Name:

4. 10 pts. Use the geometric series

$$f(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k, \quad |x| < 1$$

to find the power series representation (centered at 0) of the function $g(x) = \frac{2}{1-4x}$. Give the interval of convergence of the new series

- 5. 10 pts. Find the function represented by the series $\sum_{k=0}^{\infty} (\sqrt{x} - 7)^k$, and give the interval of convergence of the series.
- 6. Let $f(x) = \cos(5x)$.
 - (a) 10 pts. Find the first four nonzero terms of the Maclaurin series for f.
 - (b) 5 pts. Write the power series using summation notation.
 - (c) 10 pts. Determine the interval of convergence for the series.
- 7. <u>10 pts.</u> Evaluate $\lim_{x\to 0} \frac{3 \tan^{-1} x 3x + x^3}{x^5}$ using Taylor series.¹
- 8. 10 pts. Use a Taylor series to approximate $\int_{0}^{0.15} \frac{\sin x}{x} dx$, retaining as many terms as needed to ensure the error is less than 10^{-4} .
- 9. 10 pts. Consider the parametric equations

$$x = (t+1)^2, y = t+2; -10 \le t \le 10.$$

Eliminate the parameter to obtain an equation in xand y.

- 10. 10 pts. Give two alternative representations of the point $(8, \frac{2\pi}{3})$ in polar coordinates.
- 11. 15 pts. Convert the equation $r \cos \theta = \sin(2\theta)$ to Cartesian coordinates, and describe the resulting curve.

$\sin(2\theta) = 2\sin\theta\cos\theta$ $\cos(2\theta) = \cos^2\theta - \sin^2\theta$ $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, for $|x| < \infty$ $\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}$, for $-1 < x \le 1$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \text{ for } |x| < \infty$$
$$\tan^{-1} x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}, \text{ for } |x| \le 1$$

k=0

Remainder Theorem: Let $R_n = |S - S_n|$ be the remainder in approximating the value of a convergent alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ by the sum of its first *n* terms. Then $R_n \le a_{n+1}.$

1. 10 pts. each If a series converges, use the Alternating Series Test to show it; otherwise, use some other test to show divergence.

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k^2 + 4}}$$

(b) $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{2k^2 + 3}{5k^2 + 1}$

- 2. 10 pts. Estimate the value of the convergent series $\sum_{k=1}^{\infty} \frac{(-1)^k}{(2k+1)^3}$ with an absolute error less than 10^{-3} .
- 3. 15 pts. each Determine the interval of convergence and radius of convergence of the power series, making sure to test enpoints.

(a)
$$\sum_{k=0}^{\infty} \left(\frac{x-1}{5}\right)^k$$

(b)
$$\sum_{k=1}^{\infty} \frac{(2x+3)^k}{6k}$$

6k