MATH 141 ExaM #1 KEY (SUMMER 2016)

1 Note that to say (—3,5) is on the graph of f~! means f~!(—3) = 5, and this in turn implies
that f(5) = —3. But in fact

f(5) = =52 +14=—-25+14 = —11 # -3,
which shows that (—3,5) is not on the graph of f~!, and therefore there is no tangent line
there.

2a Since (Inz) = 27!, by the Product Rule we have
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2d Using (log, ) = gives
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2e ¢'(2) =
z|Inz[v/In? 2z — 1
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2f 3 = 4sech®(Inx) - [~ tanh(In z) sech(In )] - i "

3 Note (z%)* = 2**. Let f(z) = 2**, which has domain (0, 00), and find = € (0, 00) for which
f'(x) = 0. That is, find > 0 for which

(2 +2Inx)z* = 0.
This leads to 2 + 2Inz = 0, giving Inz = —1, and finally z = e~!. Therefore y = (2?)® has a
horizontal tangent line at the point (e~!, (e72)¢").



4a Let u = 4e* + 6, so idu = e%dx, and we get
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4b We have
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4c Let u = 2%, so by the Substitution Rule we replace 27 dz with %du to get
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4d Letting u = cosht, and noting that cosht > 0 for all t € R, we have

inht 1
/Sm—dt:/ du=In|u+1]+c=In|cosht+ 1| + ¢ =In(cosht + 1) + c.
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5a Let u = 2%. Now, since 2% = e*" = ¢*"% we have
du
dzx
Thus we formally have du = (1 4 Inz)x® dz when we apply the Substitution Method, giving
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5b Let u=1/p, so —du = #dp:
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6 With LR indicating use of L’Hopital’s Rule, we have
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Since In 3 < 0 and %2 — 0% as x — 0, the limit must equal exp(—o0) = 0.



