Math 141 Exam \#4 Key (Summer 2020)

1a This would be the 2nd-order Taylor polynomial:

$$
p_{2}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2} .
$$

1b $\sqrt{3.88} \approx p_{2}(3.88)=1.969775$.

2 For $f(x)=\sqrt{1+x}$ we find that $p_{1}(x)=1+x / 2$. By a theorem, certainly for $|x|<1$, we find that the remainder is $R_{1}(x)$, where

$$
\left|R_{1}(x)\right| \leq M \cdot \frac{|x-a|^{2}}{2!}
$$

for some M such that $\left|f^{\prime \prime}(\xi)\right| \leq M$ for all ξ between a and x. Let $a=0$, and fix $x \in[-0.12,0.14]$. For all ξ between 0 and x we have

$$
\left|f^{\prime \prime}(\xi)\right|=\left|-\frac{1}{4}(1+\xi)^{-3 / 2}\right|=\frac{1}{4(1+\xi)^{3 / 2}} \leq \frac{1}{4(1-0.12)^{3 / 2}}=0.3028
$$

so we can let $M=0.3028$. Therefore a suitable bound on the error term is

$$
\left|R_{1}(x)\right| \leq \frac{0.3028 x^{2}}{2} \leq \frac{0.3028(0.14)^{3 / 2}}{2}=0.0030
$$

for all $x \in[-0.12,0.14]$.

3a Ratio Test: for any x,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}(x+3)^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{n^{2}(x+3)^{n}}\right|=|x+3| \lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{3}+2 n^{2}}=0
$$

and so the series converges on $(-\infty, \infty)$.

3b Ratio Test: for any x,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{6 x \sqrt{n}}{\sqrt{n+1}}\right|=6|x| \lim _{n \rightarrow \infty} \sqrt{\frac{n}{n+1}}=6|x|
$$

and so the series converges at least on $\left(-\frac{1}{6}, \frac{1}{6}\right)$. When $x=\frac{1}{6}$ series becomes $\sum \frac{1}{\sqrt{n}}$, a divergent p-series. When $x=-\frac{1}{6}$ series becomes $\sum \frac{(-1)^{n}}{\sqrt{n}}$, which converges by the Alternating Series Test. Interval of convergence is $\left[-\frac{1}{6}, \frac{1}{6}\right)$.

3c Ratio Test: for any x,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2) n^{2}}{3(n+1)^{2}}\right|=\frac{|x-2|}{3},
$$

and so the series converges at least on $(-1,5)$. When $x=-1$ series becomes $\sum \frac{1}{n^{2}}$, a convergent p-series. When $x=5$ series becomes $\sum \frac{(-1)^{n}}{n^{2}}$, which converges by the Alternating Series Test (or just note that the series is absolutely convergent). Interval of convergence is $[-1,5]$.

4 Use the given Maclaurin series for $\ln (1+x)$:

$$
f(x)=\frac{1}{2} \ln \left(1-x^{2}\right)=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\left(-x^{2}\right)^{n}}{n}=-\sum_{n=1}^{\infty} \frac{x^{2 n}}{2 n}
$$

for $-1<-x^{2} \leq 1$, or $|x|<1$. Interval of convergence is $(-1,1)$.
$51+\frac{3}{2} x-\frac{3}{8} x^{2}+\frac{5}{16} x^{3}+\cdots$.

6 Using given Maclaurin series limit becomes

$$
\lim _{x \rightarrow 0} \frac{\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots\right)-1-x}{x^{2}-\frac{x^{4}}{3}+\frac{x^{6}}{5}+\cdots}=\lim _{x \rightarrow 0} \frac{\frac{1}{2}+\frac{x}{6}+\frac{x^{2}}{24}+\cdots}{1-\frac{x^{2}}{3}+\frac{x^{4}}{5}+\cdots}=\frac{1}{2}
$$

7 Using the Maclaurin series for the sine function:

$$
\begin{aligned}
\int_{0}^{1} \sin \sqrt{x} d x & =\int_{0}^{1}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1 / 2}}{(2 n+1)!}\right] d x=\sum_{n=0}^{\infty}\left[\frac{(-1)^{n}}{(2 n+1)!} \int_{0}^{1} x^{n+1 / 2} d x\right] \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!(n+3 / 2)}=\sum_{n=0}^{\infty}(-1)^{n} b_{n}
\end{aligned}
$$

where

$$
b_{n}=\frac{1}{(2 n+1)!(n+3 / 2)}
$$

We find the lowest n such that $b_{n}<10^{-4}$. This turns out to be $b_{3}=\frac{1}{22,680}$. Thus we make the approximation

$$
\int_{0}^{1} \sin \sqrt{x} d x \approx \sum_{n=0}^{2}(-1)^{n} b_{n}=\frac{2}{3}-\frac{1}{15}+\frac{1}{420}=0.60238
$$

8 Use the identity $1+\tan ^{2} t=\sec ^{2} t$ to get $1+y^{2}=x^{2}$.

9 In general

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{-6 \sin 2 t}{8 \cos 2 t}
$$

and so the slope is

$$
\left.\frac{d y}{d x}\right|_{t=\pi / 6}=-\frac{3 \sin (\pi / 3)}{4 \cos (\pi / 3)}=-\frac{3 \sqrt{3}}{4} .
$$

