(x,y)→(0,0)

Ä√
x2 + y2 + 1 + 1

ä
=

√
0 + 0 + 1 + 1 = 2,

recalling that a radical function is continuous on its domain. ■

Yet another weapon that is of great worth in the quest to slay limits without recourse to ϵ-δ
arguments is the following squeeze theorem, which is much the same as the Squeeze Theorem
given in §2.3.

Theorem 14.14 (Multivariable Squeeze Theorem). Let c ∈ Rn be a limit point of Dom(f).
Suppose there are functions φ and ψ, and a neighborhood U of c, such that

φ(x) ≤ f(x) ≤ ψ(x)

for all x ∈ U ∩Dom(f) with x ̸= c. If

lim
x→c

φ(x) = lim
x→c

ψ(x) = L

for some L ∈ R, then
lim
x→c

f(x) = L.

Proof. Suppose that φ(x), ψ(x) → L as x → c. Since c ∈ U and U is open, there exists some
r > 0 such that Br(c) ⊆ U .

Let ϵ > 0. Since limx→c φ(x) = L, there exists some δ1 > 0 such that, for any x ∈ Dom(φ),

0 < ∥x− c∥ < δ1 implies |φ(x)− L| < ϵ.
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Since limx→c ψ(x) = L, there exists some δ2 > 0 such that, for any x ∈ Dom(ψ),

0 < ∥x− c∥ < δ2 implies |ψ(x)− L| < ϵ.

Choose δ = min{r, δ1, δ2} and suppose x ∈ Dom(f) is such that 0 < ∥x − c∥ < δ; that is,
x ∈ Bδ(c) ∩ Dom(f) with x ̸= c. Since Bδ(c) ⊆ Br(c) ⊆ U , it follows that x ∈ U ∩ Dom(f)
with x ̸= c, and therefore φ(x) ≤ f(x) ≤ ψ(x) holds. Moreover we have

0 < ∥x− c∥ < δ1 and 0 < ∥x− c∥ < δ2

since δ ≤ δ1, δ2, and so

− ϵ < φ(x)− L < ϵ and − ϵ < ψ(x)− L < ϵ (14.2)

both hold. From φ(x) ≤ f(x) ≤ ψ(x) we obtain

φ(x)− L ≤ f(x)− L ≤ ψ(x)− L,

which together with (14.2) gives
−ϵ < f(x)− L < ϵ,

or equivalently |f(x)− L| < ϵ.
We have now shown that, for any x ∈ Dom(f), 0 < ∥x− c∥ < δ implies |f(x)− L| < ϵ, and

therefore
lim
x→c

f(x) = L

as desired. ■

Example 14.15. Evaluate

lim
(x,y)→(0,0)

|xy|√
x2 + y2

.

Solution. Define

f(x, y) =
|xy|√
x2 + y2

, φ(x, y) = 0, and ψ(x, y) = |x|.

Note that the domain of f is D = R2 \ {(0, 0)} (i.e. all of R2 except for the origin). Clearly
φ(x, y) ≤ f(x, y) for all (x, y) ∈ D. If x ∈ R and y ̸= 0, then

f(x, y) =
|xy|√
x2 + y2

≤ |xy|√
y2

=
|x||y|
|y|

= |x| = ψ(x, y);

and if x ̸= 0 and y = 0, then

f(x, 0) =
0√
x2

= 0 < |x| = ψ(x, 0).

Thus f(x, y) ≤ ψ(x, y) for all (x, y) ∈ D. Now, since φ(x, y) ≤ f(x, y) ≤ ψ(x, y) for all
(x, y) ∈ D,

lim
(x,y)→(0,0)

φ(x, y) = lim
(x,y)→(0,0)

(0) = 0,

and
lim

(x,y)→(0,0)
ψ(x, y) = lim

(x,y)→(0,0)
|x| = 0,
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we conclude that

lim
(x,y)→(0,0)

|xy|√
x2 + y2

= 0

by the Multivariable Squeeze Theorem. ■

Recall from first-semester calculus that

lim
x→c

f(x) = L iff lim
x→c+

f(x) = lim
x→c−

f(x) = L;

that is, the two-sided limit of f equals L if and only if the two one-sided limits both equal L.
The value of f(x) must not converge on different values depending on whether c is approached
from the left or the right! If f is a two-variable function, however, things are a little more
complicated, because the domain of f will be some region in a plane, and any point (a, b) on
the xy-plane can be approached along an infinite number of possible paths. A consequence of
Definition 14.4 is that, in order for the limit

lim
(x,y)→(a,b)

f(x, y)

to exist as some real number L, f(x, y) must approach L as (x, y) approaches (a, b) regardless of
the path that is taken! If two paths can be found that result in f(x, y) approaching two different
real numbers (or if one path can be found that results in f(x, y) approaching no real number
whatsoever), then it can be shown that the limit cannot exist in R.

The next example illustrates the method, known as the Two-Path Test, for showing that a
limit does not exist. The idea is simple: if f(x) approaches two different values L1 and L2 when
two different paths γ1 and γ2 to a point c are taken, then limx→c f(x) cannot exist because the
value of a limit must be unique. In applying the test we must, of course, consider only points
on each path which lie in the domain of f . The formal statement of the test is as follows.

Theorem 14.16 (Two-Path Test). Suppose f : D ⊆ Rn → R, with c a limit point of D. Let
L1, L2 ∈ R such that L1 ̸= L2. If for each ϵ > 0 there exists some x1,x2 ∈ D ∩B′

ϵ(c) such that
f(x1) = L1 and f(x2) = L2, then limx→c f(x) does not exist.

Example 14.17. Show that

lim
(x,y)→(0,0)

x3 − y2

x3 + y2

does not exist.

Solution. Let

f(x, y) =
x3 − y2

x3 + y2
.

The domain of f is consists of all of R2 except the origin. Let ϵ > 0 be arbitrary. Now, within
the set B′

ϵ(0, 0) (i.e. all points that are a distance less than ϵ from (0, 0) except for (0, 0) itself)
we can choose two points: a point (x, 0) ̸= (0, 0) on the x-axis that is less than ϵ away from
(0, 0), and a point (0, y) ̸= (0, 0) on the y-axis that is less than ϵ away from (0, 0). For instance
we could choose (x, 0) = (ϵ/2, 0) and (0, y) = (0, ϵ/2), but it is not necessary to be this explicit.
Now,

f(x, 0) =
x3 − 02

x3 + 02
=
x3

x3
= 1,
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and

f(0, y) =
03 − y2

03 + y2
= −y

2

y2
= −1.

We have now shown that, for each ϵ > 0, there exists some (x1, y1), (x2, y2) ∈ B′
ϵ(0, 0) such

that f(x1, y1) = 1 and f(x2, y2) = −1. Therefore the limit

lim
(x,y)→(0,0)

x3 − y2

x3 + y2

does not exist by the Two-Path Test. ■

In the example above, the two paths leading to the point (0, 0) that were chosen to show
the given limit does not exist were the x-axis (i.e. the line y = 0) and the y-axis (i.e. the line
x = 0). Any number of other paths could have been considered to achieve the same result, such
as x = y2/3.

Proposition 14.18. Let f be a function with domain D ⊆ R.
1. If φ : D × R → R is given by φ(x, y) = f(x), then for any a /∈ D and b ∈ R

lim
x→a

f(x) = L ⇒ lim
(x,y)→(a,b)

φ(x, y) = L.

2. If ψ : R×D → R is given by ψ(x, y) = f(y), then for any a ∈ R and b /∈ D

lim
y→b

f(y) = L ⇒ lim
(x,y)→(a,b)

ψ(x, y) = L.

Proof. We prove only part (1), the proof of part (2) being similar. Suppose that φ : D×R → R
is given by φ(x, y) = f(x). Fix a /∈ D and b ∈ R, and suppose that f(x) → L as x → a. Let
ϵ > 0 be arbitrary. Then there exists some δ > 0 such that |f(x)− L| < ϵ for all x ∈ Dom(f)
for which 0 < |x− a| < δ. Let (x, y) ∈ Dom(φ) = D × R be such that

0 <
»
(x− a)2 + (y − b)2 < δ. (14.3)

Now, x ̸= a since a /∈ D, so (14.3) implies 0 < |x− a| < δ, which in turn implies |f(x)− L| < ϵ.
Hence |φ(x, y)− L| < ϵ, and therefore

lim
(x,y)→(a,b)

φ(x, y) = L

by Definition 14.4. ■

The purpose of Proposition 14.18 is to provide a firm theoretical underpinning for evaluating
a limit of the form

lim
(x,y)→(a,b)

g(x)h(y)

in the natural way:

lim
(x,y)→(a,b)

g(x)h(y) =
(
lim
x→a

g(x)
)(

lim
y→b

h(y)
)
. (14.4)

It is not a straightforward matter of using Theorem 14.8(4), because the limits on the right-hand
side of (14.4) are single-variable limits, which each are confined to the real number line. However,
provided the hypotheses of Proposition 14.18 are satisfied, then the equality (14.4) is true. The
advantage of passing from a single multivariable limit to multiple single-variable limits is clear:
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many techniques for evaluating limits, such as L’Hôpital’s Rule, can only be applied to limits of
a single-variable function. The next example puts the theory into practice.

Example 14.19. Evaluate

lim
(x,y)→(0,0)

y sin 3x

8x sin 5y

Solution. Let D = (−∞, 0) ∪ (0,∞), and define φ : D × R → R by

φ(x, y) =
sin 3x

8x
.

Applying L’Hôpital’s Rule, we have

lim
x→0

sin 3x

8x
= lim

x→0

3 cos 3x

8
=

3

8
.

Now, observing that the function f(x) = sin 3x/8x has domain D and 0 /∈ D, we obtain

lim
(x,y)→(0,0)

sin 3x

8x
= lim

x→0

sin 3x

8x
=

3

8

by Proposition 14.18(1).
Next, define ψ : R×D → R by

ψ(x, y) =
y

sin 5y
.

Again using L’Hôpital’s Rule,

lim
y→0

y

sin 5y
= lim

y→0

1

5 cos 5y
=

1

5
.

Observing that the function g(y) = y/ sin 5y has domain D and 0 /∈ D, we obtain

lim
(x,y)→(0,0)

y

sin 5y
= lim

y→0

y

sin 5y
=

1

5

by Proposition 14.18(2).
Finally,

lim
(x,y)→(0,0)

y sin 3x

8x sin 5y
= lim

(x,y)→(0,0)

Å
sin 3x

8x
· y

sin 5y

ã
=

Å
lim

(x,y)→(0,0)

sin 3x

8x

ãÅ
lim

(x,y)→(0,0)

y

sin 5y

ã
=

Å
3

8

ãÅ
1

5

ã
=

3

40

by Theorem 14.8(4). ■

Theorem 14.20. Let f : D ⊆ Rn → R and g : I ⊆ R → R. If f is continuous at c and g is
continuous at f(c), then g ◦ f is continuous at c.
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Proof. Suppose f is continuous at c and g is continuous at f(c). Fix ϵ > 0. There exists some
γ > 0 such that, for all y ∈ Dom(g),

|y − f(c)| < γ ⇒ |g(y)− g(f(c))| < ϵ. (14.5)

Now, the continuity of f at c implies there exists some δ > 0 such that, for all x ∈ Dom(f),

∥x− c∥ < δ ⇒ |f(x)− f(c)| < γ. (14.6)

Let x ∈ Dom(g ◦ f), so that x ∈ Dom(f) and f(x) ∈ Dom(g). Suppose that ∥x− c∥ < δ. Then
|f(x)− f(c)| < γ by (14.6), and since f(x) ∈ Dom(g) it follows from (14.5) that

|g(f(x))− g(f(c))| < ϵ.

That is,
|(g ◦ f)(x)− (g ◦ f)(c)| < ϵ,

and therefore g ◦ f is continuous at c. ■

Example 14.21. Determine the set of points in R2 where the function

h(x, y) =
√
x− y2

is continuous.

Solution. Define f(x, y) = x− y2, which is a polynomial function, and g(x) =
√
x, which is a

radical function. By Proposition 14.11 both f and g are continuous on their domains, where
Dom(f) = R2, and Dom(g) = [0,∞). Now, since

Dom(g ◦ f) = {(x, y) ∈ R2 : (x, y) ∈ Dom(f) and f(x, y) ∈ Dom(g)}

= {(x, y) ∈ R2 : x− y2 ∈ [0,∞)} = {(x, y) ∈ R2 : x− y2 ≥ 0}

= {(x, y) ∈ R2 : x ≥ y2} = Dom(h),

and h(x, y) = (g ◦ f)(x, y) for all (x, y) in the common domain, we see that h = g ◦ f .
Let (a, b) ∈ Dom(h). Since (a, b) ∈ R2 we know that f is continuous at (a, b). Moreover,

f(a, b) = a− b2 ≥ 0

x

y

Figure 61.
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shows that f(a, b) ∈ [0,∞) = Dom(g), and so g is continuous at f(a, b). Hence g◦f is continuous
at (a, b) by Theorem 14.20, and because h = g ◦ f it follows that h is continuous at (a, b). Since
(a, b) is an arbitrary point in Dom(h), we conclude that h is continuous on its domain. That is,
h is continuous on precisely the set {(x, y) : x ≥ y2}, shown in Figure 61. ■

There will be frequent occasions when a vector function

r(t) =
〈
x1(t), . . . , xn(t)

〉
will be composed with a real-valued function f(x1, . . . , xn) = y. Thus, some results concerning
the function f ◦ r should be developed. Since f ◦ r is just a real-valued function of a single
real variable, we can expect the results (and their proofs) to strongly resemble developments in
single-variable calculus. The following proposition, for instance, has an analog in §2.6.

Proposition 14.22. Let r : I ⊆ R → Rn and f : D ⊆ Rn → R. If
lim
t→a

r(t) = c

for some c in the interior of D and f is continuous at c, then

lim
t→a

f(r(t)) = f
(
lim
t→a

r(t)
)
= f(c).

Proof. Suppose that limt→a r(t) = c for some c ∈ Int(D). Let ϵ > 0. Since f is continuous at c
and c ∈ Int(D), there exists some δ0 > 0 such that ∥x− c∥ < δ0 implies that |f(x)− f(c)| < ϵ.
Since

lim
t→a

r(t) = c

there exists some δ > 0 such that 0 < |t−a| < δ implies that ∥r(t)−c∥ < δ0. Thus, 0 < |t−a| < δ
implies that |f(r(t))− f(c)| < ϵ, and therefore

lim
t→a

f(r(t)) = f(c).

as desired. ■
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14.3 – Partial Derivatives

A function f of two independent variables x and y, conventionally denoted by f(x, y), can
be differentiated with respect to either variable. The way this is done is to treat one of the
variables as a constant and differentiate with respect to the other variable in the usual manner
developed in first-semester calculus.

Definition 14.23. Suppose (x, y) ∈ R2 is an interior point of Dom(f). The partial derivative
of f with respect to x at (x, y) is

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
, (14.7)

and the partial derivative of f with respect to y at (x, y) is

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
,

provided these limits exist.

Both limits above have only one variable in play, and so they can be interpreted using the
definition of limit in Chapter 2; however, since (x, y) is in the interior of Dom(f), Definition
14.5 is wholly equivalent and thus equally appropriate. So, with a little bit of thought, the limit
(14.7) can be translated into the following statement: For every ϵ > 0 there exists some δ > 0
such that, if 0 < |h| < δ and (x+ h, y) ∈ Dom(f), then∣∣∣∣f(x+ h, y)− f(x, y)

h
− fx(x, y)

∣∣∣∣ < ϵ.

The functions fx and fy are together referred to as the “first-order partial derivatives” of f ,
or simply the “first partials” of f . If f is a function of three variables x, y, and z, then there
are three first partials of f : fx, fy, and fz, where

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)

h

and so on. In general, for a function f of n variables x1, . . . , xn, we have

fxi(x) = fxi(x1, . . . , xn) = lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h

for each 1 ≤ i ≤ n and x ∈ Int(Dom(f)).
Besides the symbol fx (called “subscript notation”), the partial derivative of f with respect

to x can be denoted by ∂xf (operator notation) or ∂f/∂x (Leibniz notation). Correspondingly
fx(x, y) can be denoted by

∂f

∂x
(x, y) or

∂f

∂x

∣∣∣
(x,y)

or ∂xf(x, y).

Notation. In these notes only two notations will be employed to any significant extent to denote
the partial derivative of f with respect to x: fx and ∂xf . Both notations extend naturally into
higher order partial derivatives, with fxx = (fx)x being the “second partial derivative of f with
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respect to x,” and fxy = (fx)y being the partial derivative of fx with respect to y (otherwise
known as a “mixed partial derivative”). We can translate to operator notation as follows:

fxx = (fx)x = ∂x(∂xf) = ∂xxf

and

fxy = (fx)y = ∂y(∂xf) = ∂yxf.

Alternative operator symbols are ∂1 for ∂x, and ∂2 for ∂y. Also we have ∂2x = ∂xx,
∂3x = ∂xxx, and so on, with ∂nx used generally to denote the nth partial derivative of f with
respect to x.

Example 14.24. Given

f(x, y) = 3x2y7 − 2xy + 5y − 8x3,

find fx and fy.

Solution. To find fx we treat y as a constant and consider x to be the only variable, enabling
us to differentiate in the usual fashion.

fx(x, y) = ∂x(3x
2y7 − 2xy + 5y − 8x3)

= ∂x(3x
2y7)− ∂x(2xy) + ∂x(5y)− ∂x(8x

3)

= 6xy7 − 2y − 24x2.

Notice that ∂x(5y) = 0 since 5y is considered to be a constant.
To find fy we treat x as a constant and consider y to be the only variable.

fy(x, y) = ∂y(3x
2y7 − 2xy + 5y − 8x3)

= ∂y(3x
2y7)− ∂y(2xy) + ∂y(5y)− ∂y(8x

3)

= 21x2y6 − 2x+ 5,

where ∂y(8x
3) = 0. ■

Example 14.25. Given

f(x, y, z) =
sinxy − ln yz

x2 + y3 + z4
,

find fx, fy, and fz.

Solution. To find fx we treat y and z as constants and consider x to be the only variable.

fx(x, y, z) =
(x2 + y3 + z4)(y cosxy)− 2x(sinxy − ln yz)

(x2 + y3 + z4)2

To find fy we treat x and z as constants.

fy(x, y, z) =

(x2 + y3 + z4)

Å
x cosxy − 1

yz
· z
ã
− 3y2(sinxy − ln yz)

(x2 + y3 + z4)2
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=
(x2 + y3 + z4)(xy cosxy − 1)− 3y3(sinxy − ln y2)

y(x2 + y3 + z4)2

Finally, to find fz we treat x and y as constants.

fz(x, y, z) =

(x2 + y3 + z4)

Å
− 1

yz
· y
ã
− 4z3(sinxy − ln yz)

(x2 + y3 + z4)2

=
(x2 + y3 + z4) (−1/z) + 4z3(ln yz − sinxy)

(x2 + y3 + z4)2

=
4z4(ln yz − sinxy)− (x2 + y3 + z4)

z(x2 + y3 + z4)2

■

Definition 14.26. Let U ⊆ R2 be an open set. A function f : U → R is differentiable at
(x, y) ∈ U if

lim
(h,k)→(0,0)

f(x+ h, y + k)− f(x, y)− fx(x, y)h− fy(x, y)k√
h2 + k2

= 0. (14.8)

If f is differentiable at every point in U , then f is said to be differentiable on U .

Note that by this definition, in order for f to be differentiable at (x, y) it is certainly necessary
that the partial derivatives fx and fy both exist at (x, y)—but that is not sufficient, as part (c)
of Example 14.32 illustrates.

We now define the gradient of a function f , which is a vector function that is often referred
to as the total derivative (or simply the derivative) of f The reason for this will become
gradually more apparent in the pages to come.

Definition 14.27. If f is differentiable at (x, y) ∈ R2, then the gradient of f at (x, y) is

∇f(x, y) =
〈
fx(x, y), fy(x, y)

〉
.

More generally, if f is differentiable at x ∈ Rn, then the gradient of f at x is

∇f(x) =
〈
fx1(x), fx2(x), . . . , fxn(x)

〉
.

So ∇f (read as “del f”) is a vector function of two independent variables (or three, in R3)
with domain consisting of all points (x, y) ∈ R2 where fx(x, y), fy(x, y) ∈ R. As mentioned in
§13.0, it can be convenient to regard the ordered pairs (x, y) in the domain of f as vectors as
well (position vectors, in particular), to make use of operations such as vector addition and
vector norms and thereby streamline the notation. We can represent (h, k) by h = ⟨h, k⟩, and
(x, y) by x = ⟨x, y⟩, so that (x+ h, y + k) becomes

⟨x+ h, y + k⟩ = x+ h.

Now the limit in Definition 14.26 can be written as

lim
h→0

f(x+ h)− f(x)− fx(x)h− fy(x)k

∥h∥
= 0,
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where we let 0 = ⟨0, 0⟩ replace (0, 0). Next, noting that

fx(x)h+ fy(x)k = ⟨fx(x), fy(x)⟩ · ⟨h, k⟩ = ∇f(x) · h,

we can write

lim
h→0

f(x+ h)− f(x)−∇f(x) · h
∥h∥

= 0.

This version of equation (14.8) is easily extended to a general definition for differentiability in
Rn.

Definition 14.28. Let U ⊆ Rn be an open set. A function f : U → R is differentiable at
x ∈ U if

lim
h→0

f(x+ h)− f(x)−∇f(x) · h
∥h∥

= 0. (14.9)

If f is differentiable at every point in U , then f is said to be differentiable on U .

Thus, for f in Definition 14.28 to be differentiable at x, it is necessary (but not sufficient) to
have fxi(x) ∈ R for all i; that is, all first partials of f must exist at x.

The advantage of (14.9) over the clunky equation presented in the book’s definition of
differentiability is its mild resemblance to the definition of differentiability for a real-valued
function f of a single variable at some x ∈ R, which states that f is differentiable at x if and
only if the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(14.10)

exists. (You might notice that since the limit is two-sided—so h can be positive or negative as
it approaches 0—it’s necessary for x to be in some open set on which f is defined.)

But we can do better than a “mild resemblance.” In fact (14.10) can exist if and only if
there exists some ℓ ∈ R such that

lim
h→0

f(x+ h)− f(x)− ℓ · h
h

= 0 (14.11)

To prove this, the argument goes as follows. Suppose (14.10) exists. Then f ′(x) is a real number,
so we can choose ℓ = f ′(x) and get

lim
h→0

f(x+ h)− f(x)− ℓ · h
h

= lim
h→0

f(x+ h)− f(x)− f ′(x) · h
h

= lim
h→0

f(x+ h)− f(x)

h
− f ′(x)

= f ′(x)− f ′(x) = 0,

as desired.
Conversely if there exists some real number ℓ such that (14.11) holds, then since limh→0 ℓ = ℓ

a basic law of limits implies that

0 + ℓ = lim
h→0

f(x+ h)− f(x)− ℓ · h
h

+ lim
h→0

ℓ

= lim
h→0

ï
f(x+ h)− f(x)− ℓ · h

h
+ ℓ

ò
,
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which readily yields

lim
h→0

f(x+ h)− f(x)

h
= ℓ

and shows not only that (14.10) exists, but that ℓ must equal f ′(x). The ultimate conclusion: a
single-variable function f is differentiable if and only if

lim
h→0

f(x+ h)− f(x)− f ′(x) · h
h

= 0. (14.12)

Now, notice the striking resemblance between (14.12) and (14.9). Morever, an immediate
consequence of Definition 14.28 is the following: A function f is differentiable at c if and only if

lim
x→c

f(x)− f(c)−∇f(c) · (x− c)

∥x− c∥
= 0. (14.13)

Notice that x → c implies that ∥x − c∥ → 0 just as h → 0 implies ∥h∥ → 0, and compare
(14.13) with

f ′(c) = lim
x→c

f(x)− f(c)− f ′(c) · (x− c)

x− c
,

which derives from the familiar single-variable derivative formula

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

We see that ∇f takes the place of f ′ in the preceding comparisons, which gives us our first
insight into why ∇f is often called the “total derivative” of f .

The next example shows that the continuity of a multivariable function f at x, even if x is in
the interior of Dom(f), is no guarantee that any of the partial derivatives of f will exist there.

Example 14.29. Show that the function

f(x, y) =
√
x2 + y2

is continuous at (0, 0), but its first-order partial derivatives do not exist there.

Solution. This is a circular cone that opens along the positive z-axis with apex at (0, 0, 0), as
shown in Figure 62. By Proposition 14.11,

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

√
x2 + y2 =

√
02 + 02 = 0 = f(0, 0),

which shows that f is continuous at (0, 0). On the other hand,

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

f(h, 0)

h
= lim

h→0

√
h2

h
= lim

h→0

|h|
h
,

which does not exist since

lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1 and lim

h→0−

|h|
h

= lim
h→0−

−h
h

= −1.

Much the same analysis will reveal that fy(0, 0) also does not exist. ■

Thus, recalling that differentiability by definition requires existence of first partials, it follows
that continuity does not imply differentiability. However, differentiability does imply continuity.
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Figure 62. The cone z =
√
x2 + y2.

Theorem 14.30. If f is differentiable at c ∈ Rn, then f is continuous at c.

Proof. Suppose that f is differentiable at c = ⟨c1, . . . , cn⟩. Then

lim
h→0

f(c+ h)− f(c)−∇f(c) · h
∥h∥

= 0

holds, which, recalling (14.13), can be rewritten as

lim
x→c

f(x)− f(c)−∇f(c) · (x− c)

∥x− c∥
= 0.

Now, since

lim
x→c

∥x− c∥ = lim
x→c

»
(x1 − c1)2 + · · ·+ (xn − cn)2 = 0

by Proposition 14.11, it follows from Theorem 14.8(4) that

lim
x→c

[f(x)− f(c)−∇f(c) · (x− c)]

= lim
x→c

ï
f(x)− f(c)−∇f(c) · (x− c)

∥x− c∥
· ∥x− c∥

ò
= lim

x→c

f(x)− f(c)−∇f(c) · (x− c)

∥x− c∥
· lim
x→c

∥x− c∥

= 0 · 0 = 0.

Next,

∇f(c) · (x− c) = fx1(c)(x1 − c1) + · · ·+ fxn(c)(xn − cn),

and so

lim
x→c

∇f(c) · (x− c) = 0

follows from Proposition 14.11. Then, employing Theorem 14.8(3), we obtain

lim
x→c

(f(x)− f(c)) = lim
x→c

([
f(x)− f(c)−∇f(c) · (x− c)

]
+∇f(c) · (x− c)

)
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= lim
x→c

[
f(x)− f(c)−∇f(c) · (x− c)

]
+ lim

x→c
∇f(c) · (x− c)

= 0 + 0 = 0,

from which it’s readily concluded that

lim
x→c

f(x) = f(c).

The continuity of f at c now follows from Theorem 14.10. ■

Example 14.31. Determine whether the function

f(x, y) = 1− |xy|

is differentiable at (0, 0).

Solution. If f is not continuous at (0, 0) then we could use Theorem 14.30 to conclude that f is
not differentiable at (0, 0). However, since the polynomial function p(x, y) = xy is continuous on
R2, and the absolute value function abs(t) = |t| was established in Chapter 2 to be continuous
on R, it follows that the composition (abs ◦p)(x, y) = |xy| is continuous everywhere on R2. It
should now be evident that f is likewise continuous everywhere on R2, including (0, 0).

At this juncture we’re left only with Definition 14.26 as a tool to investigate the differentiability
of f . To use it, we must determine fx(0, 0) and fy(0, 0). We have

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

1− 1

h
= lim

h→0
(0) = 0

and

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

1− 1

h
= lim

h→0
(0) = 0.

Now we evaluate the limit in Definition 14.26 directly. Referring to Example 14.15, we obtain

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− fx(0, 0)h− fy(0, 0)k√
h2 + k2

= lim
(h,k)→(0,0)

−|hk|√
h2 + k2

= 0,

and therefore f is differentiable at (0, 0). ■

Example 14.32. Consider the function

f(x, y) =


2xy2

x2 + y4
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

(a) Is f continuous at (0, 0)?
(b) Is f differentiable at (0, 0)?
(c) Evaluate fx(0, 0) and fy(0, 0).
(d) Determine whether fx and fy are continuous at (0, 0).
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Solution.
(a) If we restrict f to the parabola x = y2, lim(x,y)→(0,0) f(x, y) becomes

lim
y→0

f(y2, y) = lim
y→0

2y2 · y2

(y2)2 + y4
= lim

y→0

2y4

2y4
= lim

y→0
(1) = 1.

This already is enough to show that, if the limit lim(x,y)→(0,0) f(x, y) exists at all, then it must
equal 1, and so in particular we have

lim
(x,y)→(0,0)

f(x, y) ̸= 0 = f(0, 0).

Therefore f is not continuous at (0, 0).

(b) Since f is not continuous at (0, 0), by Theorem 14.30 f is not differentiable at (0, 0).

(c) By definition

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

f(h, 0)

h
= lim

h→0
(0) = 0

and

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0

f(0, h)

h
= lim

h→0
(0) = 0

So despite f not being differentiable at (0, 0), both of its first partial derivatives exist there!

(d) For (x, y) ̸= (0, 0) we can find fx(x, y) and fy(x, y) by the usual differentiation rules, and
thus, together with part (c), we obtain

fx(x, y) =


2y6 − 2x2y2

(x2 + y4)2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

and

fy(x, y) =


4x3y − 4xy5

(x2 + y4)2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

Now, restricting fx to the line y = x, we find that lim(x,y)→(0,0) fx(x, y) leads to

lim
x→0

fx(x, x) = lim
x→0

2x2 − 2

(1 + x2)2
= −2.

So if the limit lim(x,y)→(0,0) fx(x, y) exists, it must equal −2. For continuity the limit must equal
0, and therefore fx is not continuous at (0, 0). A similar analysis can be done for fy. ■

It should be noted that Example 14.32(b) could have been done by direct application of
Definition 14.26 if Example 14.32(c) had been done beforehand. Knowing f(0, 0) = fx(0, 0) =
fy(0, 0) = 0, the limit (14.8) becomes:

lim
(h,k)→(0,0)

f(h, k)√
h2 + k2

= lim
(h,k)→(0,0)

Å
1√

h2 + k2
· 2hk2

h2 + k4

ã
. (14.14)
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If we tack toward the origin along the line k = h in the first quadrant, the limit (14.14) leads to

lim
h→0

Å
1√
2h2

· 2h · h2

h2 + h4

ã
= lim

h→0

Å
1

h
√
2
· 2h

1 + h2

ã
= lim

h→0

√
2

1 + h2
=

√
2,

where
√
h2 = h since h > 0 in Quadrant I. Thus if the limit (14.14) exists at all, it must equal√

2 and not 0. This implies that f is not differentiable at (0, 0).
Part (c) of Example 14.32 shows that the existence of a function’s first partials at some point

x is not sufficient to guarantee differentiability of the function at x. However, if the function’s
first partials are continuous on an open set containing x, then differentiability at x does follow.
To prove this, we need the following mean value theorem for multivariable functions. A stronger
version of the theorem will be given at the end of the section.

Theorem 14.33 (Multivariable Mean Value Theorem 1). Let f have continuous first
partials on Br(a) ⊆ Rn. Then for any x ∈ Br(a) there exist c1, . . . , cn ∈ Br(a) such that

f(x)− f(a) = fx1(c1)(x1 − a1) + · · ·+ fxn(cn)(xn − an).

So if f has continuous first-order partial derivatives in an open ball Br(a, b) ⊆ R2, then for
any (x, y) ∈ Br(a, b) there are points (c1, d1), (c2, d2) ∈ Br(a, b) such that

f(x, y)− f(a, b) = fx(c1, d1)(x− a) + fy(c2, d2)(y − b).

Theorem 14.34. If the function f has continuous first partials on open set U ⊆ Rn, then f is
differentiable on U .

Proof. Suppose f has continuous first partials on open set U . Fix a ∈ U , and let ϵ > 0. Since U
is open there exists some δ0 > 0 such that Bδ0(a) ⊆ U . Also, since the first partials fx1 , . . . , fxn
are continuous on U , there exists some 0 < δ1, . . . , δn < δ0 such that

x ∈ Bδk(a) ⇒
∣∣fxk(a)− fxk(x)

∣∣ < ϵ

n
for all 1 ≤ k ≤ n.

Choose δ = min{δ1, . . . , δn}. Suppose that x ∈ Bδ(a) with x ̸= a. Since f has continuous
first partials on Bδ(a), by Theorem 14.33 there exists c1, . . . , cn ∈ Bδ(a) such that

f(x)− f(a) =
n∑
k=1

fxk(ck)(xk − ak). (14.15)

Now, since ck ∈ Bδk(a), we obtain∣∣fxk(a)− fxk(ck)
∣∣ < ϵ

n
for all k. Hence

n∑
k=1

∣∣fxk(a)− fxk(ck)
∣∣ < ϵ,

and since
|xk − ak|
∥x− a∥

=
|xk − ak|√

(x1 − a1)2 + · · ·+ (xn − an)2
≤ 1
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for all k, it follows that
n∑
k=1

∣∣fxk(a)− fxk(ck)
∣∣|xk − ak|

∥x− a∥
< ϵ

and finally

1

∥x− a∥

∣∣∣∣∣
n∑
k=1

(
fxk(a)− fxk(ck)

)
(xk − ak)

∣∣∣∣∣ < ϵ (14.16)

by the Triangle Inequality from §1.6. Combining equations (14.15) and (14.16) yields

1

∥x− a∥

∣∣∣∣∣
n∑
k=1

fxk(a)(xk − ak)− [f(x)− f(a)]

∣∣∣∣∣ < ϵ,

and thus
|f(x)− f(a)−∇f(a) · (x− a)|

∥x− a∥
< ϵ.

We have now shown that

lim
x→a

f(x)− f(a)−∇f(a) · (x− a)

∥x− a∥
= 0,

or equivalently

lim
h→0

f(a+ h)− f(a)−∇f(a) · h
∥h∥

= 0.

Therefore f is differentiable at a, and since a ∈ U is arbitrary it follows that f is differentiable
on U . ■

If we are only given that a function’s first partials are continuous at the point x, rather than
on an open set containing x, then the proof above fails since Theorem 14.33 cannot be used.
This is why Theorem 14.34 is stated the way it is. Moreover the converse of Theorem 14.34
does not hold in general; that is, the differentiability of a function f at x does not necessarily
imply the continuity of the partial derivatives of f at x, as the next example illustrates.

Example 14.35. Show that

f(x, y) =

®
x2 sin(1/x), if x ̸= 0

0, if x = 0

is differentiable at (0, 0), and yet fx is discontinuous there.

Solution. For x ̸= 0 we obtain

fx(x, y) = 2x sin(1/x)− cos(1/x)

using the usual differentiation rules. For x = 0 the rules cannot be applied, and so we must
repair to Definition 14.23 to get

fx(0, y) = lim
h→0

f(0 + h, y)− f(0, y)

h

= lim
h→0

h2 sin(1/h)

h
= lim

h→0
h sin(1/h) = 0,
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where the last equality can be justified by use of the Squeeze Theorem. Thus,

fx(x, y) =

®
2x sin(1/x)− cos(1/x), if x ̸= 0

0, if x = 0

However, it’s easy to see that the limit

lim
(x,y)→(0,0)

fx(x, y) = lim
(x,y)→(0,0)

[
2x sin(1/x)− cos(1/x)

]
does not exist, which is to say that

lim
(x,y)→(0,0)

fx(x, y) ̸= fx(0, 0) = 0,

and so fx is not continuous at (0, 0).
Before showing that f is differentiable at (0, 0) we first need to compute fy(0, 0):

fy(0, 0) = lim
(x,y)→(0,0)

f(0, 0 + h)− f(0, 0)

h
= lim

(x,y)→(0,0)

f(0, h)

h
= lim

(x,y)→(0,0)

0

h
= 0.

Now we show that

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− fx(0, 0)h− fy(0, 0)k√
h2 + k2

= 0,

or equivalently

lim
(h,k)→(0,0)

f(h, k)√
h2 + k2

= 0. (14.17)

Let ϵ > 0. Since limx→0 x sin(1/x) = 0, there exists some δ > 0 for which 0 < x < δ implies
that |x sin(1/x)| < ϵ. Suppose that (h, k) is such that

0 <
√
h2 + k2 < δ.

Now, if h = 0 we immediately obtain

|f(h, k)|√
h2 + k2

=
|f(0, k)|

|k|
= 0 < ϵ,

as desired. So assume that h ̸= 0. Then

|f(h, k)|√
h2 + k2

=
h2| sin(1/h)|√

h2 + k2
≤ h2| sin(1/h)|

|h|
= |h sin(1/h)| < ϵ,

since

0 < |h| =
√
h2 ≤

√
h2 + k2 < δ.

Therefore (14.17) holds, and so f is differentiable at (0, 0). ■

The next theorem concerning when the mixed second partials of a function of two variables
can be assumed to be equal may seem rather obscure, but beyond serving as a labor-saving
device it will also be crucial in the proof of some results in Chapter 15.

Theorem 14.36 (Clairaut’s Theorem). Let U ⊆ R2 be an open set and f : U → R a function.
If fxy and fyx are continuous on U , then fxy = fyx on U .
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As promised, we now give a stronger mean value theorem for multivariable functions, which
can be seen to bear a resemblance to the single-variable Mean Value Theorem in §4.2. Recall
that for any a,b ∈ Rn, the symbol [a,b] denotes the line segment that joins a to b.

Theorem 14.37 (Multivariable Mean Value Theorem 2). Let f have continuous first
partials on Br(x) ⊆ Rn. Then for any a,b ∈ Br(x) there exists some c ∈ [a,b] such that

f(b)− f(a) = ∇f(c) · (b− a).

This version is “stronger” in the sense that its conclusion involves only one quite specific
additional point c, rather than n points c1, . . . , cn.
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14.4 – Chain Rules

We’re now in a position to consider the most basic multivariable chain rule, from which most
all other chain rules can be derived.

Theorem 14.38 (Chain Rule 1). Let r(t) = ⟨x1(t), . . . , xn(t)⟩ be differentiable at t. If U ⊆ Rn

is an open set such that r(t) ∈ U and f : U → R is differentiable on U , then f ◦r is differentiable
at t and

(f ◦ r)′(t) = ∇f(r(t)) · r′(t).

Proof. Since r is continuous at t, r(t) ∈ U , and U is open, there exists a sufficiently small
γ > 0 such that r(t+ h) ∈ U for all |h| < γ. Hence t is an interior point of Dom(f ◦ r) so it is
legitimate to investigate the differentiability of f ◦ r at t.

Define xh = r(t + h), c = r(t), ∆xi = xi(t + h) − xi(t) for 1 ≤ i ≤ n, and xh − c =
⟨∆x1, . . . ,∆xn⟩. Also let

R(c,xh) = f(xh)− f(c)−∇f(c) · (xh − c).

Now,

(f ◦ r)′(t) = lim
h→0

(f ◦ r)(t+ h)− (f ◦ r)(t)
h

= lim
h→0

f(r(t+ h))− f(r(t))

h

= lim
h→0

f(xh)− f(c)

h
= lim

h→0

∇f(c) · (xh − c) +R(c,xh)

h
,

whence

(f ◦ r)′(t) = lim
h→0

ï
fx1(c)

∆x1
h

+ · · ·+ fxn(c)
∆xn
h

+
R(c,xh)

h

ò
. (14.18)

The differentiability of r at t implies

lim
h→0

∆xi
h

= x′i(t) ∈ R

for each i, so that

lim
h→0

∣∣∣∣xh − c

h

∣∣∣∣ =»[x′1(t)]
2 + · · ·+ [x′n(t)]

2 =M (14.19)

for some real number M ≥ 0. Also the differentiability of f on U implies fxi(c) ∈ R, and we
can define a function ρ : U → R by

ρ(x) =

®
R(c,x)/∥x− c∥, if x ̸= c

0, if x = c

Indeed ρ is continuous at c since

lim
x→c

ρ(x) = lim
x→c

R(c,x)

∥x− c∥
= lim

x→c

f(x)− f(c)−∇f(c) · (x− c)

∥x− c∥
= 0 = ρ(c),

and so, since c is in the interior of Dom(ρ) and

lim
h→0

xh = lim
h→0

r(t+ h) = r(t) = c,
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by Proposition 14.22

lim
h→0

ρ(xh) = lim
h→0

ρ(r(t+ h)) = ρ(c) = 0. (14.20)

We now show that limh→0R(c,xh)/h = 0. Let ϵ > 0. By (14.19) there is some δ1 > 0 such
that 0 < |h| < δ1 implies ∣∣∣∣xh − c

h
−M

∣∣∣∣ < 1,

and so ∥xh − c∥/|h| < M + 1. By (14.20) there is some δ2 > 0 such that 0 < |h| < δ2 implies
|ρ(xh)| < ϵ/(M + 1). Choose δ = min{δ1, δ2, γ}, and suppose that 0 < |h| < δ.

If ∥xh − c∥ = 0, then xh = c so that∣∣∣∣R(c,xh)h

∣∣∣∣ = ∣∣∣∣R(c, c)h

∣∣∣∣ = 0 < ϵ.

If ∥xh − c∥ ≠ 0, then xh ̸= c so that∣∣∣∣R(c,xh)h

∣∣∣∣ = |R(c,xh)|
∥xh − c∥

· ∥xh − c∥
|h|

= |ρ(xh)| ·
∥∥∥∥xh − c

h

∥∥∥∥ < ϵ

M + 1
· (M + 1) = ϵ.

Therefore limh→0R(c,xh)/h = 0.
Finally, from (14.18) we obtain

(f ◦ r)′(t) = fx1(c) lim
h→0

∆x1
h

+ · · ·+ fxn(c) lim
h→0

∆xn
h

+ lim
h→0

R(c,xh)

h

= fx1(c)x
′
1(t) + · · ·+ fxn(c)x

′
n(t) = ∇f(r(t)) · r′(t)

which completes the proof. ■

It can be seen that Chain Rule 1 is similar in form to the chain rule from single-variable
calculus, in which F (t) = f(r(t)) has derivative F ′(t) = f ′(r(t))r′(t). Indeed this similarity
lends further credence to the idea that ∇f is the “total derivative” of f .

In R2 we may have functions r(t) = ⟨x(t), y(t)⟩ and f(x, y), so that

(f ◦ r)(t) = f(r(t)) = f(x(t), y(t))

and by Chain Rule 1

(f ◦ r)′(t) = fx(r(t))x
′(t) + fy(r(t))y

′(t) = fx(x(t), y(t))x
′(t) + fy(x(t), y(t))y

′(t).

In R3, given functions r(t) = ⟨x(t), y(t), z(t)⟩ and f(x, y, z) so that (f ◦r)(t) = f(x(t), y(t), z(t)),
we obtain

(f ◦ r)′(t) = fx(x(t), y(t), z(t))x
′(t) + fy(x(t), y(t), z(t))y

′(t) + fz(x(t), y(t), z(t))z
′(t).

Example 14.39. Let

f(x, y, z) = ln(x2 + y2 + z2) and r(t) = ⟨t, t2, t3⟩.

If F = f ◦ r, find F ′.
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Solution. Here
F (t) = (f ◦ r)(t) = f(x(t), y(t), z(t)),

where x(t) = t, y(t) = t2 and z(t) = t3. Chain Rule 1 immediately gives

F ′(t) = (f ◦ r)′(t)

= fx(x(t), y(t), z(t))x
′(t) + fy(x(t), y(t), z(t))y

′(t) + fz(x(t), y(t), z(t))z
′(t)

=
2x(t)

x2(t) + y2(t) + z2(t)
· 1 + 2y(t)

x2(t) + y2(t) + z2(t)
· 2t+ 2z(t)

x2(t) + y2(t) + z2(t)
· 3t2

=
2t

t2 + t4 + t9
+

4t3

t2 + t4 + t9
+

6t5

t2 + t4 + t9
=

6t5 + 4t3 + 2t

t2 + t4 + t9
,

which can be interpreted as being the rate of change of f with respect to t along the curve
generated by r. ■

Example 14.40. The radius r of a right circular cone is increasing at a rate of 1.8 cm/s while
its height h is decreasing at a rate of 2.5 cm/s. At what rate is the volume V of the cone
changing at the time when the radius is 120 cm and the height is 140 cm?

Solution. All rates of change are understood to be with respect to time here. V is a function
of r and h, while r and h themselves are each functions of time t. In notation similar to that in
Theorem 14.38 we write V (t) = f(r, h), with r = r(t) and h = h(t). Now, from geometry the
volume of a right circular cone with radius r and height h is given as πr2h/3, which takes the
place of f(r, h) to yield

V (t) =
πr2h

3
.

By Chain Rule 1 the rate of change of V at time t is

V ′(t) = fr(r, h)r
′(t) + fh(r, h)h

′(t) =
2πrh

3
r′(t) +

πr2

3
h′(t),

where we’re given that r′(t) = 1.8 cm/s and h′(t) = −2.5 cm/s. Letting t0 represent the time
when r = 120 cm and h = 140 cm (note it’s not our job to determine t0), we obtain

V ′(t0) =
2π(120 cm)(140 cm)

3
(1.8 cm/s) +

π(120 cm)2

3
(−2.5 cm/s) = 8160π cm3/s,

or approximately 25,635.4 cm3/s. ■

Theorem 14.41 (Chain Rule 2). Let F (s, t) = f(x, y), where x = x(s, t) and y = y(s, t) are
functions that are differentiable at q = (s0, t0) ∈ R2, and f is differentiable at p = (x(q), y(q)).
Then F is differentiable at q, where

Fs(q) = fx(p)xs(q) + fy(p)ys(q) and Ft(q) = fx(p)xt(q) + fy(p)yt(q).

Since partial derivatives only allow for one variable to be in play, the proof of Chain Rule 2
can be done in the same manner as Chain Rule 1’s proof, or Chain Rule 1 could be used to
prove Chain Rule 2.
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Example 14.42. Find zs and zt, where

z = xy − 2x+ 3y

with x = sin s and y = tan t.

Solution. Here
z(s, t) = f(x, y) = xy − 2x+ 3y

with
x = x(s, t) = sin s and y = y(s, t) = tan t.

By Chain Rule 2,

zs(s, t) = fx(x, y)xs(s, t) + fy(x, y)ys(s, t)

= (y − 2) cos s+ (x+ 3)(0) = (tan t− 2) cos s,

and

zt(s, t) = fx(x, y)xt(s, t) + fy(x, y)yt(s, t)

= (y − 2)(0) + (x+ 3) sec2 t = (sin s+ 3) sec2 t,

expressing each partial derivative in terms of s and t. ■

An exceedingly important result in mathematical analysis is the Implicit Function Theorem,
which will be furnished here, without proof, for the specific case when f is a real-valued function
of two variables

Theorem 14.43 (Implicit Function Theorem). Suppose f has continuous first partials on
open set U ⊆ R2, and f(a, b) = 0 for (a, b) ∈ U .

1. If fy(a, b) ̸= 0, then there exists an open interval I ⊆ R and a continuously differentiable
function h : I → R such that a ∈ I, h(a) = b, and f(x, h(x)) = 0 for all x ∈ I.

2. If fx(a, b) ̸= 0, then there exists an open interval J ⊆ R and a continuously differentiable
function g : J → R such that b ∈ J , g(b) = a, and f(g(y), y) = 0 for all y ∈ J .

In Part (1) it’s understood that I is sufficiently small so that (x, h(x)) ∈ U for all x ∈ I,
and similarly in Part (2) J is such that (g(y), y) ∈ U for all y ∈ J . The theorem is so named
because it provides a means to determine when an equation of the form f(x, y) = 0 implicitly
defines either y as a function of x or x as a function of y.

Example 14.44. Consider the relation R defined by the equation

x3 + y3 = 2xy.

On what interval for x can we expect R to implicitly define y as a function of x? To help clarify
matters let f be the function given by

f(x, y) = x3 + y3 − 2xy,

and note that R can now be expressed as f(x, y) = 0. Certainly f has continuous first partials
on R2, with fy(x, y) = 3y2 − 2x in particular. Now, since

f(1, 1) = 13 + 13 − 2(1)(1) = 0
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and
fy(1, 1) = 3(1)2 − 2(1) = 1 ̸= 0,

the Implicit Function Theorem implies there is an open interval I ⊆ R containing 1, and a
continuously differentiable function h : I → R, such that h(1) = 1 and f(x, h(x)) = 0 for all
x ∈ I. That is, setting y = h(x) will satisfy the equation f(x, y) = 0 for all x ∈ I, and therefore
R implicitly defines y as a function x in a neighborhood of x = 1. ■

Proposition 14.45. Suppose f has continuous first partials on open set U ⊆ R2, and let
(a, b) ∈ U .

1. If fy(a, b) ̸= 0, then there exists open interval I containing a and continuously differentiable
function h : I → R such that, for all x ∈ I,

h′(x) = −fx(x, h(x))
fy(x, h(x))

.

2. If fx(a, b) ̸= 0, then there exists open interval J containing b and continuously differentiable
function g : J → R such that, for all y ∈ J ,

g′(y) = −fy(g(y), y)
fx(g(y), y)

.

Proof. We prove Part (1) only, the proof of Part (2) being similar. Suppose fy(a, b) ̸= 0.
Letting c = f(a, b) = c, the function φ = f − c is such that φ(a, b) = f(a, b) − c = 0.
Moreover φ has continuous first partials on U since it differs from f by a mere constant, and
φy(a, b) = fy(a, b) ̸= 0. By the Implicit Function Theorem there is an open interval I ⊆ R and
a continuously differentiable function h : I → R such that a ∈ I, h(a) = b, and

φ(x, h(x)) = f(x, h(x))− c = 0

for all x ∈ I. Hence f(x, h(x)) = c for all x ∈ I.
Now, let g : I → R be given by g(x) = x, and define F : I → R by

F (x) = f(x, y) = f(g(x), h(x)),

for all x ∈ I. Since g and h are differentiable on I and f is differentiable at (x, h(x)) ∈ U for
every x ∈ I, Chain Rule 1 gives

F ′(x) = fx(x, y)g
′(x) + fy(x, y)h

′(x) = fx(x, y) + fy(x, y)h
′(x)

for all x ∈ I. On the other hand we also have

F (x) = f(x, h(x)) = c

for all x ∈ I, so that F ′(x) = 0. Therefore

fx(x, y) + fy(x, y)h
′(x) = 0 (14.21)

for x ∈ I.
Since

fy(a, h(a)) = fy(a, b) ̸= 0,
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fy is continuous at (a, b), and h is continuous at a, we can assume that I is sufficiently small so
that

fy(x, y) = fy(x, h(x)) ̸= 0

for all x ∈ I. Therefore (14.21) implies that

h′(x) = −fx(x, y)
fy(x, y)

for all x ∈ I, whereupon substitution of h(x) for y gives the desired result. ■

The conclusion of Proposition 14.45(1) is often abbreviated as

y′ = −fx
fy

or
dy

dx
= −∂f/∂x

∂f/∂y
,

where the fact that y = h(x) for x ∈ I allows for denoting h′(x) by y′ or dy/dx.

Example 14.46. Find the slope of the curve C given by

y5 + 3x2y2 = 12− 5x4

at the point (0, 121/5). Also express y′ as a function of x and y.

Solution. Let
f(x, y) = y5 + 3x2y2 + 5x4 − 12,

so f(0, 121/5) = 0. We have

fx(x, y) = 6xy2 + 20x3 and fy(x, y) = 5y4 + 6x2y,

and in particular fy(0, 12
1/5) ̸= 0. By Proposition 14.45(1) there is an open interval I containing

0 and a continuously differentiable function h : I → R such that, for all x ∈ I,

h′(x) = −fx(x, h(x))
fy(x, h(x))

. (14.22)

According to the Implicit Function Theorem f(x, h(x)) = 0 on I, so the graph of y = h(x) for
x ∈ I will be a small piece of the graph of the curve C given by f(x, y) = 0. Since 0 ∈ I and
h(0) = 121/5, this small piece contains the point (0, 121/5). It follows that the slope of y = h(x)
at x = 0, which is of course h′(0), will equal the slope of C at (0, 121/5). We have

h′(0) = −fx(0, h(0))
fy(0, h(0))

= −fx(0, 12
1/5)

fy(0, 121/5)
= − 0

5(124/5)
= 0;

that is, the slope of C at (0, 121/5) is 0.
Finally, since y = h(x) and y′ = h′(x) for x ∈ I, we obtain

y′ = −fx(x, y)
fy(x, y)

= −6xy2 + 20x3

5y4 + 6x2y

from (14.22). ■
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14.5 – Directional Derivatives

The partial derivatives of a real-valued multivariable function f : D ⊆ R2 → R at a point
(a, b) ∈ D give information about the rate of change of the value of f(x, y) as one variable is
held fixed and the other is allowed to vary. Thus, we are considering the variation of f(x, b) as
x varies about a and y is fixed at b, or the variation of f(a, y) as y varies about b and x is fixed
at a. These are movements that run parallel to either the x-axis or the y-axis. What of the
variation of f(x, y) that occurs by varying (x, y) about (a, b) along some straight line that runs
parallel to, say, y = x or y = −2x? For that there is the directional derivative.

Definition 14.47. Let u = ⟨u1, . . . , un⟩ be a unit vector, and x ∈ Rn an interior point of
Dom(f). The directional derivative of f in the direction u at x is

∂uf(x) = lim
h→0

f(x+ hu)− f(x)

h
, (14.23)

provided the limit exists.

Using Definition 14.5 the limit (14.23) is found to be equivalent to the following statement:
For every ϵ > 0 there exists some δ > 0 such that, if 0 < |h| < δ and x+ hu ∈ Dom(f), then∣∣∣∣f(x+ hu)− f(x)

h
− ∂uf(x)

∣∣∣∣ < ϵ.

In R2 we write u = ⟨u1, u2⟩ and let x be (x, y), so that

∂uf(x, y) = lim
h→0

f(x+ hu1, y + hu2)− f(x, y)

h
(14.24)

If u = i = ⟨1, 0⟩, then (14.24) becomes

∂if(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
= fx(x, y) = ∂xf(x, y),

and similarly

∂jf(x, y) = fy(x, y) = ∂yf(x, y).

Thus it’s seen that the partial derivatives of a function are just special instances of a directional
derivative.

The most convenient way to compute a directional derivative in practice is to use the formula
provided by the following theorem.

Theorem 14.48. If f is differentiable at x ∈ Rn and u is a unit vector, then

∂uf(x) = ∇f(x) · u.

Proof. Suppose f is differentiable at x and u = ⟨u1, . . . , un⟩ with ∥u∥ = 1. By Definition 14.28,

lim
h→0

f(x+ h)− f(x)−∇f(x) · h
∥h∥

= 0,

and so if we substitute hu for h and observe that hu → 0 if and only if h→ 0, then we obtain

lim
h→0

f(x+ hu)− f(x)−∇f(x) · (hu)
|h|

= 0,
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where ∥hu∥ = |h|∥u∥ = |h|. From this we can conclude that

lim
h→0

f(x+ hu)− f(x)−∇f(x) · (hu)
h

= 0. (14.25)

Also we have

lim
h→0

∇f(x) · (hu)
h

= lim
h→0

h∇f(x) · u
h

= lim
h→0

[∇f(x) · u] = ∇f(x) · u. (14.26)

Adding the limits (14.25) and (14.26) using the appropriate limit law gives

0 +∇f(x) · u = lim
h→0

f(x+ tu)− f(x)−∇f(x) · (hu)
h

+ lim
h→0

∇f(x) · (hu)
h

= lim
h→0

ï
f(x+ tu)− f(x)−∇f(x) · (hu)

h
+

∇f(x) · (hu)
h

ò
= lim

h→0

f(x+ hu)− f(x)

h
= ∂uf(x),

and therefore ∂uf(x) = ∇f(x) · u. ■

Thus if f : D ⊆ R2 → R is differentiable at (a, b) ∈ U and u = ⟨u1, u2⟩, then

∂uf(a, b) = ∇f(a, b) · u

= ⟨fx(a, b), fy(a, b)⟩ · ⟨u1, u2⟩

= fx(a, b)u1 + fy(a, b)u2.

This particular formulation will be used in the next example.

Example 14.49. Compute the directional derivative for the function

f(x, y) =
x

x− y

at the point (4, 1) in the direction of ⟨−1, 2⟩.

Solution. The direction vector u must be a unit vector, and so

u =
⟨−1, 2⟩

∥⟨−1, 2⟩∥
=

⟨−1, 2⟩√
5

=

≠
− 1√

5
,
2√
5

∑
.

Now we obtain expressions for fx(x, y) and fy(x, y):

fx(x, y) =
(x− y) · ∂x(x)− x · ∂x(x− y)

(x− y)2
=

(x− y)(1)− x(1− 0)

(x− y)2
= − y

(x− y)2

and

fy(x, y) =
(x− y) · ∂y(x)− x · ∂y(x− y)

(x− y)2
=

(x− y)(0)− x(0− 1)

(x− y)2
=

x

(x− y)2
.

We now reckon thusly:

∂uf(4, 1) = fx(4, 1)

Å
− 1√

5

ã
+ fy(4, 1)

Å
2√
5

ã
=

Å
−1

9

ãÅ
− 1√

5

ã
+

Å
4

9

ãÅ
2√
5

ã
=

1√
5
.

No cities on the Moon yet, but we’re getting there. ■
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Proposition 14.50. Let f be differentiable at point x ∈ Rn.

1. If ∇f(x) ̸= 0, then ∂uf(x) is maximal for

u = ∇f(x)/∥∇f(x)∥,

and the maximum value is ∥∇f(x)∥.
2. If ∇f(x) ̸= 0, then ∂uf(x) is minimal for

u = −∇f(x)/∥∇f(x)∥,

and the minimum value is −∥∇f(x)∥.
3. If u ⊥ ∇f(x), then ∂uf(x) = 0.

Proof. For the proof of (1), suppose that ∇f(x) ̸= 0. By Theorems 14.48 and 12.7 we have

∂uf(x) = ∇f(x) · u = ∥∇f(x)∥∥u∥ cos(θ) = ∥∇f(x)∥ cos(θ),

where θ ∈ [0, π] is the angle between the vectors u and ∇f(x). Thus ∂uf(x) is maximal when
θ = 0, and the maximum value is ∥∇f(x)∥. Now, the fact that θ = 0 implies u has the same
direction as ∇f(x), meaning u = k∇f(x) for some k > 0. From ∥k∇f(x)∥ = ∥u∥ = 1 we obtain
k = 1/∥∇f(x)∥, and therefore ∂uf(x) is maximized when u = ∇f(x)/∥∇f(x)∥ as claimed. This
is easily verified:

∂uf(x) = ∇f(x) · u = ∇f(x) · ∇f(x)
∥∇f(x)∥

=
1

∥∇f(x)∥
[∇f(x) · ∇f(x)] = ∥∇f(x)∥

(recall the general property v · v = ∥v∥2). This proves (1).
For the proof of (2), observe that from ∂uf(x) = ∥∇f(x)∥ cos(θ) it follows that ∂uf(x) is

minimal when θ = π, which implies that u points in the opposite direction as ∇f(x). The rest
of the argument is similar to the proof of (1).

For the proof of (3), suppose that u ⊥ ∇f(x). By definition this means ∇f(x) · u = 0, which
immediately implies that ∂uf(x) = 0. ■

Example 14.51. Let C be the path of steepest descent on the surface S given by f(x, y) =
y + x−1, starting at the point (1, 2, 3) ∈ S. Find an equation for the path C0 that is the
projection of C onto the xy-plane.

Solution. By Proposition 14.50(2), at any point (x, y, f(x, y)) ∈ S, the direction of steepest
descent is −∇f(x, y) = ⟨1/x2,−1⟩, which is a vector in the xy-plane. So if C0 is given by
r(t) = ⟨x(t), y(t)⟩ for t ≥ 0, then for any t the tangent vector to C0 at the point (x(t), y(t)),
which is r′(t), must be in the direction of ⟨1/x2(t),−1⟩. Therefore we set

r′(t) = ⟨x′(t), y′(t)⟩ =
≠

1

x2(t)
,−1

∑
,

from which we obtain the differential equations x′ = x−2 and y′ = −1. The first equation can be
solved by the Method of Separation of Variables,11 which for our present purposes will simply

11Fully explained in §2.2 of my Differential Equations manuscript.
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be characterized thusly:

dx

dt
=

1

x2
⇒ x2dx = dt ⇒

�
x2dx =

�
dt ⇒ 1

3
x3 = t+K1,

or x(t) = 3
√
3t+K1 for arbitrary constant K1. The equation y

′ = −1 easily gives y(t) = −t+K2

for arbitrary K2.
Since C is given to start at (1, 2, 3), we must have C0 start at (1, 2); that is,

r(0) = ⟨x(0), y(0)⟩ = ⟨1, 2⟩.

From 3
√
3(0) +K1 = x(0) = 1 we obtain K1 = 1, and from −0 + K2 = y(0) = 2 we obtain

K2 = 2. Therefore an equation for C0 is

r(t) =
¨

3
√
3t+ 1, 2− t

∂
, t ≥ 0.

Incidentally, this implies that

ρ(t) =
¨
(3t+ 1)1/3, 2− t, 2− t+ (3t+ 1)−1/3

∂
for t ≥ 0 is an equation for C itself. ■

For what follows, recall that a vector v is said to be orthogonal to a curve C at a point
x ∈ C where C is smooth if v is orthogonal to the tangent line to C at x.

Proposition 14.52. Suppose f has continuous first partials on an open set U ⊆ R2. If
(x0, y0) ∈ U , ∇f(x0, y0) ̸= 0, and C is the level curve of f at (x0, y0), then the following hold.

1. C is smooth at (x0, y0).
2. ∇f(x0, y0) is orthogonal to C at (x0, y0).

Proof.
Proof of Part (1). Suppose that ∇f(x0, y0) ̸= 0 for some (x0, y0) ∈ U , so either fx(x0, y0) ̸= 0
or fy(x0, y0) ̸= 0. Suppose that fy(x0, y0) ̸= 0. By Proposition 14.45(1) there exists an open
interval I ⊆ R containing x0 and continuously differentiable function h : I → R such that, for
all x ∈ I,

h′(x) = −fx(x, h(x))
fy(x, h(x))

. (14.27)

Let c = f(x0, y0), so the curve C that is the level curve of f at (x0, y0) is given by f(x, y) = c.
As shown in the proof of Proposition 14.45(1), the function h is such that h(x0) = y0 and
f(x, h(x)) = c for all x ∈ I, which is to say that C is given by y = h(x) for all x ∈ I. Thus C
admits the local parametrization

r(x) = ⟨x, h(x)⟩, x ∈ I,

where x0 ∈ I and r(x0) = ⟨x0, y0⟩. Since x and h(x) are differentiable on I, and

h′(x) = ⟨1, h′(x)⟩ ≠ 0

for all x ∈ I, we see that r(x) is a smooth parametrization of at least a part of C containing
(x0, y0). Therefore C is smooth at (x0, y0).
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Proof of Part (2). Next, by (14.27) the slope of the tangent line ℓ to C at the point (x0, y0) is

h′(x0) = −fx(x0, h(x0))
fy(x0, h(x0))

= −fx(x0, y0)
fy(x0, y0)

.

A vector parallel to ℓ is ⟨−fy(x0, y0), fx(x0, y0)⟩. Now,

∇f(x0, y0) · ⟨−fy(x0, y0), fx(x0, y0)⟩ = ⟨fx(x0, y0), fy(x0, y0)⟩ · ⟨−fy(x0, y0), fx(x0, y0)⟩

= −fx(x0, y0)fy(x0, y0) + fy(x0, y0)fx(x0, y0) = 0

shows that ∇f(x0, y0) is orthogonal to ℓ. Therefore ∇f(x0, y0) is orthogonal to C at (x0, y0).
A similar proof using Proposition 14.45(2) comes to the same conclusion if we assume that

fx(x0, y0) ̸= 0. ■

The proof turns up a result that is important in its own right: If f has continuous first
partials on open set U ⊆ R2, (x0, y0) ∈ U , f(x0, y0) = c, and fy(x0, y0) ̸= 0, then the slope of
the level curve given by f(x, y) = c at (x0, y0) is

−fx(x0, y0)
fy(x0, y0)

.

From this the following obtains.

Corollary 14.53. If f has continuous first partials on some open set in R2 containing the level
curve C given by f(x, y) = c, then the slope of C is −fx(x, y)/fy(x, y) for all (x, y) ∈ C for
which fy(x, y) ̸= 0.
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14.6 – Tangent Spaces and Differentials

Given a function F for which Dom(F ) ⊆ R3, the set of points (x, y, z) that satisfy the
equation F (x, y, z) = 0 will quite typically form a surface S in space. It is often the case that,
very near a point x0 ∈ S, the surface can be fairly well approximated by a plane. For instance,
although the Earth is essentially a sphere, to the skipper of a ship in the middle of the ocean it
appears to be essentially a plane (see Figure 63). The plane that “best” approximates a surface
S at a point x0 is called the tangent plane to S at x0.

To be more precise, suppose that S is a surface in Rn given by F (x) = 0, and x0 is a point
on S. If F is differentiable at x0 then we have

lim
x→x0

F (x)− F (x0)−∇F (x0) · (x− x0)

∥x− x0∥
= 0,

and since x0 ∈ S if and only if F (x0) = 0, we next obtain

lim
x→x0

F (x)−∇F (x0) · (x− x0)

∥x− x0∥
= 0,

which implies that

lim
x→x0

|F (x)−∇F (x0) · (x− x0)| = 0. (14.28)

That is, the function x 7→ ∇F (x0) ·(x−x0) approximates the function x 7→ F (x) with decreasing
error the closer x gets to x0. This in turn means, in particular, that the surface F (x) = 0 is
better approximated by ∇F (x0) · (x− x0) = 0 the closer x gets to x0. Now, in the R3 setting,
if it happens that ∇F (x0) ̸= 0, then the equation ∇F (x0) · (x− x0) = 0 is the equation of a
conventional plane known as a “tangent plane” (see Definition 13.31). In the general Rn setting
the term “tangent space” is used.

Definition 14.54. Let S be a surface in Rn given by F (x) = 0, and suppose x0 ∈ S. If F is
differentiable at x0 with ∇F (x0) ̸= 0, then the tangent space to S at x0 is the surface Tx0

given by

∇F (x0) · (x− x0) = 0, (14.29)

We say S is smooth at x0 ∈ S if there exists a tangent space to S at x0.

Figure 63. Stereoscopic image of a tangent plane to a surface in R3.
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In R2 a tangent space may be called a tangent line (the very same kind of tangent line of
Chapter 3 acquaintance), and as said before, in R3 a tangent space may be called a tangent
plane. Any surface in Rn given by

n · (x− c) = 0

for some constant n, c ∈ Rn with normal vector n ̸= 0 is known as a hyperplane, and so any
tangent space in Rn is in fact a hyperplane.

A vector v is said to be orthogonal (resp. parallel) to a hyperplane n · (x− c) = 0 if v
is parallel (resp. orthogonal) to n. Moreover, a vector v is orthogonal (resp. parallel) to a
surface S at x0 ∈ S if v is orthogonal (resp. parallel) to the tangent space to S at x0, provided
S is smooth at x0. Since such a tangent space is a hyperplane with normal vector ∇F (x0), it
follows that v is orthogonal to S at x0 if v is parallel to ∇F (x0), and v is parallel to S at x0 if
v is orthogonal to ∇F (x0). It can be instructive to compare these definitions with the findings
of Proposition 14.52.

Let S be a surface in R3 given by F (x, y, z) = 0 that is smooth at (x0, y0, z0). Then from
(14.29) the tangent plane to S at (x0, y0, z0) has equation〈

Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)
〉
· ⟨x− x0, y − y0, z − z0⟩ = 0,

or equivalently

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0. (14.30)

Define the function L : R3 → R by

L(x, y, z) = Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0). (14.31)

By equation (14.28) and the discussion following it, we find that

L(x, y, z) ≈ F (x, y, z)

for (x, y, z) sufficiently near (x0, y0, z0). More precisely, for any ϵ > 0 there is some δ > 0 such
that »

(x− x0)2 + (y − y0)2 + (z − z0)2 < δ ⇒ |L(x, y, z)− F (x, y, z)| < ϵ

for all (x, y, z) ∈ Dom(F ). The function L given by (14.31) is called the linearization of F at
(x0, y0, z0).

The case when a surface S in R3 is given by z = f(x, y) warrants special attention. First,
we can write the equation for S as z − f(x, y) = 0, and thus characterize S as being given by
F (x, y, z) = 0 for

F (x, y, z) = z − f(x, y).

Then

Fx(x0, y0, z0) = −fx(x0, y0), Fy(x0, y0, z0) = −fy(x0, y0), Fz(x0, y0, z0) = 1,

which immediately makes clear that∇F (x0, y0, z0) ̸= 0, and so we only need F to be differentiable
at (x0, y0, z0) in order for S to be smooth there. It is a fact that F will be differentiable at
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(x0, y0, z0) if and only if f is differentiable at (x0, y0).
12 Now, observing that

(x0, y0, z0) ∈ S ⇔ F (x0, y0, z0) = 0 ⇔ z0 = f(x0, y0),

we apply (14.30) to obtain the tangent plane to S at (x0, y0, f(x0, y0)):

z = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0). (14.32)

This is quite similar in form to the equation of a tangent line to a curve give by y = f(x) at the
point (x0, f(x0)), which is

y = f ′(x0)(x− x0) + f(x0)

provided f ′(x0) exists.
Recalling (14.31), the estimate L(x, y, z) ≈ F (x, y, z) for (x, y, z) near (x0, y0, z0) is equivalent

to
− fx(x0, y0)(x− x0)− fy(x0, y0)(y − y0) + z − f(x0, y0) ≈ z − f(x, y),

and hence
f(x, y) ≈ fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0) (14.33)

for (x, y) near (x0, y0). If we denote the right-hand side of (14.33) by L(x, y), then f(x, y) ≈
L(x, y) for (x, y) near (x0, y0). We make the following definition.

Definition 14.55. If z = f(x, y) is differentiable at (x0, y0), then the linearization of f at
(x0, y0) is

L(x, y) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0), (14.34)

The next example illustrates how a tangent plane can be used as an approximation to a
surface in space. In general the error of the approximation increases the further from the point
of tangency one wanders.

12This would be a worthy exercise for the reader.
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Example 14.56. Consider the surface S given by

f(x, y) = 12− 4x2 − 8y2.

(a) Find the tangent plane to S at (−1, 4,−120).
(b) Find the linearization of f at (−1, 4).
(c) Use the linearization L to approximate f(−1.05, 3.95).

Solution.
(a) We can use equation (14.32) with a = −1 and b = 4. From fx(x, y) = −8x we get
fx(−1, 4) = 8, and from fy(x, y) = −16y we get fy(−1, 4) = −64; then, since f(−1, 4) = −120,
the equation of the tangent plane is

z = 8(x+ 1)− 64(y − 4)− 120,

or simply z = 8x− 64y + 144.

(b) Comparing equation (14.32) with equation (14.34), we can see that the work needed to find
the linearization has already been done in part (a). We have

L(x, y) = 8x− 64y + 144.

(c) The function L(x, y) = 8x− 64y + 144 is a linear approximation of f for points (x, y) near
(−1, 4). So, in particular we have

f(−1.05, 3.95) ≈ L(−1.05, 3.95) = 8(−1.05)− 64(3.95) + 144 = −117.20,

which is quite close to the actual value f(−1.05, 3.95) = −117.23. See Figure 64 for an illustration
of the surface S and the tangent plane to S at (−1, 4,−120). ■

If a surface S in R3 is given by F (x, y, z) = 0, then a tangent plane to S at the point
x0 = (x0, y0, z0) is said to be horizontal if it has an equation of the form z = d for some
constant d. In general this is the case if and only if the normal vector n for the plane is ⟨0, 0, c⟩
for some c ̸= 0, and since n may be taken to be ∇F (x0) in the present context, we see that a
tangent plane to S at x0 is horizontal if and only if ∇F (x0) = ⟨0, 0, c⟩ for some c ̸= 0.

Example 14.57. We look for points on the surface S given by

x2 + y2 − z2 − 2x+ 2y + 3 = 0

where the tangent plane is horizontal. These will be points (x, y, z) ∈ S such that ∇F (x, y, z) =
⟨0, 0, c⟩ for some c ̸= 0. Here

F (x, y, z) = x2 + y2 − z2 − 2x+ 2y + 3,

so Fx(x, y, z) = 2x− 2, Fy(x, y, z) = 2y + 2, and Fz(x, y, z) = −2z, and hence

∇F (x, y, z) = ⟨2x− 2, 2y + 2,−2z⟩.
Now,

∇F (x, y, z) = ⟨0, 0, c⟩ ⇒ ⟨2x− 2, 2y + 2,−2z⟩ = ⟨0, 0, c⟩,
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which requires x = 1, y = −1, and z = −c/2. On the other hand (1,−1, z) ∈ S requires

12 + (−1)2 − z2 − 2(1) + 2(−1) + 3 = 0,

giving z = ±1. Since z = 1 and z = −1 both result in c ≠ 0 in z = −c/2, we find that there are
precisely two points where S has a horizontal plane: (1,−1, 1) and (1,−1,−1). ■

Again consider a surface S given by z = f(x, y), smooth at some point (x0, y0, f(x0, y0)).
(As we found earlier, z = f(x, y) is smooth at (x0, y0, f(x0, y0)) if and only if f is differentiable
at (x0, y0).) Suppose (x, y) ∈ Dom(f). Letting ∆x = x− x0 and ∆y = y − y0, so that

(x, y) = (x0 +∆x, y0 +∆y),

we define ∆f to be the change in the value of f in going from (x0, y0) to (x0 +∆x, y0 +∆y);
that is, we define

∆f = f(x0 +∆x, y0 +∆y)− f(x0, y0).

Since z = f(x, y), a change in f corresponds to an identical change in z, and so we also define
∆z = ∆f .

Next, define the total differential (or simply the differential) of f at (x0, y0), denoted by
df , to be the change in the value of the linearization L of f at (x0, y0) in going from (x0, y0) to
(x0 +∆x, y0 +∆y):

df = L(x0 +∆x, y0 +∆y)− L(x0, y0).

Note that in our notation ∆x and ∆y denote a change in the value of x and y, respectively,
just as ∆z signifies change in z. However, in the current setting x and y are the independent
variables, so we quite reasonably define the differential of x at x0 to be dx = ∆x, and the
differential of y at y0 to be dy = ∆y. Thus

df = L(x0 + dx, y0 + dx)− L(x0, y0).

Now, from (14.34) we have L(x0, y0) = f(x0, y0) and

L(x0 + dx, y0 + dx) = fx(x0, y0)dx+ fy(x0, y0)dy + f(x0, y0),

and therefore
df = fx(x0, y0)dx+ fy(x0, y0)dy. (14.35)

If x0 and y0 are fixed, then df is a function only of dx and dy. Alternatively we could write

df = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

and see df as a function of x and y, but (14.35) is nearer to the conventional notation in the
sciences since dx and dy are often thought of as very small quantities or “infinitesimals.” Such
infinitesimals are generic, which is to say they are not regarded as equalling any particular real
numbers, which is why the proper function notation df(dx, dy) is not used in (14.35).

If the point (x0, y0) is allowed to vary, then more care with the notation must be taken. After
all, the linearization L of f at one point is usually not the same as at another point. Letting
p = (x0, y0), we may let the symbol dfp denote the differential of f at p:

dfp = fx(p)dx+ fy(p)dy.
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Finally, if no point p is specified (or if a particular point is taken to be understood), then we
write simply

df = fxdx+ fydy or df =
∂f

∂x
dx+

∂f

∂y
dy, (14.36)

both being common notations.
We now extend the idea of linearizations and differentials of functions to a more general

setting.

Definition 14.58. If y = f(x) is a real-valued function that is differentiable at

x0 = ⟨x01, . . . , x0n⟩ ∈ Rn,

then the linearization of f at x0 is

L(x) = f(x0) +
n∑
i=1

fxi(x0)(xi − x0i), (14.37)

and the total differential (or simply the differential) of f at x0 is

dfx0 = L(x)− L(x0) =
n∑
i=1

fxi(x0)dxi, (14.38)

where dxi = xi − x0i for each 1 ≤ i ≤ n.

As we also saw in §4.6, differentials have properties that are formally the same as those of
derivatives. For instance, for functions f and g, the differential of the product fg is

d(fg)x0 =
n∑
i=1

(fg)xi(x0)dxi =
n∑
i=1

(fxig + fgxi)(x0)dxi

=
n∑
i=1

(
fxi(x0)g(x0) + f(x0)gxi(x0)

)
dxi

= g(x0)
n∑
i=1

fxi(x0)dxi + f(x0)
n∑
i=1

gxi(x0)dxi

= g(x0)dfx0 + f(x0)dgx0 ,

using the product rule for partial differentiation.
Strictly speaking dfx0 in Definition 14.58 is a function of the n independent variables

dx1, . . . , dxn, but again, in the sciences the dxi are taken to be generic infinitesimals: tiny
changes in the coordinates of x0 to arrive at another point x nearby. This means two things:
first, real numbers are not substituted for dx1, . . . , dxn, so the role of the dxi as “inputs” for
the function dfx0 is largely lost; and second, the fact that each dxi is technically a subtraction
operation involving the ith coordinate of x0 is of little relevance. So, while (14.38) defines a
proper mathematical function, the notation used more reflects its practical role as a tool for
physicists and other specialists.

If we define dx = ⟨dx1, . . . , dxn⟩, which is to say dx = x− x0, then equation (14.38) may be
written as

dfx0 = ∇f(x0) · dx.
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Stripping away from this any explicit mention of a linearization point x0 leads to the form

df = ∇f · dx,

which is serviceable if context makes clear what the linearization point is supposed to be, or
it’s desired that no particular linearization point be specified. Finally, it’s common practice to
write something like

df = ∇f(x) · dx, (14.39)

which certainly indicates that x is the linearization point, but in this case dx must be formu-
lated somewhat differently as a vector whose coordinates are the incremental changes in the
corresponding coordinates of x. Thus we may write, say,

dx = (x+∆x)− x = ∆x.

We have seen this kind of treatment before: in the single-variable setting of §4.6 in which
y = f(x), the resultant differential formula was given as

dy = f ′(x)dx,

which is formally the same as (14.39) in that x is the linearization point and dx = ∆x.
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14.7 – Multivariable Optimization

We start by assuming f to be a function of n independent variables for some n ≥ 2, although
the first definition is “backward-compatible” to functions of a single variable (see Chapter 4).

Definition 14.59. For a function f : D → R with domain D ⊆ Rn, let c ∈ D. If there exists an
open set U containing c such that f(x) ≤ f(c) for all x ∈ D∩U , then f has a local maximum
at c. If there exists an open set U containing c such that f(x) ≥ f(c) for all x ∈ D ∩U , then f
has a local minimum at c.

If f(x) ≤ f(c) for all x ∈ D, then f has a global maximum at c. If f(x) ≥ f(c) for all
x ∈ D, then f has a global minimum at c.

Proposition 14.60. If f has a local extremum at c and ∇f(c) exists, then ∇f(c) = 0.

The proof of this proposition will come later, but for now observe that by Definition 14.23,
in order for ∇f(c) to exist, it must be that c is an interior point of Dom(f) and all first-order
partial derivatives of f exist at c.

Definition 14.61. A point c in the interior of Dom(f) is a critical point of f if ∇f(c) = 0
or ∇f(c) does not exist.

Definition 14.62. A critical point c of f is a saddle point if, for every open set U containing
c, there are points x,y ∈ U such that f(x) > f(c) and f(y) < f(c).

Henceforth the focus in this section will be exclusively on functions of two independent
variables x and y. Thus all functions will have domains in R2, and any point x will be understood
to have coordinates (x, y), with c becoming (a, b) in particular. Then ∇f(a, b) = 0 if and only if
fx(a, b) = fy(a, b) = 0, and ∇f(a, b) does not exist if and only if either fx(a, b) or fy(a, b) does
not exist.

We come now to the pièce de résistance of this section, a theorem whose proof is to be
included later when time allows. First, given a function f : D ⊆ R2 → R, we define the
discriminant function Φ by

Φ(x, y) = fxx(x, y)fyy(x, y)− f 2
xy(x, y),

which figures prominently in the following.

Theorem 14.63 (Second Derivative Test). Suppose the second-order partial derivatives of f
are continuous on an open set U containing (a, b), and fx(a, b) = fy(a, b) = 0.

1. If Φ(a, b) > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b).
2. If Φ(a, b) > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b).
3. If Φ(a, b) < 0, then f has a saddle point at (a, b).

If Φ(a, b) = 0 the test is inconclusive, in which case one should try the Method of Lagrange
Multipliers in the next section.
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Example 14.64. Use the Second Derivative Test to find the local extrema and saddle points, if
any, of

f(x, y) = x2 − x4/2− y2 − xy.

Solution. First we obtain the first partials of f :

fx(x, y) = 2x− 2x3 − y and fy(x, y) = −2y − x.

We now search for critical points. Since the first partials exist on all of R2, we look for points
(x, y) where fx(x, y) = fy(x, y) = 0. This gives a system of equations®

2x− 2x3 − y = 0
− 2y − x= 0

Putting y = −x/2 from the second equation into the first yields 2x − 2x3 + x/2 = 0, which
solves to give x = 0,±

√
5/2. Thus we obtain three critical points:

p0 = (0, 0), p1 =
Ä√

5/2,−
√
5/4
ä
, and p2 =

Ä
−
√
5/2,

√
5/4
ä
.

We now obtain the second partials of f :

fxx(x, y) = 2− 6x2, fyy(x, y) = −2, and fxy(x, y) = −1.

From these we find that Φ(x, y) = 12x2 − 5. Calculating the values of the second partials and Φ
at p0, p1, and p2 gives:

fxx fyy fxy Φ

p0 2 −2 −1 −5

p1 −5.5 −2 −1 10

p2 −5.5 −2 −1 10

−2 −1 0 1 2 −2
0

2
−15

−10

−5

0

x y

z

Figure 65. The surface z = x2 − x4/2− y2 − xy.
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Since Φ(p0) < 0, we conclude that f has a saddle point at (0, 0). Since Φ(p1),Φ(p2) > 0

and fxx(p1), fxx(p2) < 0, we conclude that f has local maximums at
Ä√

5/2,−
√
5/4
ä
andÄ

−
√
5/2,

√
5/4
ä
. Drink in Figure 65 to see the lay of the land. ■

We turn now to the problem of finding the global extrema of a continuous function
f : D ⊆ R2 → R when D is a closed, bounded set. The procedure is as follows:

• Find all critical points for f that lie in D.
• Find the points where f |∂D (i.e. f restricted to the boundary of D) may have an
extremum.

• Evaluate f at all the points found above. The greatest value of f found is the global
maximum value of f on D, and the smallest value is the global minimum value.

The second step may require use of the Closed Interval Method of Chapter 4 fame if restriction
of f to some part of ∂D effectively reduces f to a function of a single variable.

Example 14.65. Find the global extrema of the function

f(x, y) = 3x2 + y2 − 3x− 2y + 4

restricted to the rectangle R = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 2}.

Solution. First we obtain all necessary partial derivatives of f : fx(x, y) = 6x− 3, fy(x, y) =
2y − 2, fxx(x, y) = 6, fyy(x, y) = 2, and fxy(x, y) = 0. Also we have Φ(x, y) = 12.

Now we find all points (x, y) for which fx(x, y) = fy(x, y) = 0, which entails finding points
that satisfy 6x− 3 = 0 and 2y − 2 = 0 simultaneously. This easily leads to the single critical
point (1/2, 1).

We now search for all the points on ∂D where f |∂D may have an extremum. We do this by
analyzing f on each side of the rectangle, one at a time.

−1 −0.5 0 0.5 1 −1
0

1
2

5

10

x
y

z

Figure 66. The surface z = 3x2 + y2 − 3x− 2y + 4.
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On the top side of the rectangle R we have y = 2. Restricted to this line segment, the
function f is given by

f(x, 2) = 3x2 + 22 − 3x− 2(2) + 4 = 3x2 − 3x+ 4 = 3
(
x− 1

2

)2
+ 13

4

for −1 ≤ x ≤ 1. The expression on the right should make it clear that f( · , 2) must have a
minimum at x = 1/2 and a maximum at x = −1 (use the Closed Interval Method here, if
necessary), which corresponds to points (1/2, 2) and (−1, 2).

Next, we consider f restricted to the bottom side of R, where y = −1. Here f is given by

f(x,−1) = 3x2 + (−1)2 − 3x− 2(−1) + 4 = 3x2 − 3x+ 7 = 3
(
x− 1

2

)2
+ 25

4

for −1 ≤ x ≤ 1. From the expression on the right it’s seen that f( · ,−1) has a minimum at
x = 1/2 and a maximum at x = −1, corresponding to points (1/2,−1) and (−1,−1).

On the left side of R where x = −1, f is given by

f(−1, y) = 3(−1)2 + y2 − 3(−1)− 2y + 4 = y2 − 2y + 10 = (y − 1)2 + 9

for −1 ≤ y ≤ 2. From this it’s seen that f(−1, · ) has a minimum at y = 1 and a maximum at
y = −1, corresponding to points (−1, 1) and (−1,−1).

On the right side of R where x = 1, f is given by

f(1, y) = 3(1)2 + y2 − 3(1)− 2y + 4 = y2 − 2y + 4 = (y − 1)2 + 3

for −1 ≤ y ≤ 2. We find that f(1, · ) has a minimum at y = 1 and a maximum at y = −1,
corresponding to points (1, 1) and (1,−1).

Finally we evaluate f at all the points found above. We have f(1/2, 1) = 2.25, f(1/2, 2) =
3.25, f(−1, 2) = 10, f(1/2,−1) = 6.25, f(−1,−1) = 13, f(−1, 1) = 9, f(1, 1) = 3, and
f(1,−1) = 7.

Therefore f has a global minimum on R at (1/2, 1) which equals 2.25, and a global maximum
on R at (−1,−1) which equals 13. Gaze wonderingly at Figure 66. ■
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14.8 – Lagrange Multipliers

For what follows, recall that a vector v is said to be orthogonal to a curve C ⊆ Rn at a point
a ∈ C where C is smooth if v is orthogonal to the tangent line to C at a. By definition the
tangent line to C at a is the line containing a that is parallel to the tangent vector to C at a
given by any smooth parametrization of C. Thus, if r(t) is such a smooth parametrization, and
r(t0) = a, then the set

{a+ tr′(a) : t ∈ R}
is the tangent line to C at a.

Proposition 14.66. Let C be a smooth curve in R2 such that C = {(x, y) : g(x, y) = 0} for
some function g, let U be an open set containing C, and let f : U → R be differentiable on U .
If f |C has a local extremum at (a, b) ∈ C, then the following hold.

1. ∇f(a, b) is orthogonal to C at (a, b).
2. If g has continuous first partials in a neighborhood of (a, b) and ∇g(a, b) ̸= 0, then there

exists some λ ∈ R such that ∇f(a, b) = λ∇g(a, b).

Proof.
Proof of Part (1). Let

r(t) = ⟨x(t), y(t)⟩, t ∈ I,

be a smooth parametrization for C, so there exists some t0 in the interval I such that r(t0) = (a, b).
With this parametrization the tangent vector to C at (a, b) is r′(t0), and so to show that ∇f(a, b)
is orthogonal to C at (a, b) it will suffice to show that

∇f(a, b) · r′(t0) = 0.

By hypothesis f |C has an extremum at (a, b), and since (a, b) = r(t0), it follows that
f |C ◦ r : I → R has an extremum at t0 ∈ I. Observing that r(I) = C, we have f ◦ r = f |C ◦ r,
and hence f ◦ r : I → R has an extremum at t0. Now, since r is differentiable at t0 and f is
differentiable at r(t0), by the Chain Rule (Theorem 14.38) we find that f ◦ r is differntiable at
t0, with

(f ◦ r)′(t0) = ∇f(r(t0)) · r′(t0).

On the other hand, since f ◦ r has a local extremum at t0 and (f ◦ r)′(t0) exists, Fermat’s
Theorem (Theorem 4.5) implies that (f ◦ r)′(t0) = 0. Hence

∇f(a, b) · r′(t0) = ∇f(r(t0)) · r′(t0) = (f ◦ r)′(t0) = 0,

as desired.

Proof of Part (2). Suppose g has continuous first partials in a neighborhood of (a, b) and
∇g(a, b) ̸= 0. Then by Proposition 14.52 ∇g(a, b) is orthogonal to the level curve of g at
(a, b), which is precisely the curve C, and so ∇g(a, b) is orthogonal to the tangent line to C at
(a, b). Since ∇f(a, b) is orthogonal to the same line by part (1), it follows that ∇f(a, b) and
∇g(a, b) are parallel vectors if ∇f(a, b) ̸= 0. Thus there exists some scalar λ ∈ R such that
∇f(a, b) = λ∇g(a, b), with λ = 0 if ∇f(a, b) = 0. ■
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The function f in Proposition 14.66 is the objective function, and the function g is the
constraint function. The proposition offers a means whereby local extrema of the objective
function may be found subject to the constraint g(x, y) = 0.

Theorem 14.67 (Method of Lagrange Multipliers in Two Variables). Let f be differen-
tiable and g have continuous first partials on a open set U ⊆ R2 containing a closed level curve
C given by g(x, y) = 0, and let ∇g(x, y) ̸= 0 for all (x, y) ∈ C. If

S = {(x, y) ∈ C : ∇f(x, y) = λ∇g(x, y) for some λ ∈ R},
then

max
(x,y)∈C

f(x, y) = max
(x,y)∈S

f(x, y) and min
(x,y)∈C

f(x, y) = min
(x,y)∈S

f(x, y).

Proof. Proposition 14.52 ensures that C is a smooth curve, so let

r(t) = ⟨x(t), y(t)⟩, t ∈ I,

be any smooth parametrization for C. The functions r : I → C and f : C → R are continuous,
and so f ◦ r : I → R is also continuous. Since C is a closed curve, the interval I ⊆ R may be
taken to be a closed, bounded interval, and hence by the Extreme Value Theorem f ◦ r : I → R
attains a global maximum value and a global minimum value. From this observation it follows
that f attains a maximum value and a minimum value on r(I) = C.

Now, the global extrema of f |C are of necessity local extrema of f |C , and so the global
maximum value of f |C must be the greatest local maximum value, and the global minimum
value of f |C must be the least local minimum value. Suppose f |C has a local extremum at
(a, b) ∈ C. Then by Proposition 14.66 there exists some λ ∈ R such that ∇f(a, b) = λ∇g(a, b),
and we conclude that (a, b) ∈ S. Thus S contains all the points on C where f |C has a local
extremum. Therefore the maximum value of f on C will equal the maximum value of f on S,
and the minimum value of f on C will equal the minimum value of f on S. ■

In the definition of the set S above, observe that (x, y) ∈ C if and only if g(x, y) = 0.
Recalling the definition of the gradient operator ∇, the Method of Lagrange Multipliers in
essence states that the extreme values of the objective function f restricted to the constraint
curve g(x, y) = 0 will lie at those points (x, y) ∈ R2 for which there can be found some λ ∈ R
such that (x, y, λ) is a solution to the system of equations

fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)

g(x, y) = 0
(14.40)

Some examples should help clarify the Lagrange Multiplier procedure, and also show how
the procedure may be applied to more general situations.

Example 14.68. Find the maximum and minimum values of

f(x, y) = x2y + 10

subject to the constraint x2 + 2y2 = 6.
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Solution. Defining

g(x, y) = x2 + 2y2 − 6,

we may write the constraint curve C given by x2 + 2y2 = 6 as g(x, y) = 0. Since

∇g(x, y) = ⟨gx(x, y), gy(x, y)⟩ = ⟨2x, 4y⟩,

we have ∇g(x, y) = 0 if and only if (x, y) = (0, 0), but (0, 0) does not lie on the curve g(x, y) = 0
(that is, g(0, 0) ̸= 0), and so ∇g(x, y) ̸= 0 for all (x, y) ∈ C. Since the polynomial function f is
differentiable everywhere, and g has continuous first partials everywhere, all the hypotheses of
Theorem 14.67 are satisfied. The system (14.40) here becomes

2xy = 2λx

x2 = 4λy

x2 + 2y2 = 6
(14.41)

The first equation in (14.41) offers two possibilities: either x = 0 or λ = y. If x = 0, then the
third equation becomes 2y2 = 6, whence y = ±

√
3, and we obtain two points: (0,

√
3) and

(0,−
√
3). If λ = y, then the second and third equations become the system®

x2 − 4y2 = 0

x2 + 2y2 = 6 (14.42)

Adding the first equation in (14.42) to twice the second equation yields 3x2 = 12, and so x = ±2.
Substituting this into the first equation, say, gives 4− 4y2 = 0, and so y = ±1. We obtain four

C

−2 0 2 −2

0

2−10

0

10

20

30

x
y

z

Figure 67. In black the graph of f |C , with global maxima in red and global
minima in blue.
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points: (2, 1), (2,−1), (−2, 1), and (−2,−1). We evaluate f(x, y) at each of the six points we
found for which some λ ∈ R exists to satisfy (14.41):

f(0,±
√
3) = 10, f(±2, 1) = 14, f(±2,−1) = 6.

By Theorem 14.67 we conclude that f |C has maximum value 14 at (±2, 1), and minimum value
6 at (±2,−1). See Figure 67. ■

The Method of Lagrange Multipliers very easily extends to functions of three or more
independent variables, with much that same proof as the two-variable version.

Theorem 14.69 (Method of Lagrange Multipliers in n Variables). Let f be differentiable
and g have continuous first partials on a open set U ⊆ Rn containing a closed level set Ω given
by g(x) = 0, and let ∇g(x) ̸= 0 for all x ∈ Ω. If

S = {x ∈ Ω : ∇f(x) = λ∇g(x) for some λ ∈ R},
then

max
x∈Ω

f(x) = max
x∈S

f(x) and min
x∈Ω

f(x) = min
x∈S

f(x).

This theorem becomes Theorem 14.67 in the case when n = 2, and the level set Ω becomes a
level curve C in the xy-plane. When n = 3 the level set Ω becomes a level surface in xyz-space,
which here will usually be denoted by the symbol Σ. When n = 4 the level set Ω inhabits R4

and becomes impractical to depict graphically.
In the definition of the set S in Theorem 14.69, observe that x ∈ Ω if and only if g(x) = 0.

Thus the theorem essentially states that the extreme values of the objective function f restricted
to the constraint set g(x) = 0 will lie at those points x ∈ Rn for which there can be found
some λ ∈ R such that (x, λ) is a solution to the system of equations

fx1(x) = λgx1(x)
...

fxn(x) = λgxn(x)

g(x) = 0

(14.43)

Example 14.70. Find the maximum and minimum values of

f(x, y, z) = xyz

subject to the constraint x2 + 2y2 + 4z2 = 9.

Solution. Defining
g(x, y, z) = x2 + 2y2 + 4z2 − 9,

we may write the constraint surface Σ given by x2 + 2y2 + 4z2 = 9 as g(x, y, z) = 0. Since

∇g(x, y, z) = ⟨gx(x, y, z), gy(x, y, z), gz(x, y, z)⟩ = ⟨2x, 4y, 8z⟩,

we have ∇g(x, y, z) = 0 if and only if (x, y, z) = (0, 0, 0), but (0, 0, 0) does not lie on the curve
g(x, y, z) = 0, and so ∇g(x, y, z) ̸= 0 for all (x, y, z) ∈ Σ. Since the polynomial function f is
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differentiable everywhere, and g has continuous first partials everywhere, all the hypotheses of
Theorem 14.69 are satisfied. The system (14.43) here becomes

yz = 2λx

xz = 4λy

xy = 8λz

9 = x2 + 2y2 + 4z2

(14.44)

The first equation in (14.44) offers two possibilities: either x = 0 or λ = yz/2x.

• Suppose x = 0. Then the system (14.44) becomes
yz = 0

4λy = 0

8λz = 0

9 = 2y2 + 4z2

From the first equation yz = 0 we find that either y = 0 or z = 0.
◦ Suppose y = 0. The equations that do not reduce to 0 = 0 are

8λz = 0 and 4z2 = 9.

From 4z2 = 9 we find that z = ±3/2, whereupon 8λz = 0 yields λ = 0, and thus
we obtain two points (0, 0,±3/2) for which there exists some λ ∈ R such that the
system (14.44) is satisfied.

◦ Suppose z = 0. The equations that do not reduce to 0 = 0 are

4λy = 0 and 2y2 = 9.

From 2y2 = 9 we find that y = ±3/
√
2, whereupon 4λy = 0 yields λ = 0, and thus

we obtain two more points, (0,±3/
√
2, 0), for which there exists some λ ∈ R such

that the system (14.44) is satisfied.
• Suppose λ = yz/2x, which implies that x ̸= 0. Substituting yz/2x for λ in the second

and third equations of (14.44), we obtain the system
x2z = 2y2z

x2y = 4yz2

9 = x2 + 2y2 + 4z2
(14.45)

◦ Suppose z = 0. Then the second equation in (14.45) becomes x2y = 0, which implies
that y = 0 (since x ̸= 0), whereupon the third equation becomes x2 = 9 and we find
that x = ±3. We obtain another two points, (±3, 0, 0), for which there exists some
λ ∈ R such that the system (14.44) is satisfied.

◦ Suppose z ≠ 0. Then the first equation in (14.45) becomes x2 = 2y2, and since
x ̸= 0, it follows that y ̸= 0 also. The second equation then becomes x2 = 4z2,
which together with x2 = 2y2 gives y2 = 2z2. Putting x2 = 4z2 and y2 = 2z2 into
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Figure 68. The constraint surface Σ: x2 + 2y2 + 4z2 = 9.

the third equation in (14.45) then gives 12z2 = 9, and so z = ±
√
3/2. Now,

x2 = 4z2 ⇒ x = ±2z = ±
√
3

and
y2 = 2z2 ⇒ y = ±

√
2z = ±

√
6/2,

and we obtain eight more points (x, y, z) that satisfy

(|x|, |y|, |z|) =
(√

3,
√
6/2,

√
3/2
)
.

We have found a total of fourteen points (x, y, z) for which there exists some λ ∈ R such that
the system (14.44) is satisfied. At the points (0, 0,±3/2), (0,±3/

√
2, 0), and (±3, 0, 0) we find

that f(x, y, z) = 0. At the remaining eight points we obtain f(x, y, z) = −3
√
6/4 at(

−
√
3,−

√
6
2
,−

√
3
2

)
,
(
−

√
3,

√
6
2
,
√
3
2

)
,
(√

3,−
√
6
2
,
√
3
2

)
,
(√

3,
√
6
2
,−

√
3
2

)
,

and f(x, y, z) = 3
√
6/4 at(√

3,
√
6
2
,
√
3
2

)
,
(
−

√
3,−

√
6
2
,
√
3
2

)
,
(√

3,−
√
6
2
,−

√
3
2

)
,
(
−
√
3,

√
6
2
,−

√
3
2

)
.

By Theorem 14.69 we conclude that f |Σ (i.e. the function f restricted to the set Σ given
by x2 + 2y2 + 4z2 = 9, shown in Figure 68) has maximum value 3

√
6/4 and minimum value

−3
√
6/4. ■



369

Appendix

Here we will prove Theorem 14.30 in the R2 case, using nothing other than the definition of
limit. The technique can be easily extended to the R3 setting and beyond, but it can be seen to
be rather laborious.

Claim. If f is differentiable at (a, b) ∈ R2, then it is continuous there.

Proof. Suppose f is differentiable at (a, b). By Definition 14.26 f is defined on some open set
U containing (a, b), and M1 = fx(a, b) and M2 = fy(a, b) are also defined.

Let ϵ > 0 be arbitrary. By (14.8) there is some δ0 > 0 such that

0 <
√
h2 + k2 < δ0

implies that ∣∣∣∣f(a+ h, b+ k)− f(a, b)−M1h−M2k√
h2 + k2

∣∣∣∣ < ϵ

2
. (14.46)

Choose

δ = min

ß
1, δ0,

ϵ

4(|M1|+ 1)
,

ϵ

4(|M2|+ 1)

™
.

If
√
h2 + k2 = 0, then h = k = 0 so that

f(a+ h, b+ k) = f(a, b),

and thus
|f(a+ h, b+ k)− f(a, b)| = 0 < ϵ.

Suppose that

0 <
√
h2 + k2 < δ.

Then (14.46) implies

|f(a+ h, b+ k)− f(a, b)−M1h−M2k| <
ϵ

2
,

from which the general property |x| − |y| ≤ |x− y| gives us

|f(a+ h, b+ k)− f(a, b)| − |M1h+M2k| <
ϵ

2
,

and thus

|f(a+ h, b+ k)− f(a, b)| < ϵ

2
+ |M1h+M2k|.

Applying the Triangle Inequality from §1.6 next yields

|f(a+ h, b+ k)− f(a, b)| < ϵ

2
+ |M1||h|+ |M2||k|. (14.47)

Now,

|h| ≤
√
h2 + k2 < δ ≤ ϵ

4(|M1|+ 1)

implies that |h|(|M1|+ 1) < ϵ/4, and therefore |M1||h| < ϵ/4. In similar fashion

|k| ≤
√
h2 + k2 < δ ≤ ϵ

4(|M2|+ 1)
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leads to |M2||k| < ϵ/4. Then from (14.47) we arrive at

|f(a+ h, b+ k)− f(a, b)| < ϵ

2
+
ϵ

4
+
ϵ

4
= ϵ.

We have now shown that whenever
√
h2 + k2 < δ

we obtain
|f(a+ h, b+ k)− f(a, b)| < ϵ,

which is to say
lim

(h,k)→(0,0)
f(a+ h, b+ k) = f(a, b).

This limit easily implies that
lim

(x,y)→(a,b)
f(x, y) = f(a, b),

and therefore f is continuous at (a, b). ■
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15
Multiple Integrals

15.1 – Double Integrals Over Rectangles

From here onward we take a region to be any set of points in Rn. A region R ⊆ Rn is open
if it is an open set, closed if it is a closed set, and bounded if there exists some x ∈ Rn and
r ∈ (0,∞) such that R ⊆ Br(x). Thus a region is bounded if it can be contained in an open
ball of finite radius. A region that is both closed and bounded is said to be compact. Finally,
regions in R2 will usually be denoted by R or S, and regions in R3 by D or E.

In this section we take the first step toward extending the notion of a definite integral to
functions of two variables to obtain what are called double integrals. Instead of integrating a
one-variable function over an interval I ⊆ R, we integrate a two-variable function over a region
R ⊆ R2. We start with R being a rectangle, and then progress in the next section to more
general regions.

Before considering double integrals we should become acquainted with the notion of an
iterated integral, which is an expression of the form

� d
c

� b
a
f(x, y)dxdy, where by definition

� d

c

� b

a

f(x, y)dxdy =

� d

c

ñ� b

a

f(x, y)dx

ô
dy. (15.1)

Thus,
� d
c

� b
a
f(x, y)dxdy is evaluated by first evaluating

� b
a
f(x, y)dx, where the integration is

done with respect to x and y is treated as a constant, and then integrating the result with
respect to y. Similarly we have

� b

a

� d

c

f(x, y)dydx =

� b

a

ñ� d

c

f(x, y)dy

ô
dx. (15.2)

Example 15.1. Evaluate � π

0

� 3

1

(
3x2y − y sin(xy)

)
dxdy

j
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Solution. We obtain� π

0

� 3

1

[3x2y − y sin(xy)]dxdy =

� π

0

ñ� 3

1

(
3x2y − y sin(xy)

)
dx

ô
dy

=

� π

0

[
x3y + cos(xy)

]3
1
dy =

� π

0

[
(27y + cos(3y))− (y + cos y)

]
dy

=

� π

0

[26y + cos(3y)− cos y] dy =

ï
13y2 +

1

3
sin(3y)− sin y

òπ
0

= 13π2,

using equation (15.1). ■

The definition of a double integral of a function f over a rectangular region R ⊆ R2, which
is denoted by any one of the symbolsx

R

f,
x
R

f dA,
x
R

f(x, y) dA, or
x
R

f(x, y)dxdy

(in order of increasing specificity), involves a limit of a double Riemann sum. It will be included
in these notes at a later date, but suffice it to say that one rarely evaluates a double integral
using the definition, but rather employs the following result.

Theorem 15.2. Let R = [a, b]× [c, d ]. If f : R → R is continuous, then

x
R

f =

� d

c

� b

a

f(x, y)dxdy =

� b

a

� d

c

f(x, y)dydx.

Figure 1 depicts the rectangle R = [a, b]× [c, d] featured in the theorem in the usual case
when a, b, c, d > 0.

Example 15.3. Evaluate x
R

y3 sin(xy2) dA

over the region

R =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤

»
π/2
}
,

choosing a convenient order.

Solution. We’ll undertake evaluation using the order dxdy. We obtain

x
R

y3 sin(xy2) dA =

� √
π/2

0

� 1

0

y3 sin(xy2)dxdy =

� √
π/2

0

ï
−y

3

y2
cos(xy2)

ò1
0

dy

=

� √
π/2

0

−y(cos y2 − 1)dy =

� √
π/2

0

ydy −
� √

π/2

0

y cos(y2)dy

=
π

4
− 1

2

� √
π/2

0

[
sin(y2)

]′
dy =

π

4
− 1

2

[
sin(y2)

]√π/2

0
=
π

4
− 1

2
,
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where the first equality follows from Theorem 15.2, and the fifth equality uses

y cos(y2) =
1

2

[
sin(y2)

]′
together with Theorem 5.28.13

The question is, how does the order dydx compare with dxdy? Is it still reasonably doable?
In this case we straightaway come up against the integral

� √
π/2

0

y3 sin(xy2)dy,

which demands the substitution u = y2 in order to get

1

2

� π/2

0

u sin(xu) du,

where x is treated as a constant. However, integration by parts next gives

1

2x2
sin
(π
2
x
)
− π

4x
cos
(π
2
x
)
,

which we would need to integrate with respect to x as the next step:� 1

0

ï
1

2x2
sin
(π
2
x
)
− π

4x
cos
(π
2
x
)ò
dx.

This turns out to be highly problematic! ■

13This approach is an alternative to applying the Substitution Rule with u = y2.
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15.2 – Double Integrals Over General Regions

A first definition of the double integral usually restricts the region of integration to sets in
R2 that are closed and bounded, which is to say any region R ⊆ R2 that is compact. But there
is little to prevent considering other kinds of regions. Note that if R is a bounded set, then the
closure of R, R = R ∪ ∂R (see §13.0), is a compact set.

Definition 15.4. If R is a bounded region, not necessarily closed, and f is a function that is
continuous on the closure R of R, then we definex

R

f =
x
R

f.

We now set out to improve on Theorem 15.2, so that it applies to other kinds of compact
regions other than rectangles.

Theorem 15.5 (Fubini’s Theorem). For continuous functions g, h : [a, b] → R, where g < h
on [a, b], let

R = {(x, y) : a ≤ x ≤ b and g(x) ≤ y ≤ h(x)}.
If f : R → R is continuous, then

x
R

f =

� b

a

� h(x)

g(x)

f(x, y)dydx. (15.3)

For continuous functions g, h : [c, d ] → R, where g < h on [c, d ], let

R = {(x, y) : c ≤ y ≤ d and g(y) ≤ x ≤ h(y)}.

If f : R → R is continuous, then

x
R

f =

� d

c

� h(y)

g(y)

f(x, y)dxdy. (15.4)

There are in fact a whole host of theorems in mathematics, of varying degree of generality,
that are referred to as Fubini’s Theorem. Thus, even Theorem 15.2 can be fairly called Fubini’s
Theorem.

Recall that the symbol
� b
a
dx is taken to mean

� b
a
(1)dx. Indeed if we let I = [a, b] we could

even write
�
I
dx, where �

I

dx =

� b

a

dx = b− a = L(I),

the length of I. In a wholly analogous fashion
s
R
dA is short-hand for

s
R
(1) dA, and it relates

to the area of R, A(R).

Definition 15.6. The area of a closed, bounded region R in the xy-plane is

A(R) =
x
R

dA.
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It is important to bear in mind that this definition gives the area of a region R on a plane
that is coordinatized with the customary rectangular coordinate system. It may be surprising
to learn that there exist bounded regions in R2 that do not have an area, which is to say that
A(R) as defined above does not equal any real number (not even 0), but we will not consider
these here. A region R ⊆ R2 that has a defined area is called Jordan measurable.

Proposition 15.7. Suppose that R ⊆ R2 is a bounded region such that A(R) = 0. If f : R → R
is a bounded function, then x

R

f = 0.

Proposition 15.8. Suppose that R1, R2, R1 ∩R2 ⊆ R2 are compact Jordan measurable sets. If
f : R → R is a continuous function, thenx

R1∪R2

f =
x
R1

f +
x
R2

f −
x

R1∩R2

f.

Thus if A(R1 ∩R2) = 0, then x
R1∪R2

f =
x
R1

f +
x
R2

f.

The last statement in Proposition 15.8 follows from the first statement in conjunction with
Proposition 15.7, since it is a fact that a function that is continuous on a compact set is
necessarily bounded. If R is a bounded set, then R = R ∪ ∂R is compact, and since A(∂R) = 0
(assuming the boundary of R is Jordan measurable), by Proposition 15.7 we havex

∂R

f = 0,

and so x
R∪∂R

f =
x
R

f =
x
R

f =
x
R

f +
x
∂R

f

by Definition 15.4. This natural result is in fact the motivation for Definition 15.4.
Throughout this chapter and the next we will assume, without comment, that all regions are

Jordan measurable!

Example 15.9. Evaluate
s
R
f for f(x, y) = x + y, where R ⊆ R2 is the region in the first

quadrant that is bounded by the line x = 0 and the curves g(x) = x2 and h(x) = 8− x2.

Solution. First we determine where the curves given by g and h by solving g(x) = h(x):

g(x) = h(x) ⇒ x2 = 8− x2 ⇒ x2 = 4 ⇒ x = ±2.

Since it is given that R is in Quadrant I only x = 2 is relevant, and this yields the intersection
point (2, 4). Thus R is as shown in Figure 69. In this region it can be seen that, for each
0 ≤ x ≤ 2, we have x2 ≤ y ≤ 8 − x2; thus

s
R
f can be resolved into an iterated integral in
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x

y

1 2 3

2

4

6

8

R

h

g

(2, 4)

Figure 69.

which the inner integral integrates with respect to y from x2 to 8− x2, and the outer integral
integrates with respect to x from 0 to 2:

x
R

f =

� 2

0

� 8−x2

x2
(x+ y)dydx =

� 2

0

ï
xy +

1

2
y2
ò8−x2
x2

dx

=

� 2

0

ïÅ
x(8− x2) +

1

2
(8− x2)2

ã
−
Å
x3 +

1

2
(x2)2

ãò
dx

=

� 2

0

(
32 + 8x− 8x2 − 2x3

)
dx =

152

3
.

■

Sometimes, as was already seen in Example 15.3, one order of integration is significantly
easier than another. Thus, if a given iterated integral appears intractable, it may be worthwhile
to reverse the order of integration.

Example 15.10. Evaluate � 4

0

� 2

√
x

x

y5 + 1
dydx

by reversing the order of integration.

Solution. The reader is certainly welcome to attempt evaluation without reversing the order of
integration, but it will prove a frustrating enterprise. For each 0 ≤ x ≤ 4 we have g(x) =

√
x ≤

y ≤ 2 = h(x), and since the curves given by g and h intersect at (4, 2), the region of integration
R is as in Figure 70.

We wish to reverse the order of integration so that integration with respect to x, rather
than y, is done first. To do this observe that, for each 0 ≤ y ≤ 2, the value of x is bound by
the y-axis (i.e. x = 0) and the curve g where y =

√
x implies that x = y2; that is, for each

0 ≤ y ≤ 2 we have 0 ≤ x ≤ y2. Thus,

x
R

f =

� 4

0

� 2

√
x

x

y5 + 1
dydx =

� 2

0

� y2

0

x

y5 + 1
dxdy,
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x

y

2 4

1
R

g

h

(4, 2)

Figure 70.

where the integral
� y2
0
x/(y5 + 1)dx is easy to evaluate since y5 + 1 is regarded as a constant

and thus can be removed from the integrand! Winding up our propeller beanies, we calculate as
follows, making the substitution u = y5 + 1 along the way:� 2

0

� y2

0

x

y5 + 1
dxdy =

� 2

0

Ç
1

y5 + 1

� y2

0

xdx

å
dy =

� 2

0

1

y5 + 1

ï
x2

2

òy2
0

dy

=

� 2

0

y4

2(y5 + 1)
dy =

� 33

1

1

10u
du =

ï
1

10
ln |u|

ò33
1

=
1

10
ln(33).

■
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15.3 – Double Integrals in Polar Coordinates

It can happen that a region R in the xy-plane, which can be denoted by R2
xy, is such that

the evaluation of
s
R
f by means of Theorem 15.5 is quite arduous or even impossible. In such

situations the best strategy is to find a more compliant region S on another plane having a
different coordinate system that nicely “transforms” into R. In general this other plane can be
referred to as the uv-plane, denoted by R2

uv. Points in R2
xy have coordinates (x, y), and points

in R2
uv have coordinates (u, v). The “transforming” from S ⊆ R2

uv to R ⊆ R2
xy is effected by a

function T : S → R called a mapping or transformation (we shall freely use either term).
The region R is called the “image of S under T” and is frequently denoted by T (S), so that
R = T (S).

Much more will be said about transformations in a general setting in §14.7, but for now we’ll
be specifically interested in the transformation Tpol that converts from polar coordinates (r, θ)
to rectangular coordinates (x, y), which is given by

Tpol(r, θ) = (r cos θ, r sin θ) (15.5)

and does nothing more than effect the usual conversions x = r cos θ and y = r sin θ first
introduced in section 11.2. In particular Tpol takes a point (r, θ) in R2

rθ (the rθ-plane) and maps
it to a point (x, y) in R2

xy such that (x, y) = (r cos θ, r sin θ).

Theorem 15.11. Let S ⊆ R2
rθ be given by

S = {(r, θ) : α ≤ θ ≤ β and 0 ≤ g(θ) ≤ r ≤ h(θ)}

for continuous g, h (where β − α ≤ 2π). If Tpol is one-to-one on Int(S), R = Tpol(S), and
f : R → R is continuous, then

x
R

f(x, y) dA =
x
S

f(r cos θ, r sin θ)r dA =

� β

α

� h(θ)

g(θ)

f(r cos θ, r sin θ)r drdθ (15.6)

The proof of this theorem involves using Theorem 15.30 to obtainx
R

f(x, y) dA =
x
S

f(r cos θ, r sin θ)r dA

(which is shown in section 14.7), and then applying (15.4) in Fubini’s Theorem 15.5.

Notation. The double integral x
S

f(r cos θ, r sin θ)r dA

could be represented more compactly by the symbol
s
S
φ if we were to define a function φ by

φ(r, θ) = f(r cos θ, r sin θ)r.

Example 15.12. Evaluate
s
R
f , where R is the region in the xy-plane shown on the right side

of Figure 71, and f(x, y) = 2xy.
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r

θ

S

1 3

π
2

x

y

R

1 3

1

3Tpol

Figure 71.

Solution. An examination of R makes it clear that it consists of points having a distance r
from the origin between 1 and 3, and making an angle θ with respect to the positive x-axis
between 0 and π/2. Thus, R = Tpol(S), where

S = {(r, θ) : 1 ≤ r ≤ 3, 0 ≤ θ ≤ π/2}

is the region in the rθ-plane shown on the left side of Figure 71. Since f is continuous on R, we
can use Theorem 15.11 with g(θ) = 1 and h(θ) = 3 to obtain

x
R

f(x, y) dA =

� π/2

0

� 3

1

f(r cos θ, r sin θ)r drdθ

=

� π/2

0

� 3

1

2(r cos θ)(r sin θ) · r drdθ

=

� π/2

0

2 cos θ sin θ

� 3

1

r3 drdθ =

� π/2

0

2 cos θ sin θ

ï
1

4
r4
ò3
1

dθ

= 40

� π/2

0

cos θ sin θ dθ = 40

� π/2

0

sin 2θ

2
dθ

= −10 [cos 2θ]π/20 = 20,

where the identity 2 cos θ sin θ = sin 2θ is used along the way. ■

Example 15.13. Find the area of the region R in the xy-plane bounded by the curve
r = 2(1− sin θ).

Solution. The curve is a cardioid when graphed in the xy-plane, as shown on the right side of
Figure 72. Certainly in order to obtain a curve that fully encloses a region in R2

xy it is necessary
to take θ from 0 to 2π; and then, for each θ ∈ [0, 2π], the points that lie in R are a distance r
from the origin ranging from 0 to 2− 2 sin θ. From these observations it can be determined that
the region S in the rθ-plane for which Tpol(S) = R is given by

S = {(r, θ) : 0 ≤ r ≤ 2− 2 sin θ, 0 ≤ θ ≤ 2π},
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r

θ

1 2 3 4

π
2

π

3π
2

2π

S

x

y

1 2
−1

−2

−3

R
Tpol

Figure 72.

as shown on the left side of Figure 72. Since f(x, y) = 1 is continuous on R, we can use Theorem
15.11 with g(θ) = 0 and h(θ) = 2− 2 sin θ to obtain

A(R) =
x
R

(1) dA =
x
S

r dA =

� 2π

0

� 2−2 sin θ

0

r drdθ

=

� 2π

0

ï
1

2
r2
ò2−2 sin θ

0

dθ = 2

� 2π

0

(1− 2 sin θ + sin2 θ) dθ

= 2

� 2π

0

Å
1− 2 sin θ +

1− cos 2θ

2

ã
dθ

= 2

ï
3

2
θ + 2 cos θ − 1

4
sin 2θ

ò2π
0

= 2(3π) = 6π,

where the identity sin2 θ = 1
2
(1− cos 2θ) is employed along the way. ■

Example 15.14. Evaluate
� 4

−4

� √
16−y2

0

(16− x2 − y2)dxdy. (15.7)

Solution. The region of integration R is shown on the right of Figure 73. It is the image under
Tpol of the region S on the left of the figure, which is a simple rectangle. Letting ω denote the
integral (15.7), we obtain

ω =
x
R

(16− x2 − y2) dA By Fubini’s Theorem

=
x
S

(
16− r2 cos2 θ − r2 sin2 θ

)
r dA By Theorem 15.11

=

� π/2

−π/2

� 4

0

(16− r2)r drdθ By Fubini’s Theorem

=

� π/2

−π/2

ï
8r2 − 1

4
r4
ò4
0

dθ
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r

θ

S

2 4

π
2

−π
2

x

y

R

2 4

2

4

−2

−4

Tpol

Figure 73.

=

� π/2

−π/2
64 dθ = 64π.

Note that the identity cos2 θ + sin2 θ = 1 is used during the process. ■

Example 15.15. Let R′ ⊆ R2
xy be the region bounded by the circle r = 1, and let R′′ ⊆ R2

xy be
the region bounded by the cardioid r = 1− cos θ. Find the area of R = R′ ∩R′′.

Solution. The region R is shown at left in Figure 74. We can partition the region into three
subregions R1, R2 and R3 as shown at right in Figure 74. Specifically Ri = Tpol(Si) for i = 1, 2, 3,
where T is the transformation (15.5) and

S1 = {(r, θ) : 0 ≤ θ ≤ π/2 and 0 ≤ r ≤ 1− cos θ},
S2 = {(r, θ) : π/2 ≤ θ ≤ 3π/2 and 0 ≤ r ≤ 1},
S3 = {(r, θ) : 3π/2 ≤ θ ≤ 2π and 0 ≤ r ≤ 1− cos θ}.

We can use Proposition 15.8 to write

A(R) =
x
R

dA =
x
R1

dA+
x
R2

dA+
x
R3

dA.

x

y

R

(0, 1)

(0,−1)

R2

R1

R3

Figure 74.
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By Theorem 15.11,
x
R1

dA =
x
S1

r dA =

� π/2

0

� 1−cos θ

0

r drdθ =

� π/2

0

1

2
(1− cos θ)2dθ

=
1

2

� π/2

0

(1− 2 cos θ + cos2 θ) dθ =
1

2

� π/2

0

Å
3

2
− 2 cos θ +

cos 2θ

2

ã
dθ

=
1

2

ï
3θ

2
− 2 sin θ +

sin 2θ

4

òπ/2
0

=
3π

8
− 1.

By symmetry it should be clear thatx
R3

dA = A(R3) = A(R1) =
x
R1

dA =
3π

8
− 1.

Finally, R2 is half of a closed circular disk with radius 1, so thatx
R2

dA = A(R2) =
1

2
π(1)2 =

π

2
.

Therefore

A(R) =

Å
3π

8
− 1

ã
+
π

2
+

Å
3π

8
− 1

ã
=

5π

4
− 2

is the area of R. ■
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15.4 – Triple Integrals in Rectangular Coordinates

Definition 15.16. Given a region D ⊆ R3 and a function f : D → R, the triple integral of
f over D is

y
D

f = lim
∥P∥→0

ℓ∑
i=1

m∑
j=1

n∑
k=1

f(x∗i , y
∗
j , z

∗
k)∆Vijk, (15.8)

provided the limit exists. If the limit does exist, f is said to be integrable over D.

Other symbols used to denote the triple integral (15.8) arey
D

f(x, y, z) dV and
y
D

f(x, y, z)dxdydz,

which are useful when the function in the integrand has not been assigned a symbol of its own
(such as f). A full elucidation of the whys and wherefores of Definition 15.16 will be included in
these notes at a later date, but for now the following result (which is another Fubini theorem)
will be used to evaluate triple integrals.

Theorem 15.17. Let

D = {(x, y, z) : a ≤ x ≤ b, g(x) ≤ y ≤ h(x), G(x, y) ≤ z ≤ H(x, y)},

where g, h,G,H are continuous functions. If f : D → R is continuous, then

y
D

f =

� b

a

� h(x)

g(x)

� H(x,y)

G(x,y)

f(x, y, z)dzdydx. (15.9)

The right-hand side of (15.9) is an iterated integral which is evaluated “from the inside out”:

� b

a

ñ� h(x)

g(x)

Ç� H(x,y)

G(x,y)

f(x, y, z) dz

å
dy

ô
dx

Thus, integration is first done with respect to z (treating y and x as constant), then with respect
to y (treating x as constant), and finally with respect to x. However, this is not the only order
of integration that is possible. Indeed, Theorem 15.17 presents only one of five possible orders
of integration, with the other orders being dzdxdy, dxdydz, dxdzdy, dydxdz, and dydzdx.

Definition 15.18. The volume of a closed, bounded region D in xyz-space is

V(D) =
y
D

dV.

Example 15.19. Find the volume of the region D shown in the left of Figure 75.
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x

y

z

z = 9− x2

2

2 x

y

2

2

R

y = 2− x

Figure 75.

Solution. For any (x, y, z) ∈ D we have 0 ≤ z ≤ 9− x2. Thus, if we evaluate
t

D
dV in the

order presented in Theorem 15.17, then we will first evaluate with respect to z using G(x, y) = 0
and H(x, y) = 9− x2 as the limits of integration.

To determine the limits of integration for y and x, project D onto the xy-plane to obtain
the region R shown in the right of Figure 75. There it can be seen that if (x, y) ∈ R, then
0 ≤ y ≤ 2 − x for 0 ≤ x ≤ 2, and so the limits of integration for y will be g(x) = 0 and
h(x) = 2− x in the notation of Theorem 15.17, and the limits of integration for x will be a = 0
and b = 2. We obtain

V(D) =
y
D

dV By Definition 15.18

=

� 2

0

� 2−x

0

� 9−x2

0

dzdydx By Theorem 15.17

=

� 2

0

� 2−x

0

(9− x2)dydx Integrating with respect to z

=

� 2

0

[
9y − x2y

]2−x
0

dx Integrating with respect to y

=

� 2

0

[
9(2− x)− x2(2− x)

]
dx

=

ï
1

4
x4 − 2

3
x3 − 9

2
x2 + 18x

ò2
0

=
50

3
.

It can be instructive to try determining the volume of D by integrating in the orders dzdxdy
and dydzdx. ■
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x
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z

1

2

2

s

z
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Figure 76.

Example 15.20. Rewrite the iterated integral

� 1

0

� 2

−2

� √
4−y2

0

dzdydx

in the order dydzdx, and then evaluate the resulting integral.

Solution. First we have 0 ≤ z ≤
√
4− y2, where z =

√
4− y2 graphs on the yz-plane as the

upper half of a circle with radius 2 centered at the origin. The entire semicircle is attained since
−2 ≤ y ≤ 2 is given, and from 0 ≤ x ≤ 1 it follows that the semicircle it free to “slide” along
the x-axis from x = 0 to x = 1. In this way a region D is swept out that is the “top” half of a
circular cylinder as shown in Figure 76. As can be seen from line segment s in the figure, a
point (x, y, z) ∈ D must have

−
√
4− z2 ≤ y ≤

√
4− z2

for each z ∈ [0, 2]. Thus we have

� 1

0

� 2

−2

� √
4−y2

0

dzdydx =

� 1

0

� 2

0

� √
4−z2

−
√
4−z2

dydzdx

=

� 1

0

� 2

0

2
√
4− z2dzdx

With the trigonometric substitution z = 2 sin θ we can replace dz with 2 cos θ dθ, z = 0 with
θ = 0, and z = 2 with θ = π/2, so that

� 1

0

� 2

0

2
√
4− z2 dzdx =

� 1

0

� π/2

0

2
√

4− 4 sin2 θ · 2 cos θ dθdx

=

� 1

0

� π/2

0

8 cos2 θ dθdx =

� 1

0

� π/2

0

4(1 + cos 2θ) dθdx

=

� 1

0

[4θ + 2 sin 2θ]π/20 dx =

� 1

0

2πdx = 2π
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Therefore � 1

0

� 2

−2

� √
4−y2

0

dzdydx =

� 1

0

� 2

0

� √
4−z2

−
√
4−z2

dydzdx = 2π,

by the appropriate extension of Fubini’s Theorem. ■
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15.5 – Triple Integrals in Curvilinear Coordinates

A coordinate line of a coordinate system is a line on which all but one of the coordinate
variables are held constant. Thus, in the rectangular coordinate system on the xy-plane,
there are two families of coordinate lines: the vertical lines, which is the family of equations
{x = a : a ∈ R}; and the horizontal lines, which is the family of equations {y = b : b ∈ R}. A
coordinate system is curvilinear if at least one of its families of coordinate lines is comprised
of lines having curved images under the canonical transformation T that maps to rectangular
coordinates. The polar coordinate system is an example in R2, where the coordinate line r = a
in R2

rθ has an image in R2
xy that is a circle centered at the origin with radius a under the usual

coordinate transformation

Tpol(r, θ) = (r cos θ, r sin θ),

as shown in Figure 77. In R3 we’ll be considering exclusively the cylindrical and spherical
coordinate systems.

Definition 15.21. Let (x, y, z) ∈ R3
xyz. If an ordered triple (r, θ, z) is such that

(x, y, z) = (r cos θ, r sin θ, z),

then (r, θ, z) are cylindrical coordinates for the point (x, y, z). The cylindrical coordinate
system, denoted by R3

rθz, is the system in which all points in R3 are given in cylindrical
coordinates. The mapping Tcyl : R3

rθz → R3
xyz given by

Tcyl(r, θ, z) = (r cos θ, r sin θ, z)

is the conversion transformation to rectangular coordinates.

Theorem 15.22. Let E ⊆ R3
rθz be given by

E = {(r, θ, z) : α ≤ θ ≤ β, 0 ≤ g(θ) ≤ r ≤ h(θ), G(r, θ) ≤ z ≤ H(r, θ)}
for continuous g, h,G,H (where β−α ≤ 2π). If Tcyl is one-to-one on Int(E), D = Tcyl(E), and
f : D → R is continuous, then

y
D

f(x, y, z) dV =

� β

α

� h(θ)

g(θ)

� H(r,θ)

G(r,θ)

f(r cos θ, r sin θ, z)rdzdrdθ.

r

θ

a x

y

a

Tpol

Figure 77.
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r

x

y

z

z

p = (r, θ, z)

θ r

x

y

z

z

p = (r, θ, z)

θ

Figure 78. Cylindrical coordinates. Usually r ≥ 0, but it is not required.

The proof of this theorem involves using Theorem 15.32 in §15.6 to obtainy
D

f(x, y, z) dV =
y
E

f(r cos θ, r sin θ, z)r dV,

and then applying the appropriate version of Theorem 15.17.

Example 15.23. Find the volume of the region D bounded by the plane z = 25 and the
paraboloid z = x2 + y2.

Solution. The region D is shown at left in Figure 79. It will be convenient to work in cylindrical
coordinates, where x = r cos θ and y = r sin θ so that the equation of the paraboloid becomes

z = x2 + y2 = (r cos θ)2 + (r sin θ)2 = r2,

and the equation of the plane remains z = 25.
The intersection of the surfaces z = 25 and z = x2 + y2 is the set of points

{(x, y, 25) : x2 + y2 = 25},

which is a curve that projects onto the xy-plane as a circle of radius 5 centered at the origin.
Thus, the projection of D onto the xy-plane is a region R that is a closed disc with radius 5
centered at the origin, shown at right in Figure 79.

Now, a point in R may have a θ-coordinate value ranging anywhere from θ = 0 to θ = 2π;
that is, if (r, θ) ∈ R, then 0 ≤ θ ≤ 2π.

If we fix θ ∈ [0, 2π], then a point (r, θ) ∈ R must lie on the line segment joining o = (0, 0)
and a = (5, θ), shown at right in Figure 79. That is, given θ ∈ [0, 2π], a point (r, θ) ∈ R can
have r-coordinate value ranging anywhere from r = 0 to r = 5, which is to say 0 ≤ r ≤ 5.

Finally, fixing θ ∈ [0, 2π] and r ∈ [0, 5], we consider the limits on z in order for (r, θ, z) to
be a point that lies in D. We find that generally z must be such that (r, θ, z) is above the
paraboloid z = r2 and below the plane z = 25, which is to say r2 ≤ z ≤ 25.

Thus we find that the region E ⊆ R3
rθz for which Tcyl(E) = D is

E = {(r, θ, z) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 5, r2 ≤ z ≤ 25},
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o
θ

5

5

Figure 79.

and so by Definition 15.18 and Theorem 15.22

V(D) =
y
D

dV =
y
E

r dV =

� 2π

0

� 5

0

� 25

r2
rdzdrdθ

=

� 2π

0

� 5

0

(25r − r3) drdθ =

� 2π

0

ï
25

2
r2 − 1

4
r4
ò5
0

dθ

=

� 2π

0

625

4
dθ =

625

4
· 2π =

625

2
π

is the volume of the region D. ■

Definition 15.24. Let (x, y, z) ∈ R3
xyz. If an ordered triple (ρ, φ, θ) is such that

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ),

then (ρ, φ, θ) are spherical coordinates for the point (x, y, z). The spherical coordinate
system, denoted by R3

ρφθ, is the system in which all points in R3 are given in spherical coordinates.

The mapping Tsph : R3
ρφθ → R3

xyz given by

Tsph(ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) (15.10)

is the conversion transformation to rectangular coordinates.

Let p = (x, y, z) have spherical coordinates (ρ, φ, θ). Let p0 = (x, y, 0) be the projection of p
onto the xy-plane. In geometrical terms (as will be shown later), ρ is the distance p is from
o = (0, 0, 0), so that ρ2 = x2 + y2 + z2; φ is the angle the ray #„op makes with the positive z-axis;
and θ is the angle the ray #   „op0 makes with the positive x-axis. See Figure 80.

The next example illustrates how a set of points in R3
xyz may be more conveniently described

in terms of the spherical coordinates ρ, φ, and θ.

Example 15.25. Describe the set of points in R3
xyz that satisfy ρ = 4 cosφ.
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x

y

z

p = (ρ, φ, θ)

θ

ρφ

x

y

z

p = (ρ, φ, θ)

θ

ρφ

Figure 80. Spherical coordinates. Physicists reverse the roles of θ and φ, which
conflicts with conventional polar coordinate notation!

Solution. Multiply both sides of ρ = 4 cosφ by ρ to obtain ρ2 = 4ρ cosφ. This gives

x2 + y2 + z2 = 4z.

Thus
x2 + y2 + (z2 − 4z + 4) = 4,

from which we finally obtain
x2 + y2 + (z − 2)2 = 4.

The set of points in R3
xyz that satisfy this equation clearly form a sphere centered at (0, 0, 2)

with radius 2. ■

Theorem 15.26. Let E ⊆ R3
ρφθ be given by

E = {(ρ, φ, θ) : α ≤ θ ≤ β, 0 ≤ g(θ) ≤ φ ≤ h(θ), G(φ, θ) ≤ ρ ≤ H(φ, θ)}
for continuous g, h,G,H (where β − α ≤ 2π and h(θ) − g(θ) ≤ π). If Tsph is one-to-one on
Int(E), D = Tsph(E), and f : D → R is continuous, then

y
D

f(x, y, z) dV =

� β

α

� h(θ)

g(θ)

� H(φ,θ)

G(φ,θ)

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdρdφdθ.

This theorem’s proof is also a straightforward application of Theorem 15.32 to gety
D

f(x, y, z) dV =
y
E

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdV,

and then invoking a version of Theorem 15.17.

Example 15.27. Evaluate y
D

z dV,

where D is the region in the first octant that lies between the spheres x2 + y2 + z2 = 1 and
x2 + y2 + z2 = 4.
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z

x

y

Figure 81.

Solution. The regionD is shown in Figure 81. In spherical coordinates the sphere x2+y2+z2 = 1,
which has center at the origin and radius 1, is given by ρ = 1; and the sphere x2 + y2 + z2 = 4,
which has center at the origin and radius 2, is given by ρ = 2.

Since D lies in the first octant, it should be clear that any point in D must have θ-coordinate
ranging anywhere from θ = 0 to θ = π/2; that is, if (ρ, φ, θ) ∈ D, then 0 ≤ θ ≤ π/2.

Let θ ∈ [0, π/2] be fixed. Then if p = (ρ, φ, θ) ∈ D, the φ-coordinate of p can range anywhere
from φ = 0 (which places p on the intersection of D with the z-axis) to φ = π/2 (placing p on
the intersection of D and the xy-plane). That is, for fixed 0 ≤ θ ≤ π/2, we have 0 ≤ φ ≤ π/2.

Let θ, φ ∈ [0, π/2] both be fixed. Then if p = (ρ, φ, θ) ∈ D, the ρ-coordinate of p can range
anywhere from ρ = 1 (placing p on the smaller sphere bounding D) to ρ = 2 (placing p on the
larger sphere bounding D). That is, for fixed 0 ≤ θ, φ ≤ π/2, we have 1 ≤ ρ ≤ 2.

Thus we find that the region E ⊆ R3
ρφθ for which Tsph(E) = D is

E = {(ρ, φ, θ) : 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2, 1 ≤ ρ ≤ 2},

and so by Theorem 15.26y
D

z dV =
y
E

ρ cosφ · ρ2 sinφdV

=

� π/2

0

� π/2

0

� 2

1

ρ3 cosφ sinφdρdφdθ =

� π/2

0

� π/2

0

15

4
cosφ sinφdφdθ

=

� π/2

0

15

8
dθ =

15

8
· π
2
=

15π

16

is the value of the integral. ■

Example 15.28. Find the volume of the region D that lies outside the cone φ = π/4 and
inside the sphere ρ = 4 cosφ.

Solution. In R3
xyz a point that satisfies φ = π/4 is a point that lies on a ray with initial point

at (0, 0, 0) which makes an angle of π/4 with the positive z-axis, and so the set of all such points



392

x y

z

4

y

z

φ

o

a

Figure 82.

form a cone as shown at left in Figure 82. As for ρ = 4 cosφ, it was already found in Example
15.25 that this is a sphere centered at (0, 0, 2) with radius 2, also shown at left in Figure 82.
The region E ⊆ R3

ρφθ that the transformation Tsph given by (15.10) maps onto D needs to be

determined, and this can be done by examining the geometry of the region D ⊆ R3
xyz.

Clearly a point in D can have a θ coordinate ranging anywhere from 0 to 2π, and any
cross-section of D at a given value of θ ∈ [0, 2π] will look the same. Thus, we can examine the
cross-section of D that lies in, say, the yz-plane (where θ = π/2), as shown at right in Figure
82. A point p in this cross-section can have a φ coordinate ranging from π/4 to π/2, and at a
given value of φ ∈ [π/4, π/2] the ρ coordinate of the point can be any value from 0 to 4 cosφ as
indicated by the segment [o, a] at right in Figure 82. By Definition 15.18 and Theorem 15.26

V(D) =
y
D

dV =
y
E

ρ2 sinφdV =

� 2π

0

� π/2

π/4

� 4 cosφ

0

ρ2 sinφdρdφdθ

=

� 2π

0

� π/2

π/4

ï
1

3
ρ3 sinφ

ò4 cosφ
0

dφdθ =
64

3

� 2π

0

� π/2

π/4

cos3 φ sinφdφdθ

=
64

3

� 2π

0

� π/2

π/4

d

dφ

Å
−1

4
cos4 φ

ã
dφdθ =

64

3

� 2π

0

ï
−1

4
cos4 φ

òπ/2
π/4

dθ

=
16

3

Å
1√
2

ã4 � 2π

0

dθ =
4

3
· 2π =

8π

3

is the volume of the region D. ■
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15.6 – Multiple Integral Change of Variables

Where we used to write x = g(u, v) and y = h(u, v), we shall now write x = x(u, v) and
y = y(u, v). Thus, x is a function that receives a point (u, v) ∈ R2

uv and returns a real number
x, and y is a function that receives a point (u, v) ∈ R2

uv and returns a real number y. In this
way a point (x, y) ∈ R2

xy is obtained. This is how the transformation T in the definition that
follows operates.

Definition 15.29. Let S ⊆ R2
uv be a region. If T : S → R2

xy is a transformation given by

T (u, v) = (x(u, v), y(u, v)), where x, y : R2
uv → R are differentiable functions on S, then the

Jacobian of T is the function JT : S → R given by

JT (u, v) =

∣∣∣∣xu(u, v) xv(u, v)
yu(u, v) yv(u, v)

∣∣∣∣ = xu(u, v)yv(u, v)− xv(u, v)yu(u, v).

Thus JT = xuyv − xvyu. Another symbol used for JT is

∂(x, y)

∂(u, v)
,

but this will not be used here.

Theorem 15.30 (Double Integral Change of Variables). Let S ⊆ R2
uv be a closed, bounded

region, T : S → R2
xy a mapping given by T (u, v) = (x(u, v), y(u, v)), and R = T (S). If T

is one-to-one on Int(S), x and y have continuous first partials on Int(S), and f : R → R is
continuous, then x

R

f(x, y) dA =
x
S

(f ◦ T )(u, v)
∣∣JT (u, v)∣∣dA.

Moving up a dimension, we make the following definition.

Definition 15.31. Let E ⊆ R3
uvw be a region. If T : E → R3

xyz is a mapping given by

T (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)),

where x, y, z : R3
uvw → R are differentiable functions on E, then the Jacobian of T is the

function JT : S → R given by

JT =

∣∣∣∣∣∣
xu xv xw
yu yv yw
zu zv zw

∣∣∣∣∣∣
It’s understood that the arguments of all the functions featured in the equation for JT in

this definition are (u, v, w). Another symbol used instead of JT is

∂(x, y, z)

∂(u, v, w)
,

which has some descriptive advantages but shall nonetheless be shunned here.
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Theorem 15.32 (Triple Integral Change of Variables). Let E ⊆ R3
uvw be a closed, bounded

region, T : E → R3
xyz a mapping given by

T (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)),

and D = T (E). If T is one-to-one on Int(E), x, y, and z are of class C ′ on Int(E), and
f : D → R is continuous, theny

D

f(x, y, z) dV =
y
E

(f ◦ T )(u, v, w)
∣∣JT (u, v, w)∣∣dV.
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16
Vector Calculus

16.1 – Vector Fields

A region R ⊆ R2 is called vertically simple if there exist continuous functions f1 and f2
such that

R = {(x, y) : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)}.

Similarly, R is horizontally simple if there exist continuous functions g1 and g2 such that

R = {(x, y) : c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y)}.

Later in this chapter there will be frequent consideration of a region R in R2 that is enclosed
by a planar curve C, in which case it is taken as understood that C is also part of R; that is,
C ⊆ R, and so R is a closed set.

Before defining a vector field, we summarize some terminology first introduced in Chapter 13.
Recall that a function of several independent variables is said to be continuously differentiable
on an open set U if it has continuous first partial derivatives on U (i.e. the first partials exist
and are continuous at every point in U). A real-valued function f : D ⊆ Rn → R is said to be
differentiable (resp. continuously differentiable) on an arbitrary set S ⊆ D if there exists an
open set U such that S ⊆ U ⊆ D and f is differentiable (resp. continuously differentiable) on
U . For f to be continuous on S, of course, simply means f is continuous at each point in S
regardless of whether S happens to be an open set or not.

Definition 16.1. Let R be a region in R2, and suppose f, g : R → R. A vector field in R is a
function F : R → R2 given by

F(x, y) = ⟨f(x, y), g(x, y)⟩,

and we say F is continuous, differentiable, or continuously differentiable on R if both f and g
are continuous, differentiable, or continuously differentiable on R, respectively.

More generally, if f1, . . . , fn : R ⊆ Rn → R, where n ≥ 2, then a vector field in R is a
function F : R → Rn given by

F(x) = ⟨f1(x), . . . , fn(x)⟩. (16.1)
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F is said to be continuous, differentiable, or continuously differentiable on R if f1, . . . , fn are
all continuous, differentiable, or continuously differentiable on R, respectively.

The function F given by (16.1) can also be denoted by ⟨f1, . . . , fn⟩, so that F = ⟨f1, . . . , fn⟩.
The natural way to think of F is as a function that assigns a vector

⟨f1(x), . . . , fn(x)⟩⟩
to each point x = ⟨x1, . . . , xn⟩ ∈ R.

Suppose C is a smooth curve in Rn and x ∈ C. We say a vector field F is orthogonal to C
at x if the vector F(x) (i.e. the vector that F assigns to x) is orthogonal to the tangent line to
C at x; that is F(x) is a normal vector for C at x. Similarly, F is parallel to C at x if F(x) is
parallel to the tangent line to C at x; that is F(x) is a tangent vector for C at x.

Example 16.2. Determine whether the vector field

F(x, y) =
〈
−y
4
,
x

4

〉
is orthogonal to or parallel to the points on the curve C = {(x, y) : x2 + y2 = 19.36}.

Solution. One approach to take is to parameterize C, which is a circle centered at (0, 0) with
radius 22/5, by

r(t) =
22

5
⟨cos t, sin t⟩, 0 ≤ t ≤ 2π.

Then an arbitrary point (x, y) on C corresponding to parameter value t is given by

(x(t), y(t)) =

Å
22 cos t

5
,
22 sin t

5

ã
for some t ∈ [0, 2π], which is to say x(t) = 4.4 cos t and y(t) = 4.4 sin t. Thus

F(x(t), y(t)) =
1

4
⟨−y(t), x(t)⟩ = 11

10
⟨− sin t, cos t⟩ ,

x

y

x

y

Figure 83. At left, the vector field F(x, y) = ⟨−y/4, x/4⟩ along with the curve
C. At right, the direction field for F.



397

−1 0
1 −1

0
1

−1

0

1

x y

z

−1
0

1 −1
0

1

−1

0

1

x y

z

Figure 84. The vector field F(x, y, z) = 1
2
⟨x, y, z⟩.

while a tangent vector to C at (x(t), y(t)) is given by

r′(t) = ⟨x′(t), y′(t)⟩ = 22

5
⟨− sin t, cos t⟩.

It’s now seen that

F(x(t), y(t)) =
1

4
r′(t);

that is, F(x(t), y(t)) is a nonzero scalar multiple of r′(t), which shows that F(x(t), y(t)) is
parallel to r′(t). Therefore F(x(t), y(t)) is parallel to the tangent line to C at (x(t), y(t)), and
since (x(t), y(t)) ∈ C is arbitrary we can conclude that F is parallel to all points on C. See
Figure 83. ■

In Figure 83 we see an example of a vector field in R2. A vector field in R3 can be harder to
visualize, but the stereoscopic image in Figure 84 gives depth to the vector field

F(x, y, z) =
1

2
⟨x, y, z⟩.

We have actually encountered vector fields already. Given a differentiable scalar-valued
function φ : R ⊆ R2 → R, say, there is the gradient of φ,

∇φ(x, y) = ⟨φx(x, y), φy(x, y)⟩ ,
written as ∇φ = ⟨φx, φy⟩.

Definition 16.3. Let φ be a differentiable function on an open region R ⊆ Rn. The vector field
F = ∇φ is a gradient field, and φ is a potential function for F.

Returning to the plane, let φ be a function with continuous first partials on an open region
R ⊆ R2, and let F be a vector field on R for which φ is a potential function. Suppose C is the
level curve φ(x, y) = c of φ, where c is some constant and C ⊆ R. (The level curves of φ are
called equipotential curves.) If (x, y) ∈ C and F(x, y) = ∇φ(x, y) ̸= 0, then by Proposition
13.46 the vector F(x, y) is orthogonal to C at (x, y).14

14Of course, if F(x, y) = 0 then it is trivially orthogonal to all vectors and curves.
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16.2 – Line Integrals

Let R be a region in R2, let f be a real-valued function f(x, y) = z with domain R, and let
C be a smooth curve in R parameterized in terms of arc length s by

r(s) = ⟨x(s), y(s), 0⟩, s ∈ [a, b].

To give the developments that follow a geometrical motivation, assume that f(x, y) ≥ 0 for all
(x, y) ∈ R, so that f generates a surface S given by

S = {(x, y, f(x, y)) : (x, y) ∈ R}

in R3 that lies above R in the xy-plane, and in particular f traces out a curve Cf given by

ρ(s) =
〈
x(s), y(s), f(x(s), y(s))

〉
, s ∈ [a, b],

that lies in S directly above C. What would be the “area” of the surface Σ in R3 that lies
“between” the curves C below and Cf above? To be more precise, for each a ≤ s ≤ b let
[r(s),ρ(s)] be the line segment in R3 with endpoints r(s) ∈ C and ρ(s) ∈ Cf . Then the surface
Σ is the union of all the points on all of these line segments:

Σ =
⋃

s∈[a,b]

[r(s),ρ(s)]

We return to the question: what is the area A(Σ) of Σ? More to the point, what would
be a natural definition for the area of Σ? We start by subdividing C into n smaller curves by
forming a partition P of [a, b]:

a = s0 < s1 < s2 < · · · < sn−1 < sn = b

For each k = 1, 2, . . . , n, let

Ck = {⟨x(s), y(s)⟩ : s ∈ [sk−1, sk]} ,

so Ck is the piece of C we get when we restrict ourselves to sk−1 ≤ s ≤ sk, and since our
parameter is arc length we know that the length of Ck is ∆sk = sk − sk−1. Now, for each k,
choose a point (any point) s∗k from the kth subinterval [sk−1, sk], which corresponds to a point
(x(s∗k), y(s

∗
k)) on Ck. Our subdivision of C now gives rise to a subdivision of Σ into n “panels,”

with the kth panel being the piece of Σ that lies above Ck. The height of the kth panel can be
taken to be approximately f(x(s∗k), y(s

∗
k)), which then enables us to approximate the area of

the kth panel as

(height)(length) = f(x(s∗k), y(s
∗
k))∆sk.

Then, the total area of S can be approximated by a Riemann sum:

A(Σ) ≈
n∑
k=1

f(x(s∗k), y(s
∗
k))∆sk.

Now, let

∥P∥ = max{∆sk : 1 ≤ k ≤ n},
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and note that if ∥P∥ converges to 0 then of necessity n must converge to ∞. We define the area
of Σ as follows:

A(Σ) = lim
∥P∥→0

n∑
k=1

f(x(s∗k), y(s
∗
k))∆sk.

The limit, if it exists, is called the line integral of f over C, and we write�
C

f(x(s), y(s))ds = lim
∥P∥→0

n∑
k=1

f(x(s∗k), y(s
∗
k))∆sk.

Many references are quick to point out that a line integral is more accurately referred to as a
curve integral. The general definition in Rn is as follows.

Definition 16.4. Let C ⊆ Rn be a piecewise smooth curve parameterized in terms of arc length
s by

r(s) = ⟨x1(s), . . . , xn(s)⟩, s ∈ [a, b], (16.2)

and let f : C → R. The line integral of f over C is�
C

f = lim
∥P∥→0

n∑
k=1

f(r(s∗k))∆sk,

provided the limit exists. If the limit exists then f is said to be integrable on C.

As with the definite integral defined in Chapter 5 the interval [a, b] can be replaced by an
infinite interval such as [a,∞) or (−∞, b], but we shan’t go into that here. Alternate symbols
for the line integral of f over C are, in order of increasing long-windedness,�

C

f ds,

�
C

f(r(s))ds, and

�
C

f(x1(s), . . . , xn(s))ds.

It’s a fact, not to be shown here, that if a piecewise smooth curve C has finite length, and
f : C → R is continuous, then f will be integrable on C. Also, notice that if f(r(s)) = 1 for all
s ∈ [a, b] then �

C

f = lim
∥P∥→0

n∑
k=1

∆sk = lim
∥P∥→0

L(C) = L(C),

where L(C) is our symbol for the length of C.
While Definition 16.4 is nice conceptually, it offers no easy means of evaluating line integrals.

But do not despair! A quick manipulation yields�
C

f = lim
∥P∥→0

n∑
k=1

(f ◦ r)(s∗k)∆sk =
� b

a

(f ◦ r)(s)ds

by Theorem 5.10; for after all, f ◦ r is nothing more than a real-valued function defined on an
interval [a, b]. In short, �

C

f =

� b

a

f(r(s))ds. (16.3)

This equation may seem to be wholly natural, but the catch is that it is only valid if C is
parameterized in terms of arc length. What if it is not?
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Suppose C is a smooth curve that has a parametrization in terms of arc length given by
(16.2), and moreover arc length s itself is given as a function of some other arbitrary parameter
t such that s = s(t) for α ≤ t ≤ β. Then ρ(t) = r(s(t)), t ∈ [α, β], is a parametrization of C
in terms of t. We assume that s(t) increases monotonically as t increases from α to β, so that
s(α) = a, s(β) = b, and s′(t) ≥ 0 for all α ≤ t ≤ β. (We define s′(α) and s′(β) by one-sided
limits as is done in the definition of a smooth curve in §12.6.) Now, recalling that ∥r′(s)∥ = 1
for all s (see §12.8), we obtain

ρ′(t) = r′(s(t))s′(t) ⇒ ∥ρ′(t)∥ = ∥r′(s(t))∥|s′(t)| ⇒ ∥ρ′(t)∥ = |s′(t)|,

and thus s′(t) = ∥ρ′(t)∥. We now employ an argument that amounts to little more than an
application of the Substitution Rule for Definite Integrals as given in §5.5:

� b

a

f(r(s))ds =

� s(β)

s(α)

(f ◦ r)(s)ds Since s(α) = a and s(β) = b

=

� β

α

(f ◦ r)(s(t))s′(t)dt Substitution Rule with s = s(t)

=

� β

α

f(r(s(t)))s′(t)dt By definition of f ◦ r

=

� β

α

f(ρ(t))∥ρ′(t)∥dt ρ(t) = r(s(t)) and s′(t) = ∥ρ′(t)∥

It might be helpful to follow the steps in the reverse direction. Combining the result above with
(16.3), we obtain �

C

f =

� β

α

f(ρ(t))∥ρ′(t)∥ dt.

The same result is obtained even if we assume that s(t) is monotonically decreasing, so that
s(α) = b, s(β) = a, and s′(t) ≤ 0 for all α ≤ t ≤ β (and it is a worthwhile exercise to verify this).
We have now obtained a formula that enables us to evaluate a line integral as a conventional
definite integral no matter how C is parameterized, at least as long as the parametrization is
smooth.

Suppose C is a piecewise smooth curve with parametrization (16.2). Then we may find a
partition of [a, b],

a = s0 < s1 < · · · < sn−1 < sn = b,

such that, for each 1 ≤ i ≤ n, the curve Ci given by ri(s) = r(s) for s ∈ [si−1, si] is smooth. We
may then apply Theorem 5.19 to obtain

�
C

f =

� b

a

f(r(s))ds =
n∑
i=1

� si

si−1

f(ri(s))ds.

Now, for each i let ρi(t) = ri(s(t)), t ∈ [ti−1, ti], be some other parametrization of Ci, where

α = t0 < t1 < · · · < tn−1 < tn = β.
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By the same arguments as above we find that�
Ci

f =

� si

si−1

f(ri(s))ds =

� ti

ti−1

f(ρi(t))∥ρ′
i(t)∥ dt

for each i, and thus by Theorem 5.19�
C

f =
n∑
i=1

� si

si−1

f(ri(s))ds =
n∑
i=1

� ti

ti−1

f(ρi(t))∥ρ′
i(t)∥ dt =

� β

α

f(ρ(t))∥ρ′(t)∥ dt

once again. We have now proved the following theorem, applicable in Rn for n ≥ 2.

Theorem 16.5. If C is a piecewise smooth curve given by

r(t) = ⟨x1(t), . . . , xn(t)⟩, t ∈ [a, b], (16.4)

and f : C → R is continuous, then�
C

f =

� b

a

f(r(t))∥r′(t)∥dt.

An immediate consequence of the proof of this theorem is the following, which makes clear
that the value of a line integral over a smooth curve is independent of the smooth vector function
chosen to parameterize the curve.

Corollary 16.6. If ρ1(t), t ∈ [α1, β1], and ρ2(t), t ∈ [α2, β2], are parametrizations of a smooth
curve C, then � β1

α1

f(ρ1(t))∥ρ′
1(t)∥dt =

� β2

α2

f(ρ2(t))∥ρ′
2(t)∥dt

Proof. Let r(s), s ∈ [a, b], be a parametrization of C in terms of arc length. Then� β1

α1

f(ρ1(t))∥ρ′
1(t)∥dt =

�
C

f(r(s))ds =

� β2

α2

f(ρ2(t))∥ρ′
2(t)∥dt,

which finishes the proof. ■

If C1 is an oriented curve from x1 to y1, and C2 is an oriented curve from x2 to y2, then the
concatenation of C1 and C2, written C1 + C2, may be regarded as the oriented curve C that
starts at x1, follows C1 to y1, and then jumps to x2 and follows C2 to y2. Oftentimes y1 = x2

(i.e. C1 ends where C2 begins), but it is not necessary.
Let C1 and C2 be curves parameterized by r1(t), t ∈ [a, b], and r2(t), t ∈ [b, c], respectively.

Suppose r1(b) = r2(b). Then C1 + C2 is a curve that may be parameterized by

r(t) =

®
r1(t), a ≤ t ≤ b

r2(t), b ≤ t ≤ c

Moreover, if C1 and C2 are each smooth curves, then C = C1 + C2 is piecewise smooth, and by
Theorem 16.5 along with Theorem 5.19 we have�

C

f =

� c

a

f(r(t))∥r′(t)∥dt =
� b

a

f(r1(t))∥r′1(t)∥dt+
� c

b

f(r2(t))∥r′2(t)∥dt =
�
C1

f +

�
C2

f.
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That is, �
C1+C2

f =

�
C1

f +

�
C2

f. (16.5)

As another example we may have C1 parameterized by r1(t), t ∈ [a, b], and C2 by r2(t),
t ∈ [a, b], with r1(b) ̸= r2(a); that is, C1 does not end at the same point where C2 begins. We
could still, if desired, parameterize C1 + C2 with a single piecewise defined function as follows

r(t) =

®
r1(t), a ≤ t < b

r2(t− b+ a), b ≤ t ≤ 2b− a

For instance, if C1 is given by r1(t) = ⟨cos t, sin t⟩, t ∈ [0, 2π], and C2 by r2(t) = ⟨3 cos t, 3 sin t⟩,
t ∈ [0, 2π], then the concatenation C1 + C2 may be parameterized by

r(t) =

®
⟨cos t, sin t⟩, 0 ≤ t < 2π

⟨3 cos t, 3 sin t⟩, 2π ≤ t ≤ 4π

In general, given curves C1, . . . , Ck in Rn, it is not desirable to determine a single (piecewise
defined) function r that parameterizes the concatenation C = C1+ · · ·+Ck, regardless of whether
C is continuous or not. Indeed, if Ci ∩ Cj = ∅ whenever i ̸= j, so that the curves C1, . . . , Ck
are mutually disjoint, there is little to be gained by insisting that travel along C1 + · · ·+ Ck
be taken in any particular order such as C1, C2, . . . , Ck or Ck, Ck−1, . . . , C1. Each of the curves
C1, . . . , Ck can be parameterized by functions r1, . . . , rk having distinct or identical domains,
depending on whatever is most convenient. The only question is, how should a line integral over
C1 + · · ·+ Cn be defined?

The equation (16.5) obtained above in the case of a piecewise smooth curve C1 + C2

that has smooth “pieces” C1 and C2 that are linked end-to-end (which is to say C1 + C2 is a
continuous curve) motivates the following definition concerning the line integral over an arbitrary
concatenation of piecewise smooth curves.

Definition 16.7. Given any finite collection of piecewise smooth curves C1, C2, . . . , Ck in Rn,
we define �

C1+C2+···+Ck

f =

�
C1

f +

�
C2

f + · · ·+
�
Ck

f. (16.6)

Example 16.8. Let p = ⟨−1, 0⟩, q = ⟨0, 1⟩ and r = ⟨1, 0⟩. Evaluate
�
C
f , where

f(x, y) = 2x− 3y

and C = [p,q] + [q, r].

Solution. By (16.6) we have
�
C
f =

�
[p,q]

f +
�
[q,r]

f . Parameterize [p,q] by

r1(t) = (1− t)p+ tq = ⟨−1, 0⟩+ t⟨1, 1⟩ = ⟨t− 1, t⟩, t ∈ [0, 1],

and parameterize [q, r] by

r2(t) = (1− t)q+ tr = ⟨0, 1⟩+ t⟨1,−1⟩ = ⟨t, 1− t⟩, t ∈ [0, 1].
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Now we obtain�
C

f =

�
[p,q]

f +

�
[q,r]

f =

� 1

0

f(r1(t))∥r′1(t)∥dt+
� 1

0

f(r2(t))∥r′2(t)∥dt

=
√
2

� 1

0

f(t− 1, t)dt+
√
2

� 1

0

f(t, 1− t)dt

=
√
2

� 1

0

[
2(t− 1)− 3t

]
dt+

√
2

� 1

0

[
2t− 3(1− t)

]
dt

= −
√
2

� 1

0

(t+ 2)dt+
√
2

� 1

0

(5t− 3)dt

= −
√
2

ï
1

2
t2 + 2t

ò1
0

+
√
2

ï
5

2
t2 − 3t

ò1
0

= −3
√
2,

by Theorem 16.5. ■

In what follows recall that for any given vector function r the unit tangent vector function
T is given by T = r′/∥r′∥.

Definition 16.9. Let F be a continuous vector field on a region R ⊆ Rn, and let C be a smooth
oriented curve in R having parametrization with respect to arc length r(s), s ∈ [a, b], consistent
with the orientation. The line integral of F over C is�

C

F ·T =

�
C

F(r(s)) ·T(s)ds. (16.7)

If R ⊆ R3, then
�
C
F ·T is the circulation of F on C.

Another notation for the line integral of F over C as defined by (16.7) is
�
C
F · dr, and yet

another notation will be introduced at the end of §16.3. Recalling from Proposition 13.23 that
∥r′(s)∥ = 1 whenever s is arc length, we have

T(s) =
r′(s)

∥r′(s)∥
= r′(s),

and so �
C

F ·T =

�
C

F · dr =
� b

a

F(r(s)) · r′(s)ds. (16.8)

The question now arises: how is
�
C
F ·T to be evaluated if C is not parameterized in terms

of arc length, but rather in terms of an arbitrary parameter t? To find out, let ρ(t), t ∈ [α, β],
be any smooth parametrization of C. Then there exists some function s such that ρ(t) = r(s(t))
for α ≤ t ≤ β, and as on page 400 we find that s′(t) = ∥ρ′(t)∥ if s is assumed to be a monotone
increasing function, so that a = s(α) and b = s(β). Then, since ρ′(t) = r′(s(t))s′(t), we obtain

r′(s(t)) =
ρ′(t)

s′(t)
=

ρ′(t)

∥ρ′(t)∥
. (16.9)

We now argue as in the proof of Theorem 16.5, picking up where (16.8) left off:� b

a

F(r(s)) · r′(s)ds =
� s(β)

s(α)

(F ◦ r)(s) · r′(s)ds Since a = s(α), b = s(β)
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=

� s(β)

s(α)

(
(F ◦ r) · r′)

)
(s)ds

=

� β

α

(
(F ◦ r) · r′)

)
(s(t))s′(t)dt Substitution: s = s(t)

=

� β

α

F(ρ(t)) · r′(s(t))∥ρ′(t)∥dt ρ(t) = r(s(t)), s′(t) = ∥ρ′(t)∥

=

� β

α

F(ρ(t)) · ρ′(t)dt By equation (16.9)

We have now proved the following.

Proposition 16.10. Let F be continuous vector field on a region in Rn containing a smooth
curve C parameterized by r(t), t ∈ [a, b]. Then�

C

F ·T =

� b

a

F(r(t)) · r′(t)dt (16.10)

If F is a force field (say a magnetic or gravitational field), then the work W done in moving
an object along C over time t in accordance with the position function r is given by (16.10).

Example 16.11. Find the work required to move an object from point (2, 0, 0) to (2, 0, 1) along
the helical curve C given by

r(t) = ⟨2 cos t, 2 sin t, t/2π⟩, 0 ≤ t ≤ 2π,

in the force field F(x, y, z) = ⟨−y, x, z⟩.

Solution. Putting Proposition 16.10 to work, we have

W =

�
C

F ·T =

� 2π

0

F(r(t)) · r′(t)dt

=

� 2π

0

F

Å
2 cos t, 2 sin t,

t

2π

ã
·
≠
−2 sin t, 2 cos t,

1

2π

∑
dt

=

� 2π

0

≠
−2 sin t, 2 cos t,

t

2π

∑
·
≠
−2 sin t, 2 cos t,

1

2π

∑
dt

=

� 2π

0

Å
4 sin2 t+ 4 cos2 t+

t

4π2

ã
dt =

� 2π

0

Å
4 +

t

4π2

ã
dt

=

ï
4t+

t2

8π2

ò2π
0

= 8π +
1

2
.

If force is measured in newtons N and distance in meters m, then the work is approximately
25.63 J. ■

The following proposition informs us that the value of
�
C
F · dr does not change if we change

our choice of parametrization for C, at least so long as we do not change the orientation of C.
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Proposition 16.12. Let F be a continuous vector field on a region in Rn containing a smooth
curve C parameterized by ρ1(t), t ∈ [α1, β1]. If ρ2(t), t ∈ [α2, β2] is another parametrization for
C consistent with the orientation induced by ρ1, then�

C

F · dρ1 =

�
C

F · dρ2.

Thus, the value of the line integral of F over C is invariant under orientation-preserving
reparametrization.

Proof. Let ρ1(t), t ∈ [α1, β1], and ρ2(t), t ∈ [α2, β2], be two parametrizations for C that induce
the same orientation, and let r(s), s ∈ [a, b], be a parametrization for C with respect to arc
length that is consistent with this orientation. By Proposition 16.10�

C

F · dρ1 =

� β1

α1

F(ρ1(t)) · ρ′
1(t)dt =

� b

a

F(r(s)) · r′(s)ds

=

� β2

α2

F(ρ2(t)) · ρ′
2(t)dt =

�
C

F · dρ2,

where in particular the steps that justify the second and third equalities can be found in the
proof of Proposition 16.10. ■

Given an oriented curve C, let −C denote the same curve, but with opposite orientation.
Thus, if C has parametrization r(t), t ∈ [a, b], then a suitable parametrization for −C would be,
say, ρ(τ) = r(a+ b− τ), a ≤ τ ≤ b. (It can be seen that r(t) starts at r(a) and stops at r(b),
while ρ(τ) starts at r(b) and stops at r(a).) Given curves C1 and C2 we naturally define

C1 − C2 = C1 + (−C2),

so that by Definition 16.7 �
C1−C2

f =

�
C1+(−C2)

f =

�
C1

f +

�
−C2

f.

Proposition 16.13. Let C be an oriented curve. If r(t), t ∈ [a, b], is a parametrization for C
consistent with its orientation, and ρ(τ), τ ∈ [α, β] is a parametrization for −C consistent with
its orientation, then �

−C
F · dρ = −

�
C

F · dr.

Proof. Let r(t), t ∈ [a, b], be a parametrization for C consistent with its orientation. Define a
parametrization for −C by

r̄(τ) = r(a+ b− τ), τ ∈ [a, b],

and note that this parametrization is consistent with the orientation of −C. By 16.10�
−C

F · dr̄ =
� b

a

F(r̄(τ)) · r̄′(τ) dτ = −
� b

a

F(r(a+ b− τ)) · r′(a+ b− τ) dτ,



406

where r̄′(τ) = −r′(a+ b− τ) by the Chain Rule. Making the substitution t = a+ b− τ , so that
dτ is replaced by (−1)dt, we obtain�

−C
F · dr̄ = −

� a

b

F(r(t)) · r′(t)(−1)dt =

� a

b

F(r(t)) · r′(t)dt

= −
� b

a

F(r(t)) · r′(t)dt = −
�
C

F · dr.

Now, if ρ(τ), τ ∈ [α, β], is an arbitrary parametrization for −C consistent with its orientation,
then by Proposition 16.12 �

−C
F · dρ =

�
−C

F · dr̄,

and therefore �
−C

F · dρ = −
�
C

F · dr

obtains, as was to be shown. ■

Given any curve C in R2 parameterized by r(t) = ⟨x(t), y(t)⟩, t ∈ [a, b], the outward unit
normal vector, n, is defined by n = T× k. Thus, for any a ≤ t ≤ b,

n(t) = T(t)× k(t) =
r′(t)

∥r′(t)∥
× ⟨0, 0, 1⟩ = ⟨x′(t), y′(t), 0⟩ × ⟨0, 0, 1⟩

∥r′(t)∥
=

⟨y′(t),−x′(t), 0⟩
∥r′(t)∥

,

and so as a vector in R2 we have

n(t) =
⟨y′(t),−x′(t)⟩

∥r′(t)∥
. (16.11)

Definition 16.14. Let F be a continuous vector field on a region R ⊆ R2, and let C be a
smooth curve in R parameterized by r(s) = ⟨x(s), y(s)⟩ for s ∈ [a, b], where s is arc length. If
n = T× k, then the flux of F across C is�

C

F · n =

�
C

F(r(s)) · n(s)ds.

As with
�
C
F ·T, we would like to develop a formula that allows for easy computation of�

C
F · n regardless of how C is parameterized. Let

r(s) = ⟨x(s), y(s)⟩, s ∈ [a, b],

and
ρ(t) = ⟨x̄(t), ȳ(t)⟩, t ∈ [α, β],

be parametrizations with respect to arc length s and an arbitrary parametrization t, respectively.
Observing that ∥r′(s)∥ = 1 for all a ≤ s ≤ b, define

n(s) =
⟨y′(s),−x′(s)⟩

∥r′(s)∥
= ⟨y′(s),−x′(s)⟩ and n̄(t) =

⟨ȳ′(t),−x̄′(t)⟩
∥ρ′(t)∥

.

As before, there is a function s(t) that maps from the parameter t to the parameter s such that
ρ(t) = r(s(t)) for all α ≤ t ≤ β. From this we obtain

ρ′(t) = (r ◦ s)′(t) = r′(s(t))s′(t),



407

or
⟨x̄′(t), ȳ′(t)⟩ =

〈
x′(s(t))s′(t), y′(s(t))s′(t)

〉
,

and thus
⟨ȳ′(t),−x̄′(t)⟩ =

〈
y′(s(t))s′(t),−x′(s(t))s′(t)

〉
. (16.12)

for α ≤ t ≤ β. Recall that ∥ρ′(t)∥ = s′(t). Then, if the left side of (16.12) is divided by ∥ρ′(t)∥
and the right side is divided by s′(t), we get

n̄(t) =
⟨ȳ′(t),−x̄′(t)⟩

∥ρ′(t)∥
=
〈
y′(s(t)),−x′(s(t))

〉
= n(s(t)) (16.13)

and therefore
n(s(t))∥ρ′(t)∥ = ⟨ȳ′(t),−x̄′(t)⟩. (16.14)

We shall need this enthralling factoid as we once more perform a series of manipulations that
makes use of the Substitution Rule. Letting F = ⟨f, g⟩ and recalling equation (16.3), we have�

C

F · n =

� b

a

F(r(s)) · n(s)ds =
� s(β)

s(α)

(
(F ◦ r) · n)

)
(s)ds

=

� β

α

(
(F ◦ r) · n)

)
(s(t))s′(t)dt =

� β

α

F(r(s(t))) · n(s(t))∥ρ′(t)∥dt

=

� β

α

F(ρ(t)) · ⟨ȳ′(t),−x̄′(t)⟩dt =
� β

α

⟨f(ρ(t)), g(ρ(t))⟩ · ⟨ȳ′(t),−x̄′(t)⟩dt

=

� β

α

[
f(ρ(t))ȳ′(t)− g(ρ(t))x̄′(t)

]
dt

What has been proved is the following.

Proposition 16.15. Let F = ⟨f, g⟩ be continuous vector field on a region in R2 containing a
smooth curve C parameterized by r(t) = ⟨x(t), y(t)⟩, t ∈ [a, b]. Then�

C

F · n =

� b

a

[
f(r(t))y′(t)− g(r(t))x′(t)

]
dt.

Example 16.16. Compute the flux for the vector field F(x, y) = ⟨y − x, x⟩ across C given by
r(t) = ⟨2 cos t, 2 sin t⟩, 0 ≤ t ≤ 2π.

Solution. Here we have x(t) = 2 cos t and y(t) = 2 sin t, so x′(t) = −2 sin t and y′(t) = 2 cos t,
and by Proposition 16.15 we obtain�

C

F · n =

� 2π

0

[
f(r(t))y′(t)− g(r(t))x′(t)

]
dt

=

� 2π

0

[
f(2 cos t, 2 sin t)(2 cos t)− g(2 cos t, 2 sin t)(−2 sin t)

]
dt

=

� 2π

0

[
(2 sin t− 2 cos t)(2 cos t)− (2 cos t)(−2 sin t)

]
dt

= 4

� 2π

0

2 cos t sin tdt− 4

� 2π

0

cos2 tdt
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=

� 2π

0

sin(2t)dt− 4

� 2π

0

1 + cos(2t)

2
dt

= 4

ï
−1

2
cos(2t)

ò2π
0

− 2

ï
t+

1

2
sin(2t)

ò2π
0

= 4 · 0− 2 · 2π = −4π.

From a physical standpoint, then, there is a net flux of 4π into the region enclosed by C. ■
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16.3 – Fundamental Theorem of Line Integrals

Recall that a function φ is called a potential function for a vector field F if ∇φ = F. It is
a fact that not every vector field has a potential function, and those that do are of particular
interest in mathematics and the sciences.

Definition 16.17. A vector field F is conservative on a region R ⊆ Rn if there exists an
open set U containing R and a function φ : U → R such that ∇φ = F on U .

Because our definition of partial derivative is valid only at interior points of a function’s
domain, the function ∇φ would of necessity have to be defined on an open set U containing R.
How can we tell whether a vector field is conservative? For vector fields defined on a region in
R2 or R3 we have the following.

Proposition 16.18. Let F = ⟨f, g⟩ be a vector field on a connected and simply connected region
R ⊆ R2, where f and g have continuous first partial derivatives on an open set V ⊇ R. Then F
is conservative on R if and only if fy = gx on an open set W ⊇ R.

Let F = ⟨f, g, h⟩ be a vector field on a connected and simply connected region D ⊆ R3,
where f , h and g have continuous first partial derivatives on an open set V ⊇ D. Then F is
conservative on D if and only if fy = gx, fz = hx, and gz = hy on an open set W ⊇ D.

Proof. Suppose F = ⟨f, g⟩ : R ⊆ R2 → R is a conservative vector field, so there exists an open
set U ⊇ R and a function φ : U → R such that F = ∇φ on U . Let W = U ∩ V , so W is an
open set such that R ⊆ W ⊆ U, V . Then f = φx and g = φy on the open set W , and since f
and g have continuous first partials on W it follows that φx and φy have continuous second
partials on W . Now, by Clairaut’s Theorem (see section 13.4) we obtain

fy = (φx)y = φxy = φyx = (φy)x = gx

on W (and therefore fy = gx on R).
The proof is much the same for the three-dimensional case. As for the proof of the converse

(i.e. fy = gx on R implies that F is conservative on R), see section 16.4. ■

Example 16.19. Show that the vector field

F(x, y, z) =

≠
1

y
,− x

y2
, 2z − 1

∑
is conservative on R = {(x, y, z) ∈ R3 : y ̸= 0}, and then determine a potential function φ.

Solution. Here R is not a connected region, but if we define

R1 = {(x, y, z) ∈ R3 : y > 0} and R2 = {(x, y, z) ∈ R3 : y < 0},

then we see that R1 and R2 are connected and simply connected disjoint open regions such that
R = R1 ∪R2.
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We begin by carrying out the analysis in R1, where y > 0. Letting x = ⟨x, y, z⟩, we have
F = ⟨f, g, h⟩ with

f(x) =
1

y
, g(x) = − x

y2
, and h(x) = 2z − 1.

Now,

fy(x) = − 1

y2
= gx(x), fz(x) = 0 = hx(x), and gz(x) = 0 = hy(x),

which immediately implies that F is conservative on R1 by appealing to Proposition 16.18 with
D, V , and W all set equal to R1. The same analysis leads us to conclude that F is conservative
on R2 as well, and therefore F is conservative on the entire open set R.

Now we set about finding a potential function φ. From ∇φ = F we have

φx(x) =
1

y
, φy(x) = − x

y2
and φz(x) = 2z − 1.

In particular φx(x) = 1/y implies that

φ(x) =

�
φx(x)dx =

�
1

y
dx =

x

y
+ c(y, z), (16.15)

where c(y, z) represents a function of y and z, which is to say that it is constant with respect
to x. (Note that differentiating x/y + c(y, z) with respect to x does indeed return us to the
integrand 1/y.)

Differentiating (16.15) with respect to y gives φy(x) = −x/y2 + cy(y, z), which, when
compared to φy(x) = −x/y2, informs us that cy(y, z) = 0 and therefore c(y, z) = c(z). That is,
the function c must not be a function of y.

At this point we have φ(x) = x/y + c(z). This implies that φz(x) = c′(z), which, when
compared to φz(x) = 2z − 1 above, gives c′(z) = 2z − 1. So

c(z) =

�
c′(z) dz =

�
(2z − 1) dz = z2 − z + c

for arbitrary constant c. Choosing c to be zero, we obtain

φ(x) =
x

y
+ z2 − z

at last. ■

The following is the foremost result of this section, and one that is analogous to the
Fundamental Theorem of Calculus given in Chapter 5.

Theorem 16.20 (Fundamental Theorem of Line Integrals). Let F be a continuous vector
field on an open region U ⊆ Rn. If φ : U → R is such that F = ∇φ, then�

C

F · dr = φ(b)− φ(a)

for any piecewise-smooth curve C ⊆ U from a to b.
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Proof. Suppose F = ∇φ on U , and let C ⊆ U be a smooth curve given by r(t), t ∈ [a, b], with
r(a) = a and r(b) = b. Using Chain Rule 1 in section 13.5,

(φ ◦ r)′(t) = ∇φ(r(t)) · r′(t) = F(r(t)) · r′(t).

Now we employ Proposition 16.10 to obtain�
C

F · dr =
� b

a

F(r(t)) · r′(t)dt =
� b

a

(φ ◦ r)′(t)dt,

and since � b

a

(φ ◦ r)′(t)dt = (φ ◦ r)(b)− (φ ◦ r)(a),

by the Fundamental Theorem of Calculus, it follows that�
C

F · dr = φ(r(b))− φ(r(a)) = φ(b)− φ(a).

If C is a piecewise-smooth curve, then there exist smooth curves C1, . . . , Ck such that
C = C1 + · · ·+ Ck, where each Ci is parameterized by ri(t), t ∈ [ai, bi], such that

bi = ri(bi) = ri+1(ai+1) = ai+1, (16.16)

and in particular r1(a1) = a and rk(bk) = b. Now, using Definition 16.7 and letting r denote
the parametrization of C itself, we have�

C

F · dr =
�
C1+···+Ck

F · dr =
�
C1

F · dr1 + · · ·+
�
Ck

F · drk

=

� b1

a1

F(r1(t)) · r′1(t)dt+ · · ·+
� bk

ak

F(rk(t)) · r′k(t)dt

=

� b1

a1

(φ ◦ r1)′(t)dt+ · · ·+
� bk

ak

(φ ◦ rk)′(t)dt

The last expression, by the Fundamental Theorem of Calculus, becomes

[φ(r1(b1))− φ(r1(a1))] + [φ(r2(b2))− φ(r2(a2))] + · · ·+ [φ(rk(bk))− φ(rk(ak))],

which yields

[φ(b1)− φ(a)] + [φ(b2)− φ(a2)] + [φ(b3)− φ(a3)] + [φ(b4)− φ(a4)] + · · ·
· · ·+ [φ(bk−2)− φ(ak−2)] + [φ(bk−1)− φ(ak−1)] + [φ(b)− φ(ak)].

Recalling (16.16), this leads to

[φ(a2)− φ(a)] + [φ(a3)− φ(a2)] + [φ(a4)− φ(a3)] + [φ(a5)− φ(a4)] + · · ·
· · ·+ [φ(ak−1)− φ(ak−2)] + [φ(ak)− φ(ak−1)] + [φ(b)− φ(ak)],

which collapses to give −φ(a) + φ(b) and therefore�
C

F · dr = φ(b)− φ(a)

results once more. ■
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x1−1

y

1
2

C

Figure 85.

Thus, if F is a continuous vector field that is conservative on an open connected region U ,
then there exists a function φ such that F(x) = ∇φ(x) for all x ∈ U , in which case given any
piecewise-smooth curve C ⊆ U parameterized by r(t), a ≤ t ≤ b, we find that�

C

F · dr =
�
C

∇φ · dr = φ(r(b))− φ(r(a)).

So the value of
�
C
F · dr does not hinge on the particular path that is taken from the point r(a)

to the point r(b), which is to say the line integral has the property known as independence of
path. This is an important property, because oftentimes F is known to be conservative but a
potential function φ has not been determined, in which case the evaluation of

�
C
F · dr may still

be greatly eased by passing from C to some more convenient path C ′ from r(a) to r(b).
The converse of the Fundamental Theorem of Line Integrals is not true in general unless U

happens to also be a connected region. This is given as a separate proposition.

Proposition 16.21. Let F be a continuous vector field on an open connected region U ⊆ Rn.
If φ : U → R is such that �

C

F · dr = φ(b)− φ(a)

for any piecewise-smooth curve C ⊆ U from a to b, then F = ∇φ.

The proof of this proposition will be supplied in time, but for now let’s turn to an example.

Example 16.22. Evaluate
�
C
F · dr, where F(x, y) = ⟨y2, 2xy⟩ and C is the curve given by

r(t) =
¨
t,
√
1− t6

∂
, −1 ≤ t ≤ 1.

Solution. The curve C begin at the point (−1, 0) and ends at (1, 0), as shown in Figure 85.
It would not be the easiest curve to work with. However, F = ⟨f, g⟩ with f(x, y) = y2 and
g(x, y) = 2xy, and since fy(x, y) = 2y = gx(x, y) it follows from Proposition 16.18 that F
is conservative. So, by the Fundamental Theorem of Line Integrals the value of

�
C
F · dr is

independent of the path taken from (−1, 0) to (1, 0). Therefore we can evaluate the line integral
along the path C ′ given by ρ(t) = ⟨t, 0⟩, −1 ≤ t ≤ 1, which is the line segment connecting these
two points. Now,�

C

F · dr =
�
C′
F · dρ =

� 1

−1

F(ρ(t)) · ρ′(t)dt =

� 1

−1

F(t, 0) · ⟨1, 0⟩dt
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=

� 1

−1

⟨0, 0⟩ · ⟨1, 0⟩dt =
� 1

−1

(0)dt = 0.

It’s worthwhile also evaluating the line integral along the original path C which, while not as
nice, is still quite feasible. ■

As we have seen in the previous section, the value of
�
C
F ·dr is independent of the function r

that is used to parameterize C, as long as orientation is preserved. (We say
�
C
F · dr is invariant

under orientation-preserving reparametrization.) Thus the r and T in the equivalent symbols�
C
F · dr and

�
C
F ·T become something of an encumbrance in situations when having a specific

parametrization for C is unnecessary. This leads us to so-called differential form notation, which
has wide utility in higher mathematics, but for our purposes will serve primarily as a means of
denoting line integrals without making explicit mention of parametrizations. Given a vector
field F = ⟨f, g⟩ on a region R containing a curve C parameterized by r, we define�

C

F · dr =
�
C

f dx+ gdy (16.17)

Here f dx+ gdy, called a “differential one-form,” is considered to be a single object, so usually
it is not encapsulated in parentheses. An easy way to remember (16.17) is to think of dr as
⟨dx, dy⟩, so

F · dr = ⟨f, g⟩ · ⟨dx, dy⟩ = f dx+ gdy.

In the special case when f = 0 or g = 0 we define�
C

0dx+ gdy =

�
C

gdy and

�
C

f dx+ 0dy =

�
C

f dx. (16.18)

Of particular interest for us is the result of Proposition 16.13, which previously required
explicit mention of parametrizations r and ρ for C and −C, respectively, but in our new notation
is written simply as �

−C
f dx+ gdy = −

�
C

f dx+ gdy.

Next we define �
C

F · n =

�
C

f dy − gdx, (16.19)

which can be remembered by thinking of n as being ⟨dy,−dx⟩ and carrying out the dot product.
(Consider: if dr = ⟨dx, dy⟩ is thought of as a vector tangent to C, then ⟨dy,−dx⟩ would be a
vector normal to C.)

In the statement of the following proposition the symbol
�
C
is used to indicate that the line

integral is over a curve C that is closed.

Proposition 16.23. Let U ⊆ Rn be an open region. Then F is conservative on U if and only if�
C

f dx+ gdy = 0

on all simple closed piecewise-smooth curves C ⊆ U .
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16.4 – Green’s Theorem

Throughout the remainder of this chapter the symbols�
C

and

�
C

will denote a line integral over a closed curve C in the xy-plane that has a positive (counter-
clockwise) orientation and negative (clockwise) orientation, respectively, as viewed from z > 0
in the standard right-handed R3

xyz system. Proposition 16.13 implies that�
C

f dx+ gdy = −
�
C

f dx+ gdy,

which should be remembered during the developments to come.

Lemma 16.24. Given any continuous vector field F = ⟨f, g⟩ : R ⊆ R2 → R and piecewise-
smooth curve C ⊆ R,�

C

f dx+ gdy =

�
C

f dx+

�
C

gdy and

�
C

f dy − gdx =

�
C

f dy −
�
C

gdx.

Proof. Letting r(t) = ⟨x(t), y(t)⟩, t ∈ [a, b], be a parametrization for C, we obtain�
C

f dx+

�
C

gdy =

Å�
C

f dx+ 0dy

ã
+

Å�
C

0dx+ gdy

ã
Equation (16.18)

=

�
C

⟨f, 0⟩ · dr+
�
C

⟨0, g⟩ · dr Equation (16.17)

=

� b

a

⟨f(r(t)), 0⟩ · r′(t)dt+
� b

a

⟨0, g(r(t))⟩ · r′(t)dt Prop. 16.10

=

� b

a

f(r(t))x′(t)dt+

� b

a

g(r(t))y′(t)dt Dot product

=

� b

a

[f(r(t))x′(t) + g(r(t))y′(t)] dt Section 5.2

=

� b

a

F(r(t)) · r′(t)dt Dot product

=

�
C

F · dr =
�
C

f dx+ gdy, Prop. 16.10 and (16.17)

which verifies the first equation in the lemma. Verification of the second equation is done
similarly. ■

We now come to the first form of Green’s Theorem, known as the circulation form. It is
important to remember that we define the region R ⊆ R2 bounded by a closed curve C to
include C itself, and thus R is a closed set.
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Theorem 16.25 (Green’s Theorem—Circulation Form). Let C ⊆ R2 be a simple closed
piecewise-smooth curve that bounds a region R, so that C = ∂R. If f and g have continuous
first partial derivatives on an open region containing R, then�

∂R

f dx+ gdy =
x
R

(gx − fy) dA. (16.20)

Note the use of the symbol
�
indicating that ∂R must have a positive (counterclockwise)

orientation. Also, some books state Green’s Theorem a little differently, giving conditions
on R instead of on C. Specifically, instead of stating that C must be simple, closed, and
piecewise-smooth, one could equivalently require that R be a connected and simply connected
region with piecewise-smooth boundary.

If f , g, and C are as in Green’s Theorem, we define F = ⟨f, g⟩, and we give C a positively
oriented piecewise-smooth parametrization r(t) = ⟨x(t), y(t)⟩, t ∈ [a, b], then (16.20) may be
written �

∂R

F · dr =
x
R

Å
∂g

∂x
− ∂f

∂y

ã
dA,

where we use Leibniz notation at right for variety’s sake.

Proof. We will prove Theorem 16.25 for the special case when R is both a vertically and
horizontally simple region, and C = ∂R is smooth. Thus

R = {(x, y) : a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)} = {(x, y) : c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)},

and so if C1 is the curve given by r1(t) = ⟨t, φ1(t)⟩, t ∈ [a, b], and C2 is the curve given by
r2(t) = ⟨t, φ2(t)⟩, t ∈ [a, b], then C = C1 + (−C2) = C1 −C2 as shown at left in Figure 86. Now,
by Definition 16.7 and Proposition 16.13,�

C

f dx =

�
C1

f dx+

�
−C2

f dx =

�
C1

f dx−
�
C2

f dx,

C1

−C2

x

y

a b

R

−C ′
1

C ′
2

x

y

d

c

R

Figure 86.
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and so by Proposition 16.10�
C

f dx =

� b

a

⟨f(r1(t)), 0⟩ · r′1(t)dt−
� b

a

⟨f(r2(t)), 0⟩ · r′2(t)dt

=

� b

a

f(t, φ1(t))dt−
� b

a

f(t, φ2(t))dt

=

� b

a

[f(t, φ1(t))− f(t, φ2(t))]dt (16.21)

where we use the fact that r′i(t) = ⟨1, φ′
i(t)⟩ for each i. On the other hand Fubini’s Theorem

and the Fundamental Theorem of Calculus yield

x
R

fy dA =

� b

a

� φ2(x)

φ1(x)

fy(x, y)dydx =

� b

a

[f(x, φ2(x))− f(x, φ1(x))]dx,

and a comparison of this result with (16.21) makes clear that
x
R

fy dA = −
�
C

f dx. (16.22)

Next, let C ′
1 be given by

ρ1(t) = ⟨ψ1(t), t⟩, t ∈ [c, d ],

and C ′
2 by

ρ2(t) = ⟨ψ2(t), t⟩, t ∈ [c, d ],

so that C = −C ′
1 +C ′

2 as shown at right in Figure 86. By Definition 16.7 and Proposition 16.13,�
C

gdy =

�
−C′

1

gdy +

�
C′

2

gdy = −
�
C′

1

gdy +

�
C′

2

gdy,

and so by Proposition 16.10�
C

gdy = −
� d

c

⟨0, g(ρ1(t))⟩ · ρ′
1(t)dt+

� d

c

⟨0, g(ρ2(t))⟩ · ρ′
2(t)dt

=

� d

c

g(ψ2(t), t)dt−
� b

a

g(ψ1(t), t)dt

=

� d

c

[g(ψ2(t), t)− g(ψ1(t), t)]dt (16.23)

where we use the fact that ρ′
i(t) = ⟨ψ′

i(t), 1⟩ for each i. On the other hand

x
R

gx dA =

� d

c

� ψ2(y)

ψ1(y)

gx(x, y)dxdy =

� d

c

[g(ψ2(y), y)− g(ψ1(y), y)]dy,

and a comparison of this result with (16.23) shows that
x
R

gx dA =

�
C

gdy. (16.24)
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Finally, equations (16.22) and (16.24) taken together give�
C

f dx+ gdy =

�
C

f dx+

�
C

gdy = −
x
R

fy dA+
x
R

gx dA =
x
R

(gx − fy) dA,

where the first equality is justified by Lemma 16.24. ■

The first application of the theorem will be to finish the proof of Proposition 16.18. The
argument in R2 should be sufficient to convey the general approach.

Proof of Proposition 16.18 Concluded. Suppose fy = gx on an open set W containing
R ⊆ R2, so that gx − fy = 0. We can assume without loss of generality that W is contained
in V and is itself both connected and simply connected. Hence f and g have continuous first
partials on W .

Now, let C ⊆ W be a simple closed piecewise-smooth curve that bounds a region S. Since
S ⊆ W it’s seen immediately that f and g have continuous first partials on an open region
containing S, and so Green’s Theorem can be invoked to obtain�

C

f dx+ gdy =
x
S

(gx − fy) dA =
x
S

(0) dA = 0.

By Proposition 16.23, F is conservative on W and therefore is conservative on R. ■

Example 16.26. Use Green’s Theorem to evaluate the line integral�
C

(y2 − x2y)dx+ xy2dy,

where C consists of the arc on the circle x2 + y2 = 4 from (2, 0) to (
√
2,
√
2), the line segment

from (
√
2,
√
2) to (0, 0), and the line segment from (0, 0) to (2, 0).

Solution. Let R be the region bounded by C, so R is a circular sector as shown in Figure 87,
and C = ∂R. Clearly the transformation (r, θ) 7→ (r cos θ, r sin θ) maps the region

S = {(r, θ) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π/4}

x

y

C

(
√
2,
√
2 )

2

R

Figure 87.
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onto R, so Theorem 15.11 will be of use here:�
C

(y2 − x2y)dx+ xy2dy =
x
R

[
y2 − (2y − x2)

]
dA

=
x
S

(
r2 sin2 θ − 2r sin θ + r2 cos2 θ

)
r dA

=

� π/4

0

� 2

0

(
r3 − 2r2 sin θ

)
drdθ

=

� π/4

0

ï
r4

4
− 2r3

3
sin θ

ò2
0

dθ =

� π/4

0

Å
4− 16

3
sin θ

ã
dθ

=

ï
4θ +

16

3
cos θ

òπ/4
0

= π +
16

3
√
2
− 16

3
.

■

Let f and g have continuous first partials on an open region containing R ⊆ R2. Suppose R
is not connected and simply-connected, but there exist measurable sets (see §14.2) R1 and R2

such that R = R1 ∪R2 and A(R1 ∩R2) = 0. Then by Proposition 15.8 we can writex
R

(gx − fy) dA =
x
R1

(gx − fy) dA+
x
R2

(gx − fy) dA. (16.25)

Now, assuming that R1, R2 are each both connected and simply-connected, ∂R1, ∂R2 are each
simple closed piecewise-smooth curves, and r1, r2 are each parametrizations for ∂R1, ∂R2 with
positive orientation, then by Green’s Theorem equation (16.25) becomesx

R

(gx − fy) dA =

�
∂R1

F · dr1 +
�
∂R2

F · dr2. (16.26)

It may be that the right side of (16.26) is much easier to evaluate than the left side.

Proposition 16.27. Let C1, C2 be closed simple piecewise-smooth curves, with C1 lying in the
interior of the region bounded by C2. If C1 has negative and C2 positive orientation, R is the
region bounded by C1 and C2, and g, f have continuous first partial derivatives on an open
region containing R, thenx

R

(gx − fy) dA =

�
C1

f dx+ gdy +

�
C2

f dx+ gdy.

Proof. Let p1, p2 be points on C1 and q1, q2 points on C2. Now, define the curve A =
A1 + A2 + A3 + A4, where A1 is a simple, piecewise-smooth path from p1 to q1, A2 is the path
on C2 from q1 to q2 consistent with the orientation of C2, A3 is a simply, piecewise-smooth path
from q2 to p2, and A4 is the path on C1 from p2 to p1 consistent with the orientation of C1.
Next, define the curve B = B1 +B2 +B3 +B4, where B1 is −A1 from q1 to p1, B2 is the path
on C1 from p1 to p2 consistent with the orientation of C1, B3 is −A3 from p2 to q2, and B4 is
the path on C2 from q2 to q1 consistent with the orientation of C2. See Figure 88. Curve A is
the boundary of a connected and simply-connected region R1, while B is the boundary of a
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connected and simply-connected region R2; and since R = R1 ∪ R2 and A(R1 ∩ R2) = 0, by
(16.25) we obtain x

R

(gx − fy) dA =
x
R1

(gx − fy) dA+
x
R2

(gx − fy) dA. (16.27)

Now, by construction A = ∂R1 and B = ∂R2 are each closed, simple, piecewise-smooth, and
positively oriented curves, so by Green’s Theorem (16.27) becomes

x
R

(gx − fy) dA =

�
A

f dx+ gdy +

�
B

f dx+ gdy. (16.28)

Suppressing integrands in the interests of brevity, we have�
A

+

�
B

=

�
A1

+

�
A2

+

�
A3

+

�
A4

+

�
B1

+

�
B2

+

�
B3

+

�
B4

, (16.29)

and since �
B1

=

�
−A1

= −
�
A1

and

�
B3

=

�
−A3

= −
�
A3

,

equation (16.29) becomes
�
A

+

�
B

=

�
A2

+

�
A4

+

�
B2

+

�
B4

=

Å�
B2

+

�
A4

ã
+

Å�
A2

+

�
B4

ã
=

�
B2+A4

+

�
A2+B4

=

�
C1

+

�
C2

This result, combined with (16.28), yields

x
R

(gx − fy) dA =

�
C1

f dx+ gdy +

�
C2

f dx+ gdy,

which finishes the proof. ■

R

C2

C1 q2
A3 p2 p1

A1 q1
B3 B1

A4

A2

B2

B4

R1

R2

Figure 88. At right, the curves A and B.
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In the classical notation, if F = ⟨f, g⟩, and parametrizations for C1 and C2 are given by
functions r1 and r2, respectively, then Proposition 16.27 givesx

R

(gx − fy) dA =

�
C1

F · dr1 +
�
C2

F · dr2.

Compare this result to (16.26), for the differences are subtle. Of course, explicit parametrizations
are not always practical for every curve, as the next example illustrates.

Example 16.28. Given the vector field

F(x, y) =

≠
− y

x2 + y2
,

x

x2 + y2

∑
,

show that if C ⊆ R2 is a simple closed piecewise-smooth curve that encloses the origin, then�
C

f dx+ gdy = 2π.

Solution. Let C be an arbitrary simple closed piecewise-smooth curve that encloses (0, 0)
and has positive orientation. As shown at left in Figure 89, C may be a curve that would be
quite difficult to parameterize in any fashion, much less in a fashion that would admit easy
analysis. The way to proceed is to introduce a second curve C ′ that also encloses the origin, but
which lies in the interior of the region R bounded by C, has negative orientation, and is easily
parameterized. Since (0, 0) ∈ Int(R), there exists some ϵ > 0 such that Bϵ(0, 0) ⊆ R, and so we
can let C ′ be the circle centered at (0, 0) with radius ϵ.

Let R′ be the region bounded by C ′ and C; that is, R′ = R \Bϵ(0, 0) as shown at right in
Figure 89. Since

f(x, y) = − y

x2 + y2
and g(x, y) =

x

x2 + y2

have continuous first partials on R2 \ (0, 0), which contains R′, by Proposition 16.27�
C′
f dx+ gdy +

�
C

f dx+ gdy =
x
R′

(gx − fy) dA

=
x
R′

ï
y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2

ò
dA

x

y

C

R
x

y

C

C ′

R′

Figure 89.
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=
x
R′

(0) dA = 0,

and thus �
C

f dx+ gdy = −
�
C′
f dx+ gdy. (16.30)

Now, the circle C ′ with negative orientation is easily parameterized by r(t) = ϵ⟨sin t, cos t⟩
for t ∈ [0, 2π]. With this parametrization we obtain�

C′
f dx+ gdy =

�
C′
F · dr =

� 2π

0

F(r(t)) · r′(t)dt

=

� 2π

0

ϵ

(ϵ sin t)2 + (ϵ cos t)2
⟨− cos t, sin t⟩ · ⟨ϵ cos t,−ϵ sin t⟩dt

=

� 2π

0

⟨− cos t, sin t⟩ · ⟨cos t,− sin t⟩dt =
� 2π

0

(− cos2 t− sin2 t)dt

=

� 2π

0

(−1)dt = −2π,

and so by equation (16.30) we conclude that�
C

f dx+ gdy = 2π,

as was to be shown. ■

It’s worth reflecting on the example above, because the result is really quite astonishing: no
matter how bizarre the curve C is, we are assured that the value of the line integral of F over C
is the same. And not only that, we are able to determine that the value is 2π!

Theorem 16.29 (Green’s Theorem—Flux Form). Let C ⊆ R2 be a simple closed piecewise-
smooth curve that bounds a region R, so that C = ∂R. If f and g have continuous first partial
derivatives on an open region containing R, then�

∂R

f dy − gdx =
x
R

(fx + gy) dA.

This form of Green’s Theorem can easily be proven by replacing g and f with f and −g,
respectively, in the circulation form. Recalling the classical notation for the line integral and
writing the double integral in Leibniz notation, the theorem tells us that�

∂R

F · n =

�
∂R

f dy − gdx =
x
R

Å
∂f

∂x
+
∂g

∂y

ã
dA,

where it is understood that F = ⟨f, g⟩ and n is the outward unit normal vector function for C.

Example 16.30. Use Green’s Theorem to evaluate the line integral�
C

f dy − gdx,

where ⟨f, g⟩ = ⟨0, xy⟩ and C is the triangle with vertices (0, 0), (2, 0), and (0, 4).
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x

y

R

4

2

Figure 90.

Solution. The form of the line integral calls for the flux form of Green’s Theorem. Letting R
be the triangular region bounded by C, we obtain�

C

f dy − gdx =
x
R

[∂x(0) + ∂y(xy)] dA =
x
R

x dA =

� 2

0

� −2x+4

0

xdydx

=

� 2

0

[xy]−2x+4
0 dx =

� 2

0

(−2x2 + 4x)dx =

ï
−2

3
x3 + 2x2

ò2
0

=
8

3
.

See Figure 90. ■

Wholly analogous to Proposition 16.27 (and proved by the same argument) is the following.

Proposition 16.31. Let C1, C2 be closed simple piecewise-smooth curves, with C1 lying in the
interior of the region bounded by C2. If C1 has negative and C2 positive orientation, R is the
region bounded by C1 and C2, and g, f have continuous first partial derivatives on an open
region containing R, thenx

R

(fx + gy) dA =

�
C1

f dy − gdx+

�
C2

f dy − gdx.

The usefulness of this result can be exhibited right away.

Example 16.32. Compute the flux of

F(x, y) =
〈
xy2, x2y

〉
across the boundary of the region R = {(x, y) : 1 ≤ x2 + y2 ≤ 4}.

Solution. The region R, as Figure 91 shows, is an annulus with a boundary ∂R that consists
of two simple closed piecewise-smooth curves, C1 and C2, that are completely separate from
one another, with C1 being in the interior of the region bounded by C2. Let R1 and R2 be the
regions bounded by C1 and C2, respectively. The flux of F = ⟨f, g⟩ across C1 into R equals the
flux of F out of R1, and thus the flux of F across C1 out of R is the negative of the flux of F
out of R1. As a result the (outward) flux of F across ∂R = C1 ∪ C2 as a whole is given by

Flux of F across ∂R = (Flux of F across C2)− (Flux of F across C1)



423

x
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R

C1

C2
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1 x

y

Figure 91. At right, the vector field F at 1/4-scale.

=

�
C2

f dy − gdx−
�
C1

f dy − gdx

=

�
C2

f dy − gdx+

�
C1

f dy − gdx

=
x
R

(fx + gy) dA,

where the last equality is a consequence of Proposition 16.31.
If T : R2

rθ → R2
xy is the usual conversion transformation from polar to rectangular coordinates,

then it can be seen that R = T (S) for

S = {(r, θ) : 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1},

and so Theorem 15.11 givesx
R

(fx + gy) dA =
x
R

(x2 + y2) dA =
x
S

(r2 sin2 θ + r2 cos2 θ)r dA

=
x
S

r3 dA =

� 2π

0

� 2

1

r3 drdθ =

� 2π

0

ï
1

4
r4
ò2
1

dθ

=

� 2π

0

15

4
dθ =

15

2
π.

Therefore the (outward) flux of F across ∂R is 15π/2. ■
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16.5 – Divergence and Curl

The gradient operator in Rn is notationally represented as

∇ = ⟨∂x1 , . . . , ∂xn⟩, (16.31)

and is defined by

∇f = ⟨∂x1f, . . . , ∂xnf⟩ = ⟨fx1 , . . . , fxn⟩

for a function f with domain a subset of Rn. Thus, if x ∈ Rn is a point where the partial
derivatives fxi of f all exist, then

∇f(x) = ⟨fx1(x), . . . , fxn(x)⟩.

We see that ∇f is the familiar “gradient of f” from Chapter 13.
It must be stressed that the expression on the right-hand side of (16.31) is not a vector, but

rather a convenient symbol that facilitates the proper use of the operator ∇. For instance, if
F = ⟨f1, . . . , fn⟩ is a vector field with domain a subset of Rn, then we may define the function

∇ · F = ⟨∂x1 , . . . , ∂xn⟩ · ⟨f1, . . . , fn⟩ =
n∑
i=1

∂xifi. (16.32)

Similarly, if F = ⟨f, g, h⟩ is a vector field with domain a subset of R3, then we may define the
function

∇× F = ⟨∂x, ∂y, ∂z⟩ × ⟨f, g, h⟩ = ⟨hy − gz, fz − hx, gx − fy⟩. (16.33)

The equalities in (16.32) and (16.33) are established by definition, with the middle expressions
serving as convenient symbols to help connect the functions ∇ · F and ∇× F to their intended
meanings. When the dot product is applied to the middle expression in (16.32) as if ⟨∂x1 , . . . , ∂xn⟩
were a vector, the expression at right follows immediately. As for (16.33), we need only treat
the middle expression as a cross product of two vectors to obtain

∇× F = ⟨∂x, ∂y, ∂z⟩ × ⟨f, g, h⟩ =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
f g h

∣∣∣∣∣∣
=

∣∣∣∣∂y ∂z
g h

∣∣∣∣ i− ∣∣∣∣∂x ∂z
f h

∣∣∣∣ j+ ∣∣∣∣∂x ∂y
f g

∣∣∣∣k
= (∂yh− ∂zg)i− (∂xh− ∂zf)j+ (∂xg − ∂yf)k

= (hy − gz)i+ (fz − hx)j+ (gx − fy)k,

which readily delivers the expression at right in (16.33).
The setting throughout the remainder of this section will be strictly limited to R3, the

three-dimensional space that is typical in physical applications.

Definition 16.33. Let F = ⟨f, g, h⟩ be a differentiable vector field on a region R ⊆ R3. The
divergence of F on R is

divF = ∇ · F = fx + gy + hz,
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and the curl of F on R is

curlF = ∇× F = ⟨hy − gz, fz − hx, gx − fy⟩.
If divF = 0, then F is source-free; and if curlF = 0, then F is irrotational.

Thus, if x ∈ R, we have

(divF)(x) = (∇ · F)(x) = fx(x) + gy(x) + hz(x)

and
(curlF)(x) = (∇× F)(x) =

〈
hy(x)− gz(x), fz(x)− hx(x), gx(x)− fy(x)

〉
Example 16.34. Find the divergence of F(x, y, z) = ⟨yz sinx, xz cos y, xy cos z⟩.

Solution. We have

(divF)(x, y, z) = ∇ · F = ⟨∂x, ∂y, ∂z⟩ · ⟨yz sinx, xz cos y, xy cos z⟩

= ∂x(yz sinx) + ∂y(xz cos y) + ∂z(xy cos z)

= yz cosx− xz sin y − xy sin z,

by Definition 16.33. ■

Example 16.35. Find the curl of F(x, y, z) = ⟨0, z2 − y2, yz⟩.

Solution. We have

(curlF)(x, y, z) = (∇× F)(x, y, z) =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
0 z2 − y2 yz

∣∣∣∣∣∣
=

∣∣∣∣ ∂y ∂z
z2 − y2 yz

∣∣∣∣ i− ∣∣∣∣∂x ∂z
0 yz

∣∣∣∣ j+ ∣∣∣∣∂x ∂y
0 z2 − y2

∣∣∣∣k
=
[
∂y(yz)− ∂z(z

2 − y2)
]
i−
[
∂x(yz)− ∂z(0)

]
j+
[
∂x(z

2 − y2)− ∂y(0)
]
k

= −zi = ⟨−z, 0, 0⟩,
by Definition 16.33. ■
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16.6 – Parametrized Surfaces

In Chapter 12 the concept of a parameterized curve C was introduced, which is a curve that
is generated by a vector function r : I ⊆ R → Rn, n ≥ 2, given as r(t) = ⟨x1(t), . . . , xn(t)⟩ for
t ∈ I. Thus as a point set C = r(I), which is to say C is the trace, or range, of r. Now we
consider parameterized surfaces.

Definition 16.36. A parameterized surface Σ is a surface that is generated by a vector
function r : R ⊆ R2 → Rn, n ≥ 3, given as

r(u, v) = ⟨x1(u, v), x2(u, v), . . . , xn(u, v)⟩

for (u, v) ∈ R. Thus as a point set Σ = r(R) ⊆ Rn.

The symbol Σ, and not S, will consistently be used to designate a surface throughout the
remainder of this chapter, because S will consistently be used to denote surface area. Also, for
the remainder of this chapter we will assume that any surface is in R3 unless otherwise specified.

Example 16.37. Consider an ellipsoid in R3 centered at the origin, given by the general
equation

x2

a2
+
y2

b2
+
z2

c2
= 1. (16.34)

We can parameterize this surface Σ using the fact that any point lying on it can be specified
with two bits of information: first, an angle 0 ≤ u ≤ π with respect to the positive x-axis which
determines a point xu on the ellipse C that is the xy-trace of Σ as shown at left in Figure 92,
and then an angle 0 ≤ v ≤ 2π which determines a point xuv on the ellipse Cu lying at the
intersection of Σ with the plane containing xu that is parallel to the yz-plane, as shown at right
in Figure 92.

Since C can be parameterized by

ρ(t) = ⟨a cos t, b sin t, 0⟩

x

y

xu

x′
u

u

b

a

C

Cu R2
xy

z

xuv

v

b sinu

c sinu

xu

Cu

Figure 92. Left: the ellipse C, with segment [xu,x
′
u] depicting the cross-sectional

ellipse Cu viewed edge-on from above. Right: the cross-sectional ellipse Cu.
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Figure 93. Ellipsoid given by (16.36), with “poles” at front and back.

for t ∈ [0, 2π], we find that xu = ρ(u) = ⟨a cosu, b sinu, 0⟩. Now, using (16.34) and the fact
that x = a cosu on Cu, we find an equation for Cu:

(a cosu)2

a2
+
y2

b2
+
z2

c2
= 1 ⇒ y2

b2
+
z2

c2
= 1− cos2 u ⇒ y2

(b sinu)2
+

z2

(c sinu)2
= 1.

From this we find a suitable parametrization for Cu to be

ρu(t) = ⟨a cosu, b sinu cos t, c sinu sin t⟩

for t ∈ [0, 2π], and so xuv = ρu(v) = ⟨a cosu, b sinu cos v, c sinu sin v⟩. This is all we need to
construct a parametrization for Σ itself:

r(u, v) = ⟨a cosu, b sinu cos v, c sinu sin v⟩, (16.35)

for u ∈ [0, π], v ∈ [0, 2π]. If we let a = 6, b = 4, and c = 3, we obtain an ellipsoid with
parametrization

r(u, v) = ⟨6 cosu, 4 sinu cos v, 3 sinu sin v⟩, (16.36)

as shown in Figure 93.
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Figure 94. Ellipsoid given by (16.37), with “poles” at top and bottom.
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As with curves there is always more than one possible parametrization for a given surface Σ.
An alternate parametrization for the ellipsoid with a = 6, b = 4, and c = 3 can be obtained
from (16.36) by permuting the roles of the variables x, y, and z in our coordinate system. In
particular we could relabel axes, letting the x, y, and z axes become the z, x, and y axes,
respectively, and replacing a, b, and c with c, b, and a. This would alter (16.36) to give the
parametrization

r̃(u, v) = ⟨6 sinu cos v, 4 sinu sin v, 3 cosu⟩. (16.37)

The “new” coordinate system is in fact still a right-handed xyz-coordinate system, so by
adjusting our vantage point accordingly we can view the graph of r̃ with the coordinate axes
in the same positions as before. See Figure 94, noting in particular the change in the lines of
latitude and longitude, as well as the shift in position of the poles. ■

Example 16.38. We now consider the surface Σ in Figure 95, called a torus. In Figure 96(a)
is shown the xy-trace of Σ, which consists of two concentric circles centered at the origin, one
with radius 4 and the other with radius 6. In Figure 96(b) is shown the xz-trace, and indeed
any plane in R3 given by an equation of the form y = cx, where c is a constant, will intersect
with Σ at two circles with radius 1. The task is to construct a parametrization for Σ.

A point on Σ can be specified with two parameters u and v. The first parameter, 0 ≤ u ≤ 2π,
can be taken to be an angle with respect to the positive x-axis (just like θ in the cylindrical
coordinate system), which determines a point xu on the circle C in the xy-plane with center at
the origin and radius 5 as shown in Figure 96(c). If we parameterize C by

ρ(t) = ⟨5 cos t, 5 sin t, 0⟩, t ∈ [0, 2π],

then xu = ρ(u) = ⟨5 cosu, 5 sinu, 0⟩. The points on Σ located at a given value of u will lie on a
“longitudinal circle” (i.e. a circle perpendicular to the xy-plane) Cu of Σ having center at xu and
radius 1, as shown in Figure 96(d). The same figure depicts one viable way that the second
parameter 0 ≤ v ≤ 2π may determine a particular point xuv on Cu, which happens also to be
a particular point on Σ itself. The challenge is to find a parametrization for Cu for any fixed
value of u ∈ [0, 2π].

Start with the circle C0 in the xz-plane with center at the origin and radius 1. A parametriza-
tion for C0 is given by

ρ0(t) = ⟨cos t, 0, sin t⟩, t ∈ [0, 2π]

Figure 95. Stereoscopic image of a torus.
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Figure 96.
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Now, if we rotate C0 about the z-axis by angle u, we obtain a new circle C1 parameterized
by

ρ1(t) = ⟨cosu cos t, sinu cos t, sin t⟩, t ∈ [0, 2π]. (16.38)

To see this consult Figure 96(e), which shows C0 and C1, a point x ∈ C0 and the corresponding
point x′ ∈ C1 obtained after rotating C0, and the projections of these points onto the xy-plane,
denoted in the figure by x̄ and x̄′. If x = ⟨cos t, 0, sin t⟩ for some 0 ≤ t ≤ 2π, then x̄ = ⟨cos t, 0, 0⟩,
and from Figure 96(f) it can be seen that x̄′ = ⟨cosu cos t, sinu sin t⟩ and thus

x′ = ⟨cosu cos t, sinu cos t, sin t⟩,

(notice the z components of x and x′ are the same since rotation is about the z-axis).
Next, we translate C1 horizontally by 5 cosu and vertically by 5 sinu on the xy-plane to

bring its center to xu, which gives us Cu. Thus Cu has parametrization

ρu(t) = ρ1(t) + ⟨5 cosu, 5 sinu, 0⟩;
that is,

ρu(t) = ⟨5 cosu+ cosu cos t, 5 sinu+ sinu cos t, sin t⟩, t ∈ [0, 2π]

We specify a point xuv on Cu, then, by setting t = v for some 0 ≤ v ≤ 2π, giving

xuv = ⟨5 cosu+ cosu cos v, 5 sinu+ sinu cos v, sin v⟩

and thereby determining a point on Σ. Hence

r(u, v) = ⟨5 cosu+ cosu cos v, 5 sinu+ sinu cos v, sin v⟩, u, v ∈ [0, 2π]

is a parametrization for Σ. ■

Notice that, from a mathematical standpoint, a vector function

r(u, v) = ⟨x1(u, v), . . . , xn(u, v)⟩, (u, v) ∈ R,

is nothing more or less than a vector field in Rn, and so Definition 16.1 already makes clear what
it means for r to be continuous, differentiable, or continuously differentiable on any arbitrary
set region S ⊆ R. What follows is a definition of what it means for r to be smooth on R which
will be sufficient to suit our needs for the remainder of the chapter; but it is a stricter definition
than the one developed in differential geometry courses with more sophisticated machinery.

Definition 16.39. A continuous function r : R ⊆ R2 → R3 given by

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩ (16.39)

is smooth on R if all of the following are true:

1. R is a connected and simply connected set.
2. r is continuously differentiable on Int(R).
3. r is one-to-one on Int(R).
4. (ru × rv)(u, v) ̸= 0 for all (u, v) ∈ Int(R)

Definition 16.40. A continuous function r : R ⊆ R2 → R3 given by (16.39) that is one-to-one
on Int(R) is piecewise-smooth on R if either one of the following is true:
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1. R is connected and simply connected, but can be partitioned into sets R1, . . . , Rn such that r
is smooth on each Rk.

2. R is a disjoint union of connected and simply connected sets R1, . . . , Rn such that r is smooth
on each Rk.

In the common situation when R = [a, b] × [c, d] (a closed rectangle), it is reasonable to
define r to be piecewise-smooth if there exists a partition

{a = u0 < u1 < · · · < um−1 < um = b ; c = v0 < v1 < · · · < vn−1 < vn = d}

of R such that r is smooth on Rij = [ui−1, ui]× [vj−1, vj] for each 1 ≤ i ≤ m, 1 ≤ j ≤ n.
For our purposes a surface Σ will be said to be smooth if it admits a smooth parametrization

in the sense of Definition 16.39, and piecewise-smooth if it admits a piecewise-smooth
parametrization in the sense of Definition 16.40. Whenever a surface is said to be smooth or
piecewise-smooth it is assumed that any parametrization given for the surface is itself smooth
or piecewise-smooth.

Example 16.41. Let Σ1 be the rectangular region with vertices (2, 0, 0), (2, 1, 0), (0, 1, 0),
(0, 0, 0), let Σ2 be the rectangular region with vertices (2, 0, 0), (0, 0, 0), (0, 0, 3), (2, 0, 3), and
let Σ3 be the rectangular region with vertices (2, 0, 3), (2, 1, 0), (0, 1, 0), (0, 0, 3). Consider the
surface Σ = Σ1 ∪ Σ2 ∪ Σ3, shown in Figure 97. The curve C with vertices (0, 0, 0), (0, 1, 0),
(0, 0, 3) shown in the figure lies on Σ, and can be parameterized by function ρ : [0, 3] → R3

given by

ρ(v) =


⟨0, v, 0⟩, v ∈ [0, 1]

⟨0, 2− v, 3v − 3⟩, v ∈ [1, 2]

⟨0, 0, 9− 3v⟩, v ∈ [2, 3]

For each u ∈ [0, 2] the function ρu : [0, 3] → R3 given by ρu(v) = ρ(v) + ⟨u, 0, 0⟩ generates
another triangle that lies on Σ, and the union of all these triangles generates Σ itself. Thus, we

x
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z

Σ1

Σ2

Σ3

C

1

3

2 x

y

z

Σ1

Σ2

Σ3

C

1

3

2

Figure 97. The piecewise-smooth surface Σ.
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may parameterize Σ by the function r : [0, 2]× [0, 3] → R3 given by

r(u, v) =


⟨u, v, 0⟩, (u, v) ∈ [0, 2]× [0, 1]

⟨u, 2− v, 3v − 3⟩, (u, v) ∈ [0, 2]× [1, 2]

⟨u, 0, 9− 3v⟩, (u, v) ∈ [0, 2]× [2, 3]

The surface Σ is not smooth since r is not continuously differentiable on (0, 2)× (0, 3), which is
the interior of the domain of r. For instance, the first partial derivatives of r do not exist along
the line segment [(0, 1), (2, 1)] in the uv-plane connecting the points (0, 1) and (2, 1). However,
Σ is piecewise-smooth according to Definition 16.40(1), since the rectangle [0, 2]× [0, 3] can be
partitioned into subsets [0, 2]× [0, 1], [0, 2]× [1, 2], and [0, 2]× [2, 3], and r restricted to each of
these subsets is smooth.

Another way to parameterize Σ is to use three separate parametrizations for each of the
rectangles Σ1, Σ2, and Σ3. We have

Σ1 : r1(u, v) = ⟨u, v, 0⟩, (u, v) ∈ [0, 2]× [0, 1]

Σ2 : r2(u, v) = ⟨u, 0, v⟩, (u, v) ∈ [0, 2]× [0, 3]

Σ3 : r3(u, v) = ⟨u, v,−3v + 3⟩, (u, v) ∈ [0, 2]× [0, 1]

We can regard the domains of the functions r1, r2, and r3 as being subsets of different “copies”
of the uv-plane. Function r1, as indicated by its subscript, has domain in copy 1 of the uv-plane,
r2 has domain in copy 2, and r3 has domain in copy 3. Formally, the subscript i in the symbol
ri is taken to be a third independent variable that designates which copy of the uv-plane the
domain of ri belongs in. Thus the domains R1, R2, R3 of r1, r2, and r3 are considered to be
disjoint, and if we let R = R1∪R2∪R3, then the three functions taken together create a function

r : R× {1, 2, 3} → R3

that is a parametrization of Σ:
r(u, v, i) = ri(u, v).

We see, however, that Σ is now piecewise-smooth in the sense of Definition 16.40(2), which goes to
show there is no substantive difference between the two ways a surface may be piecewise-smooth
according to Definition 16.40.

In practice we will be less formal, which is to say we will make no attempt to put separate
functions such as r1, r2, and r3 together to obtain a single parametrization r for a surface. Each
ri gives us a piece of the surface, and the pieces “add up” to the whole surface in question. ■
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16.7 – Surface Integrals

Definition 16.42. Let f be a scalar-valued function that is continuous on a smooth surface Σ
parameterized by r(u, v) for (u, v) ∈ R. The surface integral of f over Σ isx

Σ

f =
x
R

f(r(u, v))∥(ru × rv)(u, v)∥ dA.

Alternative symbols for the surface integral of f over Σ arex
Σ

f dS,
x
Σ

f(r(u, v)) dS, and
x
Σ

f(x1(u, v), . . . , xn(u, v)) dS,

with the idea being that dS represents an “elemental surface area” in a manner consonant with
the usual non-rigorous hocus-pocus of Leibnizian cultists. Extending this notion we have the
following definition.

Definition 16.43. If Σ is a smooth surface parameterized by r(u, v), (u, v) ∈ R, then the
surface area of Σ is

A(Σ) =
x
Σ

dS,

provided that the double integral exists. If Σ is not smooth, but Σ′ given by r(u, v), (u, v) ∈ R′ ⊆
R, is smooth, where A(R \R′) = 0, then we define A(Σ) = A(Σ′) provided that A(Σ′) is defined.

Thus A(Σ) is just
s

Σ
f dS for the constant function f(x1, . . . , xn) = 1. All other “definitions”

of area given earlier in this book are actually propositions that could be proven using Definition
16.43.

Example 16.44. Find the lateral surface area of the circular cone with height h and base
radius r.

Solution. The lateral surface area would be the area of only the “side” of the cone, which is
to say the area of the base (which is a circular disc of radius r) is not included. Let Σ be the
lateral surface of the circular cone with height h and base radius r. A parametrization for Σ is

r(u, v) =
〈rv
h

cosu,
rv

h
sinu, v

〉
, (u, v) ∈ [0, 2π]× [0, h].

Let R = [0, 2π]× [0, h]. Notice that Σ is not smooth owing to the cone’s apex at (0, 0, 0), so we
pass to a new surface Σ′ parameterized by r(u, v) for (u, v) ∈ [0, 2π]× (0, h] := R′ ⊆ R, which
is simply the cone with its apex removed. Since R \R′ is just a line segment in the uv-plane it
is clear that A(R \R′) = 0, and so A(Σ) = A(Σ′) by Definition 16.43. Now,

(ru × rv)(u, v) =

∣∣∣∣∣∣∣∣∣
i j k

−rv
h

sinu
rv

h
cosu 0

r

h
cosu

r

h
sinu 1

∣∣∣∣∣∣∣∣∣ =
≠
rv

h
cosu,

rv

h
sinu,−r

2v

h2

∑
,
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so that

∥(ru × rv)(u, v)∥ =

 
r2v2

h2
cos2 u+

r2v2

h2
sin2 u+

Å
r2v

h2

ã2
=
rv

h

…
1 +

r2

h2

and we’re ready to find the surface area of Σ′. Observing that ∥ru× rv∥ is a continuous function
on the compact set R (and hence a bounded function), we have

A(Σ′) =
x
Σ′

dS =
x
R′

∥ru × rv∥ dA (Definitions 16.43 & 16.42)

=
x
R′

∥ru × rv∥ dA =
x
R

∥ru × rv∥ dA (Definition 15.4)

=

� 2/π

0

� h

0

rv

h

»
1 + r2/h2 dvdu (Theorem 15.5)

=

� 2π

0

rh

2

»
1 + r2/h2 du

= πrh
»

1 + r2/h2.

Therefore

A(Σ) = πr
√
r2 + h2

is the sought after area. ■

Example 16.45. Recall from §6.3 the concept of a surface of revolution: given a differentiable
function f such that f(x) > 0 for all x ∈ [a, b], we revolve the curve C given by y = f(x),
a ≤ x ≤ b, fully about the x-axis to generate a surface Σ in R3. The question is, what is a
parametrization for Σ?

Let u ∈ [a, b]. A point on Σ at x = u can lie anywhere on a circle Cu in R3 that is parallel
to the yz − plane, has center at (u, 0, 0), and radius f(u). We can parameterize Cu by

ρ(t) = ⟨u, f(u) cos t, f(u) sin t⟩, t ∈ [0, 2π],

and so determine a specific point on Cu, and hence on Σ itself, by specifying a value t = v for
some 0 ≤ v ≤ 2π. Thus a parametrization for Σ is

r(u, v) = ⟨u, f(u) cos v, f(u) sin v⟩, (u, v) ∈ [a, b]× [0, 2π].

With this parametrization we are in a position to determine the area of Σ. We have

ru(u, v) = ⟨1, f ′(u) cos v, f ′(u) sin v⟩ and rv(u, v) = ⟨0,−f(u) sin v, f(u) cos v⟩,

so that

(ru × rv)(u, v) =

∣∣∣∣∣∣
i j k
1 f ′(u) cos v f ′(u) sin v
0 −f ′(u) sin v f(u) cos v

∣∣∣∣∣∣ = ⟨f ′(u)f(u),−f(u) cos v,−f(u) sin v⟩ ,

and hence

∥(ru × rv)(u, v)∥ =
»

[f ′(u)f(u)]2 + f 2(u) cos2 v + f 2(u) sin2 v = f(u)
»

1 + [f ′(u)]2.
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By Definition 16.43 we obtain

A(Σ) =
x
Σ

dS =
x
R

f(u)
»

1 + [f ′(u)]2 dA

=

� b

a

� 2π

0

f(u)
»

1 + [f ′(u)]2 dvdu =

� b

a

2πf(u)
»

1 + [f ′(u)]2 du

for the area of a surface of revolution. ■

Definition 16.46. A smooth surface Σ ⊆ R3 parameterized by

r(u, v) =
〈
x(u, v), y(u, v), z(u, v)

〉
, (u, v) ∈ R,

is orientable if the function n̂ : Int(R) → R3 given by

n̂(u, v) =
ru × rv

∥ru × rv∥
(u, v) (16.40)

has the following properties:

1. n̂ is continuous on Int(R), with a continuous extension n̂c to R.
2. n̂c(u1, v1) = n̂c(u2, v2) for any (u1, v1), (u2, v2) ∈ R such that r(u1, v1) = r(u2, v2).

Henceforth we will denote n̂c by n̂, which is to say we assume any n̂ is in fact a continuous
extension of the function defined by (16.40). We call n̂ and −n̂ the two possible orientations
for Σ that consist of unit vectors. Once an orientation n = ±n̂ has been chosen for Σ we say
that the surface is oriented. More formally an oriented surface may be regarded as a pairing
(Σ,n) of a surface Σ with an orientation n.

The function n is thought of as assigning a unit vector n(u, v) to each point r(u, v) on the
surface Σ, and it can be shown that n(u, v) is orthogonal to Σ at r(u, v); that is, n(u, v) is a
normal vector for the tangent plane to Σ at r(u, v). (The smoothness of Σ at the point r(u, v)
is what ensures that Σ in fact has a tangent plane at r(u, v).) So n defines a vector field on Σ
consisting entirely of unit vectors that are orthogonal to Σ.

On a local scale, the continuity of n on R implies that for any x ∈ Σ, there exists a
sufficiently small ϵ > 0 such that the unit vectors assigned by n to the points in Bϵ(x)∩Σ point
approximately in the same direction. This means that, globally, the vectors that n assigns to
Σ all issue from the same “side” of the surface. Generally speaking, an orientable surface is
a surface for which it is possible to identify two sides. If the two sides were painted different
colors, there is no point on the surface where the two colors will necessarily mix.

A surface that is not orientable is called nonorientable. The most famous example of a
surface that is not orientable is a Möbius band. Shown in Figure 98 is a Möbius band that has
parametrization

r(u, v) =
〈
cos(u) +

v

2
cos(u) cos

(u
2

)
, sin(u) +

v

2
sin(u) cos

(u
2

)
,
v

2
sin
(u
2

)〉
for (u, v) ∈ [0, 2π]× [−1/4, 1/4].

Let Σ be a piecewise-smooth surface, so that it consists of smaller surfaces Σ1, . . . ,Σk which
are each smooth by themselves. Let r(u, v), (u, v) ∈ R, be a parametrization for Σ, and define
R′ ⊆ R by

R′ = {(u, v) ∈ R : Σ is not smooth at r(u, v)}.
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Figure 98. Stereoscopic image of a Möbius band, a surface with only one side.

Now, for each 1 ≤ i ≤ k suppose Σi is orientable, and is given orientation ni. If the functions
n1, . . . ,nk can be chosen so that they assign vectors to Σ that all issue from the same “side” of
Σ, then we say Σ is orientable.15 One possible orientation is the function n : R′ → R3 given by
n(u, v) = ni(u, v) if r(u, v) ∈ Σi.

Definition 16.47. Let F = ⟨f, g, h⟩ be a continuous vector field on an open region D ⊆ R3,
and let Σ ⊆ D be a smooth oriented surface parameterized by r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩,
(u, v) ∈ R. The flux of F across Σ isx

Σ

F · n dS =
x
R

F(r(u, v)) · n(u, v)∥(ru × rv)(u, v)∥ dA,

where n is either n̂ as given in (16.40), or −n̂, depending on the chosen orientation of Σ.

The integral given in Definition 16.47 is often called simply a flux integral, with
s

Σ
F · dS

being an alternative symbol so thatx
Σ

F · dS =
x
Σ

F · n dS =
x
R

(F ◦ r) · n∥ru × rv∥ dA

by definition. The value of a flux integral is independent of the parametrization r chosen for Σ,
but will change in sign depending on whether the orientation n is chosen to be n̂ or −n̂. If we
choose n = n̂, then by Definition 16.42x

Σ

F · n dS =
x
R

F(r(u, v)) · n̂(u, v)∥(ru × rv)(u, v)∥ dA

=
x
R

F(r(u, v)) · (ru × rv)(u, v)

∥(ru × rv)(u, v)∥
∥(ru × rv)(u, v)∥ dA

=
x
R

F(r(u, v)) · (ru × rv)(u, v) dA

=
x
R

(F ◦ r) · (ru × rv) dA (16.41)

A surface Σ is closed if it encloses a bounded region D ⊆ R3, which is to say that for any
x ∈ Int(D) and y /∈ D there exists no continuous path from x to y that does not pass through
Σ; that is, if C is a continuous curve having x and y as endpoints, then C ∩ Σ ̸= ∅. Examples

15This definition is admittedly intuitive, not rigorous. But it will suffice for our purposes.
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of closed surfaces are ellipsoids (Figure 99) and tori (Figure 100). Planes, cones, cylinders,
hemispheres and paraboloids are examples of surfaces that are not closed. Care should be taken
not to conflate the concept of a closed surface with that of a closed set. A plane, as a subset of
R3, is a closed set even though it is not a closed surface.

A closed surface Σ is said to have positive orientation if it is orientated such that all unit
normal vectors point away from the region D bounded by Σ. If all unit normal vectors point
toward D, then Σ has a negative orientation.

Example 16.48. Let F(x, y, z) = ⟨x, y, z⟩, and let Σ be a tetrahedron with center at the origin,
face Σ1 in the first octant given by z = 10− 2x− 5y, and positive orientation. Find the flux of
F across the face Σ1.

Solution. To find a parametrization for Σ1 we first find its xy-trace. This is a line segment in
the first quadrant of the xy-plane given by 0 = 10− 2x− 5y, or equivalently y = −2

5
x+2, which

forms part of the boundary of a region R′ as shown in at left in Figure 99. This corresponds
most naturally to a region R in the uv-plane given by

R = {(u, v) : 0 ≤ v ≤ −2u/5 + 2 and 0 ≤ u ≤ 5}

and shown at right in Figure 99. We parameterize Σ1 by

r(u, v) = ⟨u, v, 10− 2u− 5v⟩, (u, v) ∈ R.

Now, ru(u, v) = ⟨1, 0,−2⟩ and rv(u, v) = ⟨0, 1,−5⟩, so that

(ru × rv)(u, v) =

∣∣∣∣∣∣
i j k
1 0 −2
0 1 −5

∣∣∣∣∣∣ = ⟨2, 5, 1⟩ .

for all (u, v) ∈ R. It can be seen that if the initial point of the vector ⟨2, 5, 1⟩ is any point on
Σ1, then it must be directed away from the region enclosed by the tetrahedron Σ, and so we
choose n = n̂ as given in (16.40). Thus, by (16.41), we obtainx

Σ1

F · n dS =
x
R

F(r(u, v)) · (ru × rv)(u, v) dA

=
x
R

F(u, v, 10− 2u− 5v) · ⟨2, 5, 1⟩ dA

=

� 5

0

� −2u/5+2

0

⟨u, v, 10− 2u− 5v⟩ · ⟨2, 5, 1⟩ dvdu

x

y

5

2

R′

u

v

5

2

R

Figure 99.
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=

� 5

0

� −2u/5+2

0

10 dvdu =

� 5

0

(20− 4u) du = 50

as the flux of F across Σ1. ■

In the next example we encounter a surface that is not closed, so that orientation must be
specified in some way other than with the “positive” and “negative” designations.

Example 16.49. Let F(x, y, z) = ⟨x, y, z⟩, and let Σ be the cone z2 = x2 + y2, 0 ≤ z ≤ 1. Give
Σ the orientation for which n has a negative z-component at each point of Σ where the cone is
orientable. Find the flux of F across Σ.

Solution. We start by finding a suitable parametrization for Σ. Since z2 = x2 + y2 for z ≥ 0,
we have

z =
√
x2 + y2.

Thus if we let x = u and y = v, we arrive at the parametrization

r(u, v) = ⟨u, v,
√
u2 + v2⟩, (u, v) ∈ R,

where

R = {(u, v) : 0 ≤ u2 + v2 ≤ 1}

since 0 ≤ z ≤ 1 implies that 0 ≤
√
u2 + v2 ≤ 1.

Next, we need to find a suitable orientation for Σ, which entails determining some function
n : R → R3 such that, for each (u, v) ∈ R, the unit vector n(u, v) has a negative z-component.
(Recall that we consider n(u, v) to be located at the point r(u, v) on Σ.) From

ru(u, v) =

≠
1, 0,

u√
u2 + v2

∑
and rv(u, v) =

≠
0, 1,

v√
u2 + v2

∑
we have

(ru × rv)(u, v) =

∣∣∣∣∣∣∣∣∣∣

i j k

1 0
u√

u2 + v2

0 1
v√

u2 + v2

∣∣∣∣∣∣∣∣∣∣
=

≠
− u√

u2 + v2
,− v√

u2 + v2
, 1

∑
Our two choices of orientation for Σ are n̂, as given by (16.40), and −n̂. In order to have
negative z-components we choose n = −n̂; that is,

n(u, v) = −n̂(u, v) = − (ru × rv)(u, v)

∥(ru × rv)(u, v)∥
=

Æ
u√

2(u2 + v2)
,

v√
2(u2 + v2)

,− 1√
2

∏
Finally we evaluate the appropriate flux integral, substituting −n̂ for n:x

Σ

F · n dS = −
x
Σ

F · n̂ dS = −
x
R

F(r(u, v)) · n̂(u, v)∥(ru × rv)(u, v)∥ dA

= −
x
R

F
(
u, v,

√
u2 + v2

)
· (ru × rv)(u, v) dA
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Figure 100. Stereoscopic image of the Klein bottle immersed in R3.

= −
x
R

¨
u, v,

√
u2 + v2

∂
·
≠
− u√

u2 + v2
,− v√

u2 + v2
, 1

∑
dA

= −
x
R

(0) dA = 0.

The flux of F across Σ is therefore 0. ■

We end this section with Figure 100, which depicts what is perhaps the second most famous
example of a nonorientable surface: the Klein bottle. In the figure it appears that the Klein
bottle intersects itself, but in fact this does not happen. The problem is that the true Klein
bottle inhabits R4, which we cannot visualize even with stereoscopy! What Figure 100 really
shows is an “immersion” of the Klein bottle in three-dimensional space, which while not a wholly
accurate representation is still much better than no representation at all. The parametrization
for the surface as pictured is quite complicated:

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, (u, v) ∈ [0, π]× [0, 2π],

with

x(u, v) = − 2
15
(3 cos v − 30 sinu+ 90 cos4 u sinu− 60 cos6 u sinu+ 5 cosu cos v sinu) cosu

y(u, v) = − 1
15
(3 cos v − 3 cos2 u cos v − 48 cos4 u cos v + 48 cos6 u cos v − 60 sinu

+ 5 cosu cos v sinu− 5 cos3 u cos v sinu− 80 cos5 u cos v sinu

+ 80 cos7 u cos v sinu) sinu

z(u, v) = 2
15
(3 + 5 cosu sinu) sin v
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16.8 – Stokes’ Theorem

As with our definition of a smooth surface, the following definition for the notion of a
boundary of a surface will be sufficient to suit our immediate needs, but it is not the most
general definition.

Definition 16.50. Let Σ ⊆ Rn be a surface with parametrization r(u, v), (u, v) ∈ R. If
R ⊆ R2 is closed and r is one-to-one and continuous on R, then the boundary of Σ is the set
∂Σ = r(∂R). That is,

∂Σ = {r(u, v) : (u, v) ∈ ∂R}.

Thus we see that ∂Σ ⊆ Σ, which is to say the boundary of a surface Σ is taken to be part of
the surface.

The boundary of a surface should not be confused with the similar-sounding notion of a
bounded surface. A surface Σ ⊆ Rn is bounded if there exists some x ∈ Rn and real number
r > 0 such that Σ ⊆ Br(x). That is, a bounded surface is just a surface that is a bounded
set. A closed surface, defined in the previous section, can now be said to be a bounded surface
without boundary!

Consider a simple closed curve C in the xy-plane. It forms the boundary of a connected and
simply-connected region R ⊆ R2 that is a closed set. If we define r : R → R3 by r(u, v) = ⟨u, v, 0⟩
for all (u, v) ∈ R, which is a continuous one-to-one function, then R is seen to be a bounded
smooth parameterized surface Σ ⊆ R3 with boundary

∂Σ = {(u, v, 0) : (u, v) ∈ ∂R} = {(u, v, 0) : (u, v) ∈ C}.
From

ru(u, v) = ⟨1, 0, 0⟩ and rv(u, v) = ⟨0, 1, 0⟩

we obtain an orientation for Σ:

n̂(u, v) =
ru × rv

∥ru × rv∥
(u, v) =

k

∥k∥
= k. (16.42)

Suppose C admits a smooth parametrization ρ(t), t ∈ [a, b], and let T and N denote the unit
tangent vector and principal unit normal vector, respectively. The orientation for C that is
consistent with the orientation (16.42) for Σ is the one for which (T × N)(t) = k for all
t ∈ [a, b]. This has the effect of keeping Σ to one’s left were one to walk “upright” (i.e. with the
top of one’s head pointed in the k direction) along the curve C in the direction in which t is
increasing.

More generally, if C is a simple closed planar curve in R3 with smooth parametrization ρ(t),
t ∈ [a, b], and the surface Σ is the planar region enclosed by C, then clearly Σ is orientable with
orientation n that is a constant function. That is, n assigns the same unit vector at every point
x ∈ Σ, which we may as well denote by n. The orientation for C that is consistent with the
orientation n for Σ is the one for which (T×N)(t) = n for all t ∈ [a, b].

To further generalize, imagine that the oriented surface (Σ,n) is a rubber membrane, and
it is stretched to form a new surface Σ′ that has boundary C (which remains unchanged). If,
during the deformation, the vectors n at each point on Σ change location and direction in
continuous fashion so as to form an orientation n′ for Σ′, then the orientation for C (which
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remains unchanged) will be consistent with n′ just as it was consistent with n. From here we
could generalize one more time by giving up the condition that C be a planar curve.

It is a fact that if C is a piecewise-smooth simple closed oriented curve that forms the
boundary of an orientable surface Σ, then the orientation of C is consistent with an orientation
n of Σ if and only if −C has orientation consistent with the orientation −n of Σ.

In what follows we take n to be either the orientation n̂ or −n̂ for any orientable surface Σ.
In the case when Σ is piecewise-smooth n will necessarily be a piecewise-defined function as
discussed in the previous section.

Theorem 16.51 (Stokes’ Theorem). Let Σ ⊆ R3 be a piecewise-smooth orientable surface
with piecewise-smooth simple closed boundary ∂Σ parameterized by r. If the orientation for Σ is
consistent with the orientation for ∂Σ, and if F is a vector field that is continuously differentiable
on an open set containing Σ, then�

∂Σ

F · dr =
x
Σ

(∇× F) · dS.

Green’s Theorem is a special case of Stoke’s Theorem in which Σ is a connected and simply
connected region R on the xy-plane such that ∂R is a piecewise-smooth closed simple planar
curve. A general proof of Stokes’ Theorem is beyond our current capabilities, but a proof for
the case when Σ is parameterized by a function r(u, v) defined on a rectangle in the uv-plane is
forthcoming.

Example 16.52. Let F(x, y, z) = ⟨2y,−z, x⟩, and let C be the circle x2 + y2 = 9 in the plane
z = 0 with positive orientation. Evaluate the line integral

�
C
F · dr by evaluating the surface

integral in Stokes’ Theorem using an appropriate choice of surface Σ.

Solution. Here C is the circle in the xy-plane centered at the origin with radius 3. Since C
must have positive (i.e. counterclockwise) orientation, a parametrization for C is

r(t) = 3⟨cos t, sin t, 0⟩, t ∈ [0, 2π].

A convenient choice for a surface Σ that has C as its boundary would be the planar region
enclosed by C, which is the circular disk in the xy-plane with radius 3. A parametrization for Σ
is

ρ(u, v) = ⟨v cosu, v sinu, 0⟩, (u, v) ∈ R = [0, 2π]× [0, 3].

Clearly Σ is orientable (i.e. it has two identifiable “sides”). We have

(ρu × ρv)(u, v) =

∣∣∣∣∣∣
i j k

−v sinu v cosu 0
cosu sinu 0

∣∣∣∣∣∣ = ⟨0, 0,−v⟩

for any (u, v) ∈ Int(R) = (0, 2π)× (0, 3), and so

n̂(u, v) =
ρu × ρv

∥ρu × ρv∥
(u, v) =

⟨0, 0,−v⟩
v

= ⟨0, 0,−1⟩ = −k.

Thus n̂ : Int(R) → R3 is continuous on Int(R), and it has continuous extension to R by setting
n̂(u, v) = −k for all (u, v) ∈ ∂R = C. Indeed, since n̂ is a constant function equal to −k on all
R, we simply define n̂ = −k.
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It must be determined which orientation n of Σ, n̂ or −n̂, is consistent with the orientation
of C. That is, which orientation n of Σ is such that (T×N)(t) = n for all t ∈ [0, 2π], where T
and N are the unit tangent and principal unit normal vectors for C, respectively. We calculate

T(t) =
r′(t)

∥r′(t)∥
= ⟨− sin t, cos t, 0⟩

and

N(t) =
T′(t)

∥T′(t)∥
= ⟨− cos t,− sin t, 0⟩,

and so

(T×N)(t) =

∣∣∣∣∣∣
i j k

− sin t cos t 0
− cos t − sin t 0

∣∣∣∣∣∣ = ⟨0, 0, 1⟩ = k.

Since (T×N)(t) = k = −n̂, we give Σ the orientation −n̂.
Next, we have

(∇× F)(x, y, z) = ⟨1,−1,−2⟩
Finally, substituting −n̂ for n, we obtain�

∂Σ

F · dr = −
x
Σ

(∇× F) · n̂ dS

= −
x
R

(∇× F)(ρ(u, v)) · n̂(u, v)∥(ρu × ρv)(u, v)∥ dA

= −
x
R

(∇× F)(ρ(u, v)) · (ρu × ρv)(u, v) dA

= −
x
R

⟨1,−1,−2⟩ · ⟨0, 0,−v⟩ dA

= −
� 3

0

� 2π

0

2v dudv = −18π

by Stokes’ Theorem and Definition 16.47. ■

Example 16.53. Let F(x, y, z) = ⟨y2,−z2, x⟩, and let C be the circle

r(t) = ⟨3 cos t, 4 cos t, 5 sin t⟩, t ∈ [0, 2π].

Evaluate the line integral
�
C
F · dr by evaluating the surface integral in Stokes’ Theorem using

an appropriate choice of surface Σ.

Solution. Opposite points on the circle are x = r(t) and y = r(t+ π) for any 0 ≤ t ≤ π, and
the midpoint of the segment [x,y] is 1

2
(x+ y) = 0 while the length is |x− y| = 10. Thus C is a

circle centered at the origin with radius 5, and a convenient choice for Σ would be simply the
planar region enclosed by C, as shown in Figure 101. One parametrization for Σ is

ρ(u, v) = ⟨3v cosu, 4v cosu, 5v sinu⟩, (u, v) ∈ [0, 2π]× [0, 1].

Note the origin is obtained when v = 0, C is obtained when v = 1, and concentric circles inside
C are obtained for 0 < v < 1. The parameter u simply stands for t.
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Figure 101. The planar region Σ with boundary the circle C.

It is clear that Σ is orientable. Let R = [0, 2π]× [0, 1]. Then Int(R) = (0, 2π)× (0, 1), and
for any (u, v) ∈ Int(R) we have

(ρu × ρv)(u, v) =

∣∣∣∣∣∣
i j k

−3v sinu −4v sinu 5v cosu
3 cosu 4 cosu 5 sinu

∣∣∣∣∣∣ = ⟨−20v, 15v, 0⟩,

and so

n̂(u, v) =
ρu × ρv

∥ρu × ρv∥
(u, v) =

⟨−20v, 15v, 0⟩
25v

=

≠
−4

5
,
3

5
, 0

∑
.

Thus n̂ : Int(R) → R3 is continuous on Int(R), and it has continuous extension to R simply by
setting n̂(u, v) = ⟨−4/5, 3/5, 0⟩ for all (u, v) ∈ ∂R.

It must be determined which orientation, n̂ or −n̂, is consistent with the orientation of C.
The unit tangent and principal unit normal vectors for C are

T(t) =
r′(t)

∥r′(t)∥
=

1

5
⟨−3 sin t,−4 sin t, 5 cos t⟩

and

N(t) =
T′(t)

∥T′(t)∥
=

1

5
⟨−3 cos t,−4 cos t,−5 sin t⟩.

Now,

(T×N)(t) =

∣∣∣∣∣∣∣
i j k

−3
5
sin t −4

5
sin t cos t

−3
5
cos t −4

5
cos t − sin t

∣∣∣∣∣∣∣ =
≠
4

5
,−3

5
, 0

∑
,

which we see agrees with −n̂(u, v) for all (u, v) ∈ R, and so we give Σ the orientation −n̂.
Next, F = ⟨f, g, h⟩ with

f(x, y, z) = y2, g(x, y, z) = −z2, h(x, y, z) = x,

and so from (16.33) we have

(∇× F)(x, y, z) = ⟨2z,−1,−2y⟩
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Figure 102. The vector field F restricted to Σ.

Finally by Stokes’ Theorem, substituting −n̂ for n, we obtain�
∂Σ

F · dr = −
x
Σ

(∇× F) · n̂ dS

= −
x
R

(∇× F)(ρ(u, v)) · n̂(u, v)∥(ρu × ρv)(u, v)∥ dA

= −
x
R

[
(∇× F)(3v cosu, 4v cosu, 5v sinu) ·

〈
4
5
,−3

5
, 0
〉]
(25v) dA

= −
x
R

25v⟨10v sinu,−1,−8v cosu⟩ ·
〈
4
5
,−3

5
, 0
〉
dA

=

� 1

0

� 2π

0

(15v + 200v2 sinu) dudv =

� 1

0

30πv dv = 15π,

where Definition 16.47 is used for the second equality. In Figure 102 it can be seen how the
positive answer 15π makes sense: the vectors generated by F are consistent with the orientation
of C throughout the region Σ. ■
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16.9 – Divergence Theorem

The final theorem that we will work with is the Divergence Theorem, which is also sometimes
called Gauss’ Theorem. In the last couple sections we have come up against the limitations
of our analytical machinery as never before, especially in relation to concepts such as smooth
surfaces and surface orientation. As a result we have had to rely increasingly on intuition and
less on precision and rigor, which is a sure indicator that an entirely new and more sophisticated
approach much be taken to soar to greater heights in the calculus-based branches of mathematics.
Such an approach will be embarked upon in the sequel to this text on the subject of mathematical
analysis.

Theorem 16.54 (Divergence Theorem). Let D ⊆ R3 be a connected and simply connected
region such that ∂D is a piecewise-smooth closed orientable surface. If D has positive orientation
and F is a vector field that is continuously differentiable on an open set containing D, then{

∂D

F · dS =
y
D

∇ · F dV. (16.43)

The integral at left in (16.43) is just another symbol for the flux of the vector field F across
the surface ∂D as given by Definition 16.47; that is,

Flux of F across ∂D =
x
∂D

F · n dS =
{
∂D

F · dS.

The symbol
v

is used to represent a surface integral over a surface Σ that is closed, which again
is any surface that fully encloses a region in the space R3. It is never wrong to replace

v
withs

, and many texts never use the symbol.
Since the closed surface ∂D in the Divergence Theorem has the positive orientation, the

integral at left in (16.43) gives specifically the net outward flux of F across ∂D; that is,

Net outward flux of F across ∂D =
y
D

∇ · F dV,

and so

Net inward flux of F across ∂D = −
y
D

∇ · F dV.

The following example shows some of the utility of the Divergence Theorem.

Example 16.55. Use the Divergence Theorem to find the net outward flux of the field

F(x, y, z) = ⟨2z − y, x,−2x⟩

across the sphere of radius 1 centered at the origin.

Solution. Let D = B1(0), which is the solid ball with radius 1 and center at the origin. Clearly
D is connected and simply connected. The boundary of D is

∂D = {x ∈ R3 : ∥x∥ = 1},
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which is the sphere with radius 1 and center at the origin. Thus ∂D is a smooth, closed, and
orientable surface. The field F has scalar components

f(x, y, z) = 2z − y, g(x, y, z) = x, h(x, y, z) = −2x,

which have continuous first partials on R3. Finally, to find the “outward” flux of F across the
sphere means to give the sphere the positive orientation n = n̂. With all of the hypotheses of
the Divergence Theorem being satisfied, we calculate

(∇ · F)(x, y, z) = ∂x(2z − y) + ∂y(x) + ∂z(−2x) = 0,

and finally {
∂D

F · dS =
y
D

∇ · F dV =
y
D

(0)dV = 0.

That is, the net outward flux is zero, a result far more easily obtained using the Divergence
Theorem than it would have been using Definition 16.47! ■

Example 16.56. Use the Divergence Theorem to find the net outward flux of the field

F(x, y, z) = ⟨3y2z3, 9x2yz2,−4xy2⟩

across the surface Σ that is the cube with vertices (±1,±1,±1).

Solution. Let D = [−1, 1]× [−1, 1]× [−1, 1], which is a solid box with vertices at (±1,±1,±1);
that is,

D = {(x, y, z) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1}.
Clearly D is connected and simply connected, and ∂D = Σ is a piecewise-smooth, closed, and
orientable surface. The field F has scalar components

f(x, y, z) = 3y2z3, g(x, y, z) = 9x2yz2, h(x, y, z) = −4xy2,

which have continuous first partials on R3. Finally, to find the “outward” flux of F across
the cube means to give the cube the positive orientation n = n̂. All of the hypotheses of the
Divergence Theorem are satisfied, so we calculate

(∇ · F)(x, y, z) = ∂x(3y
2z3) + ∂y(9x

2yz2) + ∂z(−4xy2) = 9x2z2,

and then obtain{
Σ

F · dS =
y
D

∇ · F dV =
y
D

9x2z2dV =

� 1

−1

� 1

−1

� 1

−1

9x2z2dxdydz = 8.

That is, the net outward flux is 8. To derive this result using Definition 16.47 would have
required evaluating a separate surface integral for each of the six faces of the cube! ■

Suppose that R1 and R2 are connected and simply connected compact sets in the uv-plane
such that R1 ∩ R2 = ∅, and let r : R1 ∪ R2 → R3 be a one-to-one function that is piecewise-
smooth in the sense of Definition 16.40(2); that is, r is smooth on R1 and also smooth on R2.
Thus, Σ1 = r(R1) and Σ2 = r(R2) are smooth surfaces in R3. Suppose that Σ1 ∩ Σ2 = ∅. (In
fact, this necessarily follows from the assumption that r is one-to-one and continuous on the
disjoint closed sets R1 and R2.) Then Σ1 ∪ Σ2 is a piecewise-smooth surface consisting of two
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Figure 103. The surface Σ = Σ1 ∪ Σ2, with the region D enclosed between Σ1

and Σ2.

components. Assuming F and n satisfy the conditions of Definition 16.47, we apply Proposition
15.8 to obtainx

Σ1∪Σ2

F · n dS =
x

R1∪R2

(F ◦ r) · n∥ru × rv∥ dA

=
x
R1

(F ◦ r) · n∥ru × rv∥ dA+
x
R2

(F ◦ r) · n∥ru × rv∥ dA

=
x
Σ1

F · n dS +
x
Σ2

F · n dS.


