
Math 141 Exam #3 Key (Summer 2019)

1a lim
n→∞

an = 2, since
∑

(0.98)n is a convergent geometric series and so (0.98)n → 0 as n→∞
by the Divergence Test. (There are many other ways to argue this, the simplest argument being
that limn→∞ x

n = 0 whenever |x| < 1 is an established fact.)

1b lim
n→∞

an = lim
n→∞

ln
3n2 + 4

n2 + 4
= ln 3.

2 In the following we multiply by en+1 to simplify things:

an+1 > an ⇔ 3− 2(n+ 1)e−(n+1) > 3− 2ne−n ⇔ n+ 1 < ne ⇔ e > 1 +
1

n
.

The last equality is obviously true for any n ≥ 1, and therefore an+1 > an is true for all n ≥ 1;
that is, the sequence (an) is increasing. This means (an) is bounded below, and since an → 3
as n → ∞, we find that 3 is an upper bounded on the sequence, and hence (an) is a bounded
sequence.

3 We have

10− 2 + 0.4− 0.08 + · · · = 1

10−1
− 2

100
+

22

101
− 23

102
+ · · · =

∞∑
n=0

(−1)n2n

10n−1 = 10
∞∑
n=0

(
−1

5

)n

,

a convergent geometric series equalling 25
3

.

4 The kth partial sum is

sk =
k∑

n=1

(
e1/n − e1/(n+1)

)
= (e− e1/2) + (e1/2 − e1/3) + (e1/3 − e1/4) + · · ·+ (e1/k − e1/(k+1))

= e− e1/(k+1),

and so the series converges:

∞∑
n=1

(
e1/n − e1/(n+1)

)
= lim

k→∞

k∑
n=1

(
e1/n − e1/(n+1)

)
= lim

k→∞

(
e− e1/(k+1)

)
= e− 1.

5 The series is geometric:

∞∑
n=1

(
1

c+ 3

)n

= 4 ⇔ 1

c+ 3

(
1

1− 1
c+3

)
= 4 ⇔ c = −7

4
.

6 The series is
∑∞

n=1
1

4n−1 , and since∫ ∞
1

1

4x− 1
dx =

1

4
lim
t→∞

[
ln(4x− 1)

]t
1

=
1

4
lim
t→∞

[
ln(4t− 1)− ln 3

]
=∞
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the series diverges by the Integral Test.

7a Since
n sin2 n

n3 + 1
≤ n

n3 + 1
≤ n

n3
=

1

n2
and

∑
1/n2 converges, the Direct Comparison Test

implies the given series converges also.

7b Since
∑

(4/3)n is a divergent geometric series and

lim
n→∞

4n + 1

3n − 2
(4/3)n

= lim
n→∞

(
4n + 1

3n − 2
· 3n

4n

)
= lim

n→∞

12n + 3n

12n − 2 · 4n
= lim

n→∞

1 + (1/4)n

1− 2 · (1/3)n
= 1 ∈ (0,∞),

the Limit Comparison Test implies the given series diverges also.

8 For all n we have dn/10n ≤ 9/10n, and since
∑

9/10n is a convergent geometric series, the
Direct Comparison Test implies that the given series

∑∞
n=1 dn/10n also converges.

9a Since lim
n→∞

n2

n2 + n+ 1
= 1 6= 0, the series diverges by the Divergence Test.

9b For bn =
√
n/(2n+ 3) we find that

bn+1 < bn ⇔
√
n+ 1

2(n+ 1) + 3
<

√
n

2n+ 3
⇔ (2n+ 3)2(n+ 1) < (2n+ 5)2n

⇔ 9 < 4n2 + 4n,

and since 9 < 4n2 + 4n is true for all n ≥ 2, so too is bn+1 < bn, and thus (bn) is an (eventually)
decreasing sequence. Moreover

lim
n→∞

bn = lim
n→∞

√
n

2n+ 3
= lim

n→∞

1/
√
n

2 + 3/n
= 0,

and since bn > 0 for all n, the Alternating Series Test implies that the given series converges.

10a Ratio Test: since

lim
n→∞

∣∣∣∣ (−3)n+1

[2(n+ 1) + 1]!
· (2n+ 1)!

(−3)n

∣∣∣∣ = lim
n→∞

3

(2n+ 2)(2n+ 3)
= 0 < 1,

the series converges.

10b Root test: since

lim
n→∞

n

√
1

(lnn)n
= lim

n→∞

1

lnn
= 0 < 1,

the series converges.
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11a
∑

(−1)n/ lnn converges by the Alternating Series Test; however,
∑
|(−1)n/ lnn| =∑

1/ lnn diverges by the Direct Comparison Test since 1/(lnn) > n for all sufficiently large n,
and

∑
1/n is known to diverge. Therefore

∑
(−1)n/ lnn converges conditionally.

11b The series converges by the Alternating Series Test, and since
∞∑
n=1

∣∣∣∣(−1)n arctann

n2

∣∣∣∣ =
∞∑
n=1

arctann

n2

with (arctann)/n2 ≤ (π/2)/n2 and
∑

1/n2 convergent, we use the Direct Comparison Test to
conclude that the given series is absolutely convergent.


