MATH 141 ExaM #3 KEY (SUMMER 2018)

la Use L’Hopital’s rule:

tan(m/n) w fim (—m/n?) sec?(m/n)

. ™ . . ™
lim ntan — = lim = lim 7sec? — = wsec’0 = 7.

n—00 n  n—oo 1/n n—soo — 1/n2 n—00 n
1b We have
/ 4_2 2 / 4_2 2 —9n
lim (\/n4—2n—n2):lim( n n—n)vn ntn’) = lim
n—00 n—00 \/ 4_2n_|_n2 n—00 1/n4_2n_|_n2
—2/n 0

A a1l IO+l

2 Since —7/2 < tan"!n < 7/2 for any integer n, we have
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for all n, and since

the Squeeze Theorem implies that

3 Reindex to obtain
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4 'The nth partial sum is
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That is, the series diverges.



5 Find the smallest integer value of n for which # < 10—%)00. Since
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and 9 is the first integer for which 9* > 5000, estimation with the first eight terms will suffice:
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has absolute error less than 10~%.

6a For all n > 1 we have
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and since ) 4/3" is a convergent geometric series, we conclude by the Direct Comparison Test
that the given series converges.
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6b Since
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the series diverges by the Divergence Test.

6¢c For all n > 1 we have
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n2 = 2n?’
and since Y 1/n? is a convergent p-series, it follows that Y m/2n? is likewise convergent, and
therefore the given series converges by the Direct Comparison Test.
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the series converges by the Ratio Test.
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the series diverges by the Divergence Test.



6f Since
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the series converges by the Ratio Test.

7a Since (1/n°*) is a decreasing sequence of nonnegative values such that 1/n
n — 00, the series converges by the Alternating Series Test.

p-series, the given series is also absolutely convergent.

7b Since

) n
lim — = 400
n—o00 lnn

the series diverges by the Divergence Test.
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Since > 1/n%* is a convergent



