MaTH 141 ExaMm #1 KEY (SUMMER 2020)

1 Since f(—3) =12 and f'(x) = 2z — 2, the Inverse Function Theorem gives
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2e Let y = logg | tan x|, so we must find y'. We have 8 = |tan x|, and hence y = s
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2f Using the given formula and the Chain Rule:
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so when x = 7 we have y = —In2. This is the slope of the tangent line through the point
(7, 1), so the equation is y = (m — ) In2 + 1.
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—/lldu— [ln|u|]2—ln2
2 U B L .



4c Let u=Inlny, so du = yl—}lydy and the integral becomes
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4e Use one of the formulas on the back side of the exam:
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4f Let u = sechw, so du = — sech w tanh w dw and we get
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One note: though this problem came from the review exercises in Chapter 7 of the text, the
rightmost integral above (and hence all the integrals in this problem) is in fact improper. Im-
proper integrals are not treated until the end of Chapter 8, so this is a mistake on the book’s
part. Fortunately, handling the integral in the usual way still gives the right answer here.

6a The limit has the form 3°°, which is not indeterminate at all but rather equals +ooc.
6b With L’Hopital’s Rule,
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