Math 141
Exam #3
Summer 2011
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Remainder Theorem: Let R, = |S —S,| be the remain-
der in approximating the value of a convergent alternating
series > po | (—1)FT1ay by the sum of its first n terms. Then
R < An41-

1. If a series converges, use the Alternating
Series Test to show it; otherwise, use some other test
to show divergence.
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2. Estimate the value of the convergent series
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2k + 173 with an absolute error less than 1073.
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3. Determine the interval of convergence and

radius of convergence of the power series, making sure
to test enpoints.
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Do not use L’Hopital’s Rule.

7. Evaluate lir%
T—

4. Use the geometric series
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to find the power series representation (centered at 0)

Give the interval of

of the function g(x) =
9(z) = -
convergence of the new series.

5. Find the function represented by the series
o0

Z(\/E — 7)%, and give the interval of convergence
k=0
of the series.

. Let f(x) = cos(bx).

(a) Find the first four nonzero terms of the
Maclaurin series for f.

b) Write the power series using summation
notation.

(c) Determine the interval of convergence for
the series.

3tan~'z — 3z + 2°
25

using Tay-

lor series.?

8. [topts] Use a Taylor series to approximate

0.15
sinx .
dx, retaining as many terms as needed
0

to ensure the error is less than 104,

9. Consider the parametric equations

r=(t+1)>2 y=t+2; —10<t<10.

Eliminate the parameter to obtain an equation in x
and y.

10. Give two alternative representations of the

point (87 %’r) in polar coordinates.

11. Convert the equation rcosf = sin(20) to

Cartesian coordinates, and describe the resulting
curve.




