MATH 141 ExaM #3 KEY (SUMMER 2016)

la Recurrence relation:

( 1)n+1 1
= T
1b Explicit formula:
—1)"
Ay = ( +>1 , n 2 1
n

2a We have
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2b Using L’Hopital’s Rule where indicated, we find that
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4 Partial fraction decomposition:
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and so (A+B)k:+(Ap+Bp+2A) = 1. This gives A+ B =0 and Ap + Bp + 2A = 1, and
finally A = = and B = —3. So,
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From this we see that
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5 We have
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Since the integral converges, the series also converges by the Integral Test.
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6 We'll use the Limit Comparison Test, comparing the given series with » >, % We have
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and so since ), % is known to diverge, the given series must also diverge.

7 We have
- Nanpa ] (e + DI Br) (n+1)° 1
B —JL%([s(nH)]! (n!)i”)_nl—%o(3n—|—1)(3n—|—2)(3n+3)_276[0’1>’

and so the series converges by the Ratio Test.

8 The Ratio Test will turn out to be inconclusive, so we use the Limit Comparison Test and
compare with the divergent series y %, using L’Hopital’s Rule where indicated:
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Thus the series diverges by the Limit Comparison Test.

9 For n > 2 we have
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with b, — 0 as n — oo. Is the sequence (b,)22; eventually nonincreasing, meaning b, 11 < b,

for all sufficiently large n? We have
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Clearly 4n(n—1) > 13 holds for all n > 3, and so b,1 < b, holds for all n > 3. That is, (b,)5>,
is indeed eventually nonincreasing. Therefore, by the Alternating Series Test, we conclude that
the series converges.




