MATH 141 ExaM #3 KEY (SUMMER 2019)

la lim a, = 2, since > (0.98)" is a convergent geometric series and so (0.98)" — 0 as n — oo
n—o0

by the Divergence Test. (There are many other ways to argue this, the simplest argument being
that lim, o, ™ = 0 whenever |z| < 1 is an established fact.)
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2 In the following we multiply by e"*! to simplify things:

1
U1 > an < 3—2n+1D)e ™D >3 _2ne™ o nt+l<ne & e>1+—.
n

The last equality is obviously true for any n > 1, and therefore a,,.1 > a, is true for all n > 1;
that is, the sequence (a,) is increasing. This means (a,) is bounded below, and since a, — 3
as n — oo, we find that 3 is an upper bounded on the sequence, and hence (a,) is a bounded
sequence.
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4 The kth partial sum is
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and so the series converges:
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5 The series is geometric:
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6 The series is > -
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the series diverges by the Integral Test.
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7a Since < < — = — and 1/n? converges, the Direct Comparison Test
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implies the given series converges also.

7b Since > (4/3)" is a divergent geometric series and
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the Limit Comparison Test implies the given series diverges also.

8 For all n we have d,,/10" < 9/10", and since Y 9/10™ is a convergent geometric series, the
Direct Comparison Test implies that the given series Y -  d,,/10™ also converges.
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9a Since lim ———— =1 # 0, the series diverges by the Divergence Test.
n—soon?+mn+1

9b For b, = \/n/(2n + 3) we find that
vn+1 NLD

bpi1 < b, < < & (2n+3)? 1) < (2n + 5)?

o 9 < 4n? + 4n,

and since 9 < 4n?+4n is true for all n > 2, 80 t0o is b, 11 < by, and thus (b,) is an (eventually)
decreasing sequence. Moreover
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and since b, > 0 for all n, the Alternating Series Test implies that the given series converges.

10a Ratio Test: since
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the series converges.

10b Root test: since
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the series converges.
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11a > (—1)"/Inn converges by the Alternating Series Test; however, > |[(—=1)"/Inn| =
> 1/Inn diverges by the Direct Comparison Test since 1/(Inn) > n for all sufficiently large n,
and > 1/n is known to diverge. Therefore > (—1)"/Inn converges conditionally.

11b The series converges by the Alternating Series Test, and since
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with (arctann)/n? < (7/2)/n? and Y 1/n? convergent, we use the Direct Comparison Test to
conclude that the given series is absolutely convergent.



