MATH 141 ExaM #3 KEY (SUMMER 2020)

la Using a law of limits:
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1b Rationalize the numerator:
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1c Use L’Hopital’s Rule:

1/n

8,0 = L 5 omy — ) = T

2a a, =a,1—6,a = —2.
2b a,=-2—-6(n—1)=—6n+4forn>1.

3 Reindex to obtain

4 Partial fraction decomposition gives
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The nth partial sum is

and so

The series converges.



5 We have
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6a Letting u = Inxz, we find that
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and so the series diverges by the Integral Test.

6b Since 3" > n? we have

n
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= o0 # 0,

so the series diverges by the Divergence Test.

6c  Series is expressible as ) 5=, and since

< 1 1.
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the series diverges by the Integral Test.

6d For all £ > 1 we have (2 +sink)/k > 1/k, and since ) 1/k is a divergent p-series, the
given series likewise diverges by the Direct Comparison Test.

6e Let a, =2"/(e"—1) and b, = (2/€)". Since

A " 1
lim 2% = lim ( e_) = lim =1¢€(0,00)
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and Y b, = Y (2/e)" is a convergent geometric series, the Limit Comparison Test implies the
given series Y a, also converges.

6f Since
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noting that 4% > j, the Ratio Test implies the series diverges.
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7 Let a, = 10/(Inn)?P, where p > 0 is given. Recall that 2" > (Inz)? for any ¢, > 0, which

by definition means
,

e (Inx)a = e (1)
Compare ) a, (the given series) to > b, for b, = 1/n. Using (1) with » = 1 and ¢ = p, we
obtain

a n
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Since the series b, = > 1/n is a divergent p-series, the Limit Comparison Test implies that
the given series ) a,, also diverges for any p > 0.

8a The sequence b, = n~ "% is clearly a decreasing sequence of positive real numbers with

limit 0, so the Alternating Series Test implies the given series converges. Because »_ n~%
is a divergent p-series, however, the given series is not absolutely convergent, and is therefore
conditionally convergent.

8b Let

B m? +1

C 3mA 43

Clearly b,, > 0 for all m > 1, with b,, — 0 as m — oo. But is the sequence (b,,)5_,
nonincreasing? Let

m
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0 by, = f(m). Since
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for all x > 0, it follows that f is a decreasing function on (0, 00), and therefore (b,,)>_; is a

decreasing sequence. The Alternating Series Test now implies the given series converges.

In fact the given series is absolutely convergent, as the series ) b,, can be shown to be
convergent using the Limit Comparison Test: comparing with > 1/m? (a p-series known to
converge), we have
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