MATH 141 ExaM #3 KEY (SUMMER 2017)

la Recurrence relation: a,,1 = —a,, a; = 4.
1b Explicit formula: a, = (=1)""'4, n > 1.

2 We have
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3 In the limit process wherein n — oo only the expression for n > 5000 is relevant. Thus:
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4 Make sure to reindex to use the usual formula:
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5 Partial fraction decomposition yields
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From this we see that
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6 We have
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Since the integral converges, the series also converges by the Integral Test.



7 We'll use the Limit Comparison Test, comparing the given series with y 7 % We have
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and so since Y > % is known to diverge, the given series must also diverge.

8 We have
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and so the series converges by the Ratio Test.

9 Use the Ratio Test:
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and so the series diverges.
10 We may write the series as
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The Ratio Test will be inconclusive, so we try the Integral Test. With partial fraction decom-
position we find that
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Since the integral converges, we conclude that the series also converges.

11 For n > 1 we have

with b, — 0 as n — oco. Also,
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and since the last inequality is clearly true, the sequence (b,) is nonincreasing. Therefore the
series converges by the Alternating Series Test. It is conditionally convergent since the series
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is a divergent p-series.

12 By the Alternating Series Estimation Theorem, the smallest integer k£ for which the partial
sum
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approximates the value of the series with an error of less than 10~ must be the first integer &
for which k/(k*+ 1) < 10, Dropping the 1 gives 1/k* < 107*, and a little trial and error will
show that the smallest integer that works is £ = 22. Thus we have
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with absolute error less than 1074,




