MATH 141
SPRING 2017 NAME:
Exam 4

L. Approximate cos(2°) using a 4th-order Taylor polynomial centered at 0. (Note: it will be
necessary to convert the angle to radians.)
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. Determine the interval of convergence of the power series, making sure to test endpoints.
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. Find the function represented by the series
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. Let f(a) = (1+2%) 1/,
(a) Find explicitly the first four nonzero terms of the Taylor series for f centered at 0.
(b) Write the Taylor series using summation notation.

(c¢) Find the radius of convergence and interval of convergence.
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: Use a Taylor series to estimate integral
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with an absolute error less than 107°.
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. For the parametric equations
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r=sec’t—1, y=tant; —§<t<§,

eliminate the parameter to obtain a Cartesian equation of the form y = f(z) or x = g(y). State
the domain of the function.

7. An object moves along a straight path from the point (3, —4) at time ¢ = 0 to the point
(2,0) at time t = 3. Find a parametric description of the object’s path.

8. Convert the polar equation 7 = €"“*? csc § to Cartesian coordinates.
9. Find the area inside one loop of the lemniscate r* = 4sin 26.



Alternating Series Estimation Theorem: If > (—1)**!b, is a convergent alternating series such
that 0 < b1 < by, for all k, then R,, < b, for all n.

Maclaurin Series for Some Common Functions:
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Some Trigonometric Identities:

sin 20 = 2sin 6 cos 6

cos 260 = cos? 0 — sin’ 0
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