MATH 141 ExaM #1 KEY (SUMMER 2014)

1 Wehave f/(r) = ba'+622+8, so it is clear that f(x) > 0 for all z € (—o00, 00), which implies
that f is an increasing function and therefore is one-to-one. Also f is everywhere differentiable.
Given these considerations, a theorem states that if f(a) = b, then (f~!)'(b) = 1/f'(a). Now,
we are given f(—2) = —76, and hence

(f1)(=76) = F(—2)  B5(—2 1 6(—22+8 112

2 Let f; denote the function f restricted to the interval [0, 00). Then f; is one-to-one, and
to find the inverse we solve y = 2/(x? + 2) for z:
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as one local inverse for f, with domain Dom(f; ") = Ran(f;) = (0, 1].
Now let fy denote the function f restricted to the interval (—oo,0]. Then f; is one-to-one,
and to find the inverse we solve y = 2/(z% + 2) for x:
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Thus we have

y:

where vVa? = |z| = —z since # < 0. Thus we have
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is another local inverse for f, with domain Dom(f; ') = Ran(f;) = (0, 1].
Since the domains of the two restrictions f; and fy cover the entire domain (—oo, c0) of f,
there are no other local inverses to find.
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3b Dom(g) = (0,00), and for all x > 0 we have

g(z) = 2™ = exp <1n (mln(ms))) = exp(In(2”) In(x)) = exp(51n*(z)),

and thus

10In(z) 102 In(z)

g ()= exp(5 an(x)) . (5ln2(m))/ = ) » -



3¢ For z such that sinz > 0 we have

h(z) = (sinz)™* = exp(In((sinz)"™*)) = exp(tanz - In(sin z)),

and thus
W (z) = exp(tanz - In(sinz))- (tan z - In(sin )’
= exp(tanx - In(sinz))- (tanx BT L et In(sin x))
sin

= (sinxz)™® (1 + In(sin z)** ””)
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4c Let u = 2*, so by the Substitution Rule we replace 2* dx with idu to get
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5a Let u = In(z), so when z = 1 we have u = In(1) = 0, and when = = 3e we have u = In(3e).
Now, by the Substitution Rule we replace %d:z: with du to get
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5b We have
2V/3
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6 For all £ > 0 we have

()" =en[n(2)"] = on[2n(2)] oo (2222).

The functions f(z) = 5In(2/x) and g(z) = z are differentiable on (0,00), and ¢'(x) =1 # 0
for all z € (0,00). Since g(x) — 0o as x — oo, and
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by L’Hopital’s Rule we obtain
lim —f(x> = lim 21n(2/) In(2/x)
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as well. Now, since exp(z) is a continuous function,

i (2) = o (P2212) iy P2) e 1.
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