Math 141 Quiz \#4 (Fall 2020)

1 Find the Taylor polynomial p_{2} with center $a=8$ for $f(x)=\sqrt[3]{x}$.
From $f(x)=\sqrt[3]{x}, f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$, and $f^{\prime \prime}(x)=-\frac{2}{9} x^{-5 / 3}$ we obtain $f(8)=2, f^{\prime}(8)=\frac{1}{12}$, and $f^{\prime \prime}(8)=-\frac{1}{144}$. Then

$$
p_{2}(x)=\sum_{n=0}^{2} \frac{f^{(n)}(8)}{n!}(x-8)^{n}=2+\frac{x-8}{12}-\frac{(x-8)^{2}}{288}
$$

2 Approximate $\sqrt[4]{79}$ using a Taylor polynomial p_{n} with $n=3$.
The best center would be $a=81$. Letting $f(x)=\sqrt[4]{x}$, we obtain $f(81)=3, f^{\prime}(81)=\frac{1}{108}$, $f^{\prime \prime}(81)=-\frac{1}{11,664}$, and $f^{\prime \prime \prime}(81)=\frac{7}{3,779,136}$. Now,

$$
p_{3}(x)=\sum_{n=0}^{3} \frac{f^{(n)}(81)}{n!}(x-81)^{n}=3+\frac{x-81}{108}-\frac{(x-81)^{2}}{23,328}+\frac{7(x-81)^{3}}{22,674,816},
$$

and so $\sqrt[4]{79} \approx p_{3}(79) \approx 2.981307544$.

3 Find the radius and interval of convergence for

$$
\sum_{k=2}^{\infty} \frac{(x+3)^{k}}{k \ln k}
$$

Using the Ratio Test, with

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right| & =\lim _{k \rightarrow \infty}\left|\frac{(x+3)^{k+1}}{(k+1) \ln (k+1)} \cdot \frac{k \ln k}{(x+3)^{k}}\right|=|x+3| \lim _{k \rightarrow \infty} \frac{k \ln k}{(k+1) \ln (k+1)} \\
& =|x+3|\left(\lim _{k \rightarrow \infty} \frac{k}{k+1}\right)\left(\lim _{k \rightarrow \infty} \frac{\ln k}{\ln (k+1)}\right)=|x+3|(1)(1)=|x+3|
\end{aligned}
$$

we conclude that the series converges for $|x+3|<1$, or $x \in(-4,-2)$. Radius of convergence is $R=1$. When $x=-4$ the series becomes

$$
\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln k}
$$

which converges by the Alternating Series Test. When $x=-2$ the series becomes

$$
\sum_{k=2}^{\infty} \frac{1}{k \ln k}
$$

but since

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=[\ln (\ln x)]_{2}^{\infty}=\lim _{t \rightarrow \infty}[\ln (\ln t)-\ln (\ln 2)]=\infty
$$

we conclude by the Integral Test that the series converges. Therefore the interval of convergence is $[-4,-2)$.

