MATH 141 ExaM #3 KEY (SUMMER 2014)
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5 By partial fraction decomposition,
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So the integral converges, and therefore the series converges by the Integral Test.

6b Since
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the Divergence Test is inconclusive.



6¢c Since

. lapn [(n+ 1)1? (2n)! (n+1)? .on*+2n+1 1

lim = : = =lim ————=- <1,
S nsoo | (2n+2)1 (n!)?2| noo(2n+1)(2n+2) noccdn?+6n+2 4

the series converges by the Ratio Test.
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the series converges by the Root Test.

6e For each n > 1 we have
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and since Y o~ 1/n? is a convergent p-series, it follows that
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converges by the Direct Comparison Test.

6f We could use the Limit Comparison Test:
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Now, Z% is a divergent p-series, and so by the Limit Comparison Test we conclude that the
given series diverges.

7a Observe that, using L’Hopital’s Rule,
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and the Divergence Test implies that the series diverges.
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7b The sequence




is monotone decreasing, and moreover
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Therefore the series converges by the Alternating Series Test.



