1a Using a law of limits:

$$
\lim _{n \rightarrow \infty}=\left(\lim _{n \rightarrow \infty} \frac{n+3}{5 n}\right)\left[\lim _{n \rightarrow \infty}\left(2-\frac{9}{n}\right)\right]=\frac{1}{5} \cdot 2=\frac{2}{5}
$$

1b Rationalize the numerator:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\left(n-\sqrt{n^{2}-n}\right)\left(n+\sqrt{n^{2}-n}\right)}{n+\sqrt{n^{2}-n}}=\lim _{n \rightarrow \infty} \frac{n}{n+\sqrt{n^{2}-1}}=\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{1-1 / n}}=\frac{1}{2} .
$$

1c Use L'Hôpital's Rule:

$$
\lim _{n \rightarrow \infty} a_{n} \stackrel{\text { LR }}{=} \lim _{n \rightarrow \infty} \frac{1 / n}{2 /(2 n)}=\lim _{n \rightarrow \infty}(1)=1
$$

2a $\quad a_{n}=a_{n-1}-6, a_{1}=-2$.

2b $\quad a_{n}=-2-6(n-1)=-6 n+4$ for $n \geq 1$.

3 Reindex to obtain

$$
\sum_{n=0}^{\infty} \frac{3}{4}\left(\frac{1}{4}\right)^{n}=\frac{3 / 4}{1-1 / 4}=1
$$

4 Partial fraction decomposition gives

$$
\frac{6}{n^{2}+2 n}=\frac{3}{n}-\frac{3}{n+2} .
$$

The nth partial sum is

$$
s_{n}=\sum_{k=1}^{n}\left(\frac{3}{k}-\frac{3}{k+2}\right)=3+\frac{3}{2}-\frac{3}{n+1}-\frac{3}{n+2},
$$

and so

$$
\sum_{n=1}^{\infty} \frac{6}{n^{2}+2 n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{9}{2}-\frac{3}{n+1}-\frac{3}{n+2}\right)=\frac{9}{2}
$$

The series converges.

5 We have

$$
\begin{aligned}
2.0 \overline{45} & =2+\frac{45}{10^{3}}+\frac{45}{10^{5}}+\frac{45}{10^{7}}+\cdots=2+\sum_{n=0}^{\infty} \frac{45}{10^{2 n+3}} \\
& =2+\frac{45}{1000} \sum_{n=0}^{\infty}\left(\frac{1}{100}\right)^{n}=2+\frac{45 / 1000}{1-1 / 100}=\frac{45}{22}
\end{aligned}
$$

6a Letting $u=\ln x$, we find that

$$
\int_{3}^{\infty} \frac{4}{x \sqrt{\ln x}} d x=\int_{\ln 3}^{\infty} \frac{4}{\sqrt{u}} d u=\lim _{t \rightarrow \infty}[8 \sqrt{u}]_{\ln 3}^{t}=\lim _{t \rightarrow \infty}(8 \sqrt{t}-8 \sqrt{\ln 3})=\infty
$$

and so the series diverges by the Integral Test.

6b Since $3^{n} \gg n^{2}$ we have

$$
\lim _{n \rightarrow \infty} \frac{3^{n}}{n^{2}+1}=\infty \neq 0
$$

so the series diverges by the Divergence Test.

6c Series is expressible as $\sum \frac{1}{2 n+1}$, and since

$$
\int_{1}^{\infty} \frac{1}{2 x+1} d x=\frac{1}{2} \lim _{t \rightarrow \infty}[\ln (2 t+1)-\ln 3]=\infty
$$

the series diverges by the Integral Test.

6d For all $k \geq 1$ we have $(2+\sin k) / k \geq 1 / k$, and since $\sum 1 / k$ is a divergent p-series, the given series likewise diverges by the Direct Comparison Test.

6e Let $a_{n}=2^{n} /\left(e^{n}-1\right)$ and $b_{n}=(2 / e)^{n}$. Since

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty}\left(\frac{2^{n}}{e^{n}-1} \cdot \frac{e^{n}}{2^{n}}\right)=\lim _{n \rightarrow \infty} \frac{1}{1-e^{-n}}=1 \in(0, \infty)
$$

and $\sum b_{n}=\sum(2 / e)^{n}$ is a convergent geometric series, the Limit Comparison Test implies the given series $\sum a_{n}$ also converges.
$6 f$ Since

$$
\rho=\lim _{j \rightarrow \infty}\left|\frac{a_{j+1}}{a_{j}}\right|=\lim _{j \rightarrow \infty}\left|\frac{4^{(j+1)^{2}}}{(j+1)!} \cdot \frac{j!}{4^{j^{2}}}\right|=\lim _{j \rightarrow \infty} \frac{4^{2 j+1}}{j+1}=\infty,
$$

noting that $4^{2 j} \gg j$, the Ratio Test implies the series diverges.

7 Let $a_{n}=10 /(\ln n)^{p}$, where $p>0$ is given. Recall that $x^{r} \gg(\ln x)^{q}$ for any $q, r>0$, which by definition means

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{r}}{(\ln x)^{q}}=\infty \tag{1}
\end{equation*}
$$

Compare $\sum a_{n}$ (the given series) to $\sum b_{n}$ for $b_{n}=1 / n$. Using (1) with $r=1$ and $q=p$, we obtain

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=10 \lim _{n \rightarrow \infty} \frac{n}{(\ln n)^{p}}=\infty
$$

Since the series $\sum b_{n}=\sum 1 / n$ is a divergent p-series, the Limit Comparison Test implies that the given series $\sum a_{n}$ also diverges for any $p>0$.

8a The sequence $b_{n}=n^{-0.99}$ is clearly a decreasing sequence of positive real numbers with limit 0, so the Alternating Series Test implies the given series converges. Because $\sum n^{-0.99}$ is a divergent p-series, however, the given series is not absolutely convergent, and is therefore conditionally convergent.

8b Let

$$
b_{m}=\frac{m^{2}+1}{3 m^{4}+3}
$$

Clearly $b_{m}>0$ for all $m \geq 1$, with $b_{m} \rightarrow 0$ as $m \rightarrow \infty$. But is the sequence $\left(b_{m}\right)_{m=1}^{\infty}$ nonincreasing? Let

$$
f(x)=\frac{x^{2}+1}{3 x^{4}+3}
$$

so $b_{m}=f(m)$. Since

$$
f^{\prime}(x)=-\frac{6 x^{3}\left(x^{2}+1\right)}{\left(3 x^{4}+3\right)^{4}}<0
$$

for all $x>0$, it follows that f is a decreasing function on $(0, \infty)$, and therefore $\left(b_{m}\right)_{m=1}^{\infty}$ is a decreasing sequence. The Alternating Series Test now implies the given series converges.

In fact the given series is absolutely convergent, as the series $\sum b_{m}$ can be shown to be convergent using the Limit Comparison Test: comparing with $\sum 1 / m^{2}$ (a p-series known to converge), we have

$$
\lim _{m \rightarrow \infty} \frac{\frac{m^{2}+1}{3 m^{4}+3}}{1 / m^{2}}=\lim _{m \rightarrow \infty} \frac{m^{4}+m^{2}}{3 m^{4}+3}=\frac{1}{3} \in(0, \infty) .
$$

