Math 141
Exam #4 Name:
Spring 2011
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1. |15 pts.| Determine the radius of convergence of E ( ) then test the endpoints to determine the
k=0

— (k+ 1+
interval of convergence.

2. Find the power series representation for f(z) =

Give the interval of convergence for the resulting series.

T2 centered at 0, using known power series.
x

3. Let f(z) = e73%.

(a) Find the first four nonzero terms of the Maclaurin series for f.
(b) Write the power series using summation notation.

(c) Determine the interval of convergence for the series.
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4. Use a Taylor series to approximate / sin(x?)dz, retaining as many terms as needed to ensure
0

the error is less than 10~4.

5. Consider the parametric equations z = (¢t +1)2, y = t +2; —10 < ¢ < 10. Eliminate the parameter
to obtain an equation in x and y.

6. Give two alternative representations of the point (3, %) in polar coordinates.

7. Convert the equation r cos § = sin(26) to Cartesian coordinates, and describe the resulting curve.

SOME POSSIBLY USEFUL THINGS:
sin(26) = 2sin 6 cos

cos(26) = cos? § — sin? 0

L :ixk for |z] < 1
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Remainder Theorem: Let R,, = |S—S,| be the remainder in approximating the value of a convergent alternating
series Y 72 (—1)**1ay, by the sum of its first n terms. Then R, < ap1.



