1. 10 pts. each Determine the interval of convergence of the power series.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$
(b) $\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{2^{n} \ln n}$
(c) $\sum_{n=1}^{\infty} \frac{(5 x-4)^{n}}{n^{3}}$
2. 15 pts . Find a power series representation for the function

$$
f(x)=\frac{x^{2}}{x^{4}+16},
$$

and determine the interval of convergence.
3. 10 pts. Use a Taylor series to estimate integral

$$
\int_{0}^{0.2} x \ln \left(1+x^{2}\right) d x
$$

with an absolute error less than 10^{-5}.
4. 10 pts. Use the definition of a Taylor series to find the first four nonzero terms of the series for $f(x)=\sqrt[3]{x}$ centered at 8 .
5. 10 pts . Use the binomial series to expand the function $\sqrt[4]{1-x}$ as a power series, and state the radius of convergence.
6. 10 pts. Find the exact length of the curve $y=\ln (\sec x), 0 \leq x \leq \pi / 4$.
7. 15 pts . Eliminate the parameter to find a Cartesian equation of the curve given by

$$
x=\tan ^{2} t, \quad y=\sec t, \quad-\frac{\pi}{2}<t<\frac{\pi}{2} .
$$

Sketch the curve and indicate with an arrow the direction in which the curve is traced as t increases.
8. 15 pts. Find $d y / d x$ and $d^{2} y / d x^{2}$ for the curve

$$
x=t-\ln t, \quad y=t+\ln t .
$$

For what values of t is the curve concave upward?
9. 10 pts . Find the slope of the tangent line to the polar curve $r=2+\sin \theta$ at the point corresponding to $\theta=\pi / 4$.
10. 10 pts. Find the area of the region enclosed by one loop of the curve $r=2 \sin 5 \theta$.

Alternating Series Estimation Theorem: If $\sum(-1)^{k+1} b_{k}$ is a convergent alternating series such that $0 \leq b_{k+1} \leq b_{k}$ for all k, then $R_{n} \leq b_{n+1}$ for all n.

Maclaurin Series for Some Common Functions:
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, for $|x|<1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, for $|x|<\infty$
$\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, for $|x|<\infty$
$\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, for $|x|<\infty$
$\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$, for $-1<x \leq 1$
$\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$, for $|x| \leq 1$
$(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}$, for $|x|<1$, where $\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!}$ and $\binom{p}{0}=1$.

Some Trigonometric Identities:

$\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$.

