MATH 141 ExaM #3 KEY (SUMMER III 2017)

1 For all n > 1 we have sin(1/n)/n? < 1/n? and since >_1/n? is a convergent p-series, the
Direct comparison Test implies that the given series also converges.

2 We have
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and so the series converges by the Ratio Test.

3 Use the Ratio Test:
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and so the series diverges.
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4 For integers n > €2 we have Inn > 2, so that n'"™ > n? and hence 1/n'"" < 1/n?. Since
S 1/n?% is a convergent p-series, it follows by the Direct Comparison Test that Y 1/n™" also
converges.

5 For n > 1 we have

with b, — 0 as n — oo. Also,
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and since the last inequality is clearly true, the sequence (b,) is nonincreasing. Therefore the
series converges by the Alternating Series Test. It is conditionally convergent since the series
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is a divergent p-series.

6 By the Alternating Series Estimation Theorem, the smallest integer k& for which the partial
sum
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approximates the value of the series with an error of less than 1073 must be the first integer k&
for which k/(k°+2) < 1073. Since 5/(5°+2) ~ 0.0016 > 1072 and 6/(6°+2) =~ 0.00077 < 1073,
we find that k = 6 fits the bill. Thus we have

with absolute error less than 1073,



7 The 3rd-order Taylor polynomial for ¢® is 1 + z + x?/2 + 23 /6, and so
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M 1+ 011+ 5(0.11)2 + 6(0.11)3 ~ 1.11627807.

8a Apply Ratio Test:
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Series converges if |z| < 1, so interval of convergence contains (—1,1). Check endpoints.

At z = 1: series becomes Y 1/v/n? + 3, and since
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and the series Y 1/n is known to diverge, the series > 1/v/n?+ 3 diverges by the Direct
Comparison Test.

At © = —1: series becomes ) (—1)"/v/n?+ 3, which can be shown to converge by the
Alternating Series Test.
Therefore the original series has interval of convergence [—1,1).

8b Apply the Root Test:
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Series converges if 2|z — 1| < 1, so interval of convergence contains (%, %) Check endpoints.
Atz = %: Series becomes
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and since (1 + %)n — e as n — 00, the series diverges by the Divergence Test.
Atz = %: Series becomes
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which also diverges by the Divergence Test.
Therefore the original series has interval of convergence (%, %)

8c Apply Ratio Test, using L’Hopital’s Rule to find the limit:
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Thus the series converges if |x| < 1, so interval of convergence contains (—1, 1). At the endpoints
we obtain either the series > Inn or > (—1)"Inn, both of which diverge by the Divergence Test.
Therefore the original series has interval of convergence (—1,1).



9 Use the geometric series:
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Interval of convergence is | — 23| < 1, and hence (—1, 1).

10 Using the binomial series,
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Interval of convergence is (—1,1).

11 We have
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Since (0.1)3/3% < 1075, the estimate
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will have an absolute error less than 107°.
12 We have (22)? + (3y)? = 36 cos? 0 + 36sin? = 36, and thus 22/9 + y2/4 = 1.
13 (4sinf —2,4cosf +9).

14 Recalling z = rcosf, y = rsinf, and 72 = 2% + 32, we use the identity sin 26 = 2sin § cos 0

to obtain
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= z(2® +9?) = 2zy.

15 The polar curves intersect for 6 such that cosf = %, giving 0 = +%. Thus the area is
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