1. 15 pts. Approximate $\tan (-0.1)$ using an appropriate 3 rd-order Taylor polynomial. Also compute the absolute error in the approximation assuming the exact value is given by a calculator.
2. 10 pts. Use the remainder to find a bound on the error for the approximation

$$
e^{x} \approx 1+x+x^{2} / 2
$$

on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
3. 10 pts. each Determine the interval of convergence of the power series, making sure to test endpoints.
(a) $\sum \frac{x^{n}}{\sqrt{n^{2}+3}}$
(b) $\sum\left(1+\frac{1}{n}\right)^{n}(x+2)^{n}$
(c) $\sum(\ln n) x^{n}$
4. 10 pts. Find the function represented by the series

$$
\sum_{n=0}^{\infty} e^{-n x}
$$

5. 10 pts . Let $f(x)=\left(1+x^{2}\right)^{-1 / 2}$. Find explicitly the first four nonzero terms of the Taylor series for f centered at 0 .
6. 10 pts . Use a Taylor series to estimate integral

$$
\int_{0}^{0.1} \frac{\ln (1+x)}{x} d x
$$

with an absolute error less than 10^{-5}.
7. 10 pts . For the parametric equations

$$
x=\sec ^{2} t-1, \quad y=\tan t ; \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

eliminate the parameter to obtain a Cartesian equation of the form $y=f(x)$ or $x=g(y)$. State the domain of the function.
8. 10 pts . Find parametric equations for a circle centered at $(2,3)$ with radius 1 , generated counterclockwise.
9. 10 pts. Convert the polar equation $r=e^{r \cos \theta} \csc \theta$ to Cartesian coordinates.

Alternating Series Estimation Theorem: If $\sum(-1)^{k+1} b_{k}$ is a convergent alternating series such that $0 \leq b_{k+1} \leq b_{k}$ for all k, then $R_{n} \leq b_{n+1}$ for all n.

Maclaurin Series for Some Common Functions:
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, for $|x|<1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, for $|x|<\infty$
$\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, for $|x|<\infty$
$\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, for $|x|<\infty$
$\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$, for $-1<x \leq 1$
$\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$, for $|x| \leq 1$
$(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}$, for $|x|<1$, where $\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!}$ and $\binom{p}{0}=1$.

Some Trigonometric Identities:

$\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$.

