MATH 141

SPRING 2022 NAME:
Exam 4
L. Approximate tan(—0.1) using an appropriate 3rd-order Taylor polynomial. Also compute
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the absolute error in the approximation assuming the exact value is given by a calculator.

. Use the remainder to find a bound on the error for the approximation
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on the interval [—3, 1].

. Determine the interval of convergence of the power series, making sure to test endpoints.

(a) > \/;2—%3 (b) > (1 + %)n(:c +2)" (c) Y (nn)a"

. Find the function represented by the series
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: Let f(x) = (1+2%)~'/2. Find explicitly the first four nonzero terms of the Taylor series for

f centered at 0.

: Use a Taylor series to estimate integral
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with an absolute error less than 107°.

: For the parametric equations
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r=sec’t—1, y=tant; —§<t<§,

eliminate the parameter to obtain a Cartesian equation of the form y = f(x) or x = g(y). State
the domain of the function.

. Find parametric equations for a circle centered at (2,3) with radius 1, generated counter-

clockwise.

: Convert the polar equation 7 = €"“*? csc § to Cartesian coordinates.



Alternating Series Estimation Theorem: If > (—1)**!b, is a convergent alternating series such
that 0 < b1 < by, for all k, then R,, < b, for all n.

Maclaurin Series for Some Common Functions:
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Some Trigonometric Identities:

sin 20 = 2sin 6 cos 6

cos 260 = cos? 0 — sin’ 0
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