MatH 141 ExaM #1 KEY (SUMMER III 2018)

la We have f'(z) = 3+cosx, so f'(x) > 0 for all z € R, which implies f is strictly increasing
everywhere and is therefore one-to-one.

1b Since f(0) = 0, by the Inverse Function Theorem we have
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2a Quotient rule:
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2b Chain rule: f’(x) = cos(cose®) - (—sine”) - e*.
2c  We have
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2e Use algebra to find that
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2f By the Chain Rule:
1 , =122 1

PE = e W S e T AT

3a Use integration by parts with u = In(3 — 2z) and v' = 1 to get
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where for the last equality we note that 3 — 2z > 0 must be the case, and so |2z — 3| = 3 — 2.

3b Let u=¢e"—e 7, s0 du = (e” + e *)dz, and we obtain
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3c Let u =cosx, so du = —sinxdr = —ﬁdm. Integral becomes
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4a Letting u = €/ + 1, so integral becomes
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4b Use a given formula:
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4c Let u = sinh 2y, so du = 2 cosh 2y dy integral becomes
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5 We have
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6 A long division along the way is needed:
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7a Use integration by parts with « = z and v = 1/v/x + 1, so that «' = 1 and v = 2z + 1:
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7b Integration by parts twice, starting with « = 22 and v’ = sin 2z, gives
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7c Using integration by parts with v = (Inz)?, v’ = 1 gives
/(lnx)2 dr = r(Inx)? — 2/1nxdm =2(lnx)* —2zlnz + 22 + ¢

Note that [ Inz dz also requires integration by parts if you don’t remember the formula.

8 That f” is continuous on [a, b] ensures that x f”(x) is continuous (and hence integrable) on
[a,b], and so integration by parts and the assumption that f’(a) = f'(b) = 0 gives
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Next, the continuity of f” on [a,b] implies that f’ is differentiable on [a, b], and so
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by the Fundamental Theorem of Calculus. Putting our two findings together, we have
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