Math 141 Exam \#3 Key (Summer 2019)

1a $\lim _{n \rightarrow \infty} a_{n}=2$, since $\sum(0.98)^{n}$ is a convergent geometric series and so $(0.98)^{n} \rightarrow 0$ as $n \rightarrow \infty$ by the Divergence Test. (There are many other ways to argue this, the simplest argument being that $\lim _{n \rightarrow \infty} x^{n}=0$ whenever $|x|<1$ is an established fact.)

1b $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \ln \frac{3 n^{2}+4}{n^{2}+4}=\ln 3$.
2 In the following we multiply by e^{n+1} to simplify things:

$$
a_{n+1}>a_{n} \Leftrightarrow 3-2(n+1) e^{-(n+1)}>3-2 n e^{-n} \Leftrightarrow n+1<n e \Leftrightarrow e>1+\frac{1}{n} .
$$

The last equality is obviously true for any $n \geq 1$, and therefore $a_{n+1}>a_{n}$ is true for all $n \geq 1$; that is, the sequence $\left(a_{n}\right)$ is increasing. This means $\left(a_{n}\right)$ is bounded below, and since $a_{n} \rightarrow 3$ as $n \rightarrow \infty$, we find that 3 is an upper bounded on the sequence, and hence $\left(a_{n}\right)$ is a bounded sequence.

3 We have

$$
10-2+0.4-0.08+\cdots=\frac{1}{10^{-1}}-\frac{2}{10^{0}}+\frac{2^{2}}{10^{1}}-\frac{2^{3}}{10^{2}}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{10^{n-1}}=10 \sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n}
$$

a convergent geometric series equalling $\frac{25}{3}$.
4 The k th partial sum is

$$
\begin{aligned}
s_{k} & =\sum_{n=1}^{k}\left(e^{1 / n}-e^{1 /(n+1)}\right) \\
& =\left(e-e^{1 / 2}\right)+\left(e^{1 / 2}-e^{1 / 3}\right)+\left(e^{1 / 3}-e^{1 / 4}\right)+\cdots+\left(e^{1 / k}-e^{1 /(k+1)}\right) \\
& =e-e^{1 /(k+1)}
\end{aligned}
$$

and so the series converges:

$$
\sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)=\lim _{k \rightarrow \infty} \sum_{n=1}^{k}\left(e^{1 / n}-e^{1 /(n+1)}\right)=\lim _{k \rightarrow \infty}\left(e-e^{1 /(k+1)}\right)=e-1
$$

5 The series is geometric:

$$
\sum_{n=1}^{\infty}\left(\frac{1}{c+3}\right)^{n}=4 \Leftrightarrow \frac{1}{c+3}\left(\frac{1}{1-\frac{1}{c+3}}\right)=4 \quad \Leftrightarrow \quad c=-\frac{7}{4}
$$

6 The series is $\sum_{n=1}^{\infty} \frac{1}{4 n-1}$, and since

$$
\int_{1}^{\infty} \frac{1}{4 x-1} d x=\frac{1}{4} \lim _{t \rightarrow \infty}[\ln (4 x-1)]_{1}^{t}=\frac{1}{4} \lim _{t \rightarrow \infty}[\ln (4 t-1)-\ln 3]=\infty
$$

the series diverges by the Integral Test.
7a Since $\frac{n \sin ^{2} n}{n^{3}+1} \leq \frac{n}{n^{3}+1} \leq \frac{n}{n^{3}}=\frac{1}{n^{2}}$ and $\sum 1 / n^{2}$ converges, the Direct Comparison Test implies the given series converges also.

7b Since $\sum(4 / 3)^{n}$ is a divergent geometric series and

$$
\lim _{n \rightarrow \infty} \frac{\frac{4^{n}+1}{3^{n}-2}}{(4 / 3)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{4^{n}+1}{3^{n}-2} \cdot \frac{3^{n}}{4^{n}}\right)=\lim _{n \rightarrow \infty} \frac{12^{n}+3^{n}}{12^{n}-2 \cdot 4^{n}}=\lim _{n \rightarrow \infty} \frac{1+(1 / 4)^{n}}{1-2 \cdot(1 / 3)^{n}}=1 \in(0, \infty)
$$

the Limit Comparison Test implies the given series diverges also.

8 For all n we have $d_{n} / 10^{n} \leq 9 / 10^{n}$, and since $\sum 9 / 10^{n}$ is a convergent geometric series, the Direct Comparison Test implies that the given series $\sum_{n=1}^{\infty} d_{n} / 10^{n}$ also converges.

9a Since $\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+n+1}=1 \neq 0$, the series diverges by the Divergence Test.

9b For $b_{n}=\sqrt{n} /(2 n+3)$ we find that

$$
\begin{aligned}
b_{n+1}<b_{n} & \Leftrightarrow \frac{\sqrt{n+1}}{2(n+1)+3}<\frac{\sqrt{n}}{2 n+3} \Leftrightarrow(2 n+3)^{2}(n+1)<(2 n+5)^{2} n \\
& \Leftrightarrow 9<4 n^{2}+4 n
\end{aligned}
$$

and since $9<4 n^{2}+4 n$ is true for all $n \geq 2$, so too is $b_{n+1}<b_{n}$, and thus $\left(b_{n}\right)$ is an (eventually) decreasing sequence. Moreover

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2 n+3}=\lim _{n \rightarrow \infty} \frac{1 / \sqrt{n}}{2+3 / n}=0
$$

and since $b_{n}>0$ for all n, the Alternating Series Test implies that the given series converges.
10a Ratio Test: since

$$
\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+1}}{[2(n+1)+1]!} \cdot \frac{(2 n+1)!}{(-3)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{3}{(2 n+2)(2 n+3)}=0<1
$$

the series converges.

10b Root test: since

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{(\ln n)^{n}}}=\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0<1
$$

the series converges.

11a $\sum(-1)^{n} / \ln n$ converges by the Alternating Series Test; however, $\sum\left|(-1)^{n} / \ln n\right|=$ $\sum 1 / \ln n$ diverges by the Direct Comparison Test since $1 /(\ln n)>n$ for all sufficiently large n, and $\sum 1 / n$ is known to diverge. Therefore $\sum(-1)^{n} / \ln n$ converges conditionally.

11b The series converges by the Alternating Series Test, and since

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n} \arctan n}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{\arctan n}{n^{2}}
$$

with $(\arctan n) / n^{2} \leq(\pi / 2) / n^{2}$ and $\sum 1 / n^{2}$ convergent, we use the Direct Comparison Test to conclude that the given series is absolutely convergent.

