MATH 141 ExaM #3 KEY (SUMMER III 2018)

la Since
n

lim — =
n—oo n2

(details omitted here), the series diverges by the Divergence Test.
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the series converges by the Ratio Test.
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the series diverges by the Divergence Test.

1d The series may be written as
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the series diverges by the Ratio Test.

2a Let b, =n?/(n®+1). Clearly b, > 0 for all n > 1, with b, — 0 as n — oco. It remains to
show that (b,) is a nonincreasing (i.e. monotone decreasing) sequence. Let f(z) = z?/(z3+1),
so b, = f(n) for each integer n > 1. Since
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for all z > %, it follows that f is decreasing on [%, o0), and hence (b,) is decreasing for n > 2.

Indeed, since by = % > % = by, we see that (b,) is decreasing for all n > 1. Therefore the series
converges by the Alternating Series Test.

2b Since tan~!'n — m/2 as n — oo, the series diverges by the Divergence Test.



3 The 4th-order Taylor polynomial consists of the first four terms of the Maclaurin series for

In(1 + ) with z = —0.1:
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4a Apply Ratio Test:
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Series converges if |z| < 1/9, so interval of convergence contains ( — é, %) Check endpoints.

At x = 1/9: series becomes > 1/n, a convergent p-series. At x = —1/9: series becomes
S>> (=1)"/n*, which converges by the Alternating Series Test.
11

Interval of convergence is [ — 5 5],

4b Ratio Test:
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Series converges if |2z + 1| < 8, so interval of convergence contains ( — g, %) Check endpoints.
At 2 = I series becomes Y 1/n, which diverges. At z = — series becomes Y (—1)"/n,

which converges by the Alternating Series Test.

Interval of convergence is [ — g, %)

4c Ratio Test:
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The series only converges at {10}.

5 Use the geometric series:

5 = 22 —1 = 2 N _x_?) ! - i(_l)nm3n+2
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Interval of convergence is | — z%/5| < 1, or |z|* < 5, and hence (—v/5, V/5).



6 Use the geometric series:

z 1 - 31n - n,.3n+1
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for all |z| < 1. We have
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which is an alternating series > (—1)"b,, with
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for n > 0. The first few b,, values are
bo = 0.045, b =4.86 x 107*, by~ 820 x 107%, b3~ 1.61 x 107" < 1079,

so by the Alternating Series Estimation Theorem the approximation
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will have an absolute error that is less than 107,

7 We have 22 =t + 1, so that t — 1 = 22 — 2, and then 3> =t — 1 = 22 — 2. Noting that
y > 0, it follows that

y= Va2 —2.
The domain of this function is (v/2, 00).

8 The set-up is thus:
(z,y) = (1 — 55¢) (4, —40) + 55t (2, 10)
for 0 <t < 30. Equivalently we may write
(r,y) = (—15t + 4,5t —40), t<[0,30].

9 Using a given trigonometric identity gives
rcos =2cosfsinf = r*(rcosf) =2(rcosf)(rsind) = (2*+y*)z = 2y,

or equivalently
z(z? +y* —2y) = 0.

The graph of this equation will include the vertical line z = 0, and also the curve

4y’ —2y=0 = 2*+(@y-1>*=1,



which is a circle centered at (0,1) with radius 1.
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10 With f(0) = 8sinf and 6y = 57 /6, the slope is

J'(0)sinby + f(0o) cosby  8V3(1/2)+4v3 43
f'(6o) cos o — f(fo)sinby  8v/3(v/3) —4(1/2) 11~

11 When 6 = 0 we have r = 0 (the “stem” of the leaf), and when 6 = 7/8 we have r = 2
(the “tip” of the leaf). This covers half of a single leaf, and to cover the whole leaf we increase
0 further to 7/4 to again obtain r = 0. Using the identity sin®6 = 3(1 — cos 26), the area A of
the leaf is
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