MaTH 141 ExaM #4 KEY (SUMMER 2013)

la Applying the Ratio Test,
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so the series converges if |z 4+ 1]|/8 < 1, implying —8 < x + 1 < 8 and thus -9 <z < 7. It
remains to test the endpoints.
When z = 7 the series becomes,
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so the series diverges by the Divergence Test.

When z = —9 the series becomes,
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so again the series diverges. Therefore the interval of convergence is (—9,7), and the radius of
convergence is | —9 —7|/2 = 8.

1b Applying the Ratio Test,
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so the series converges if —1 < 2z + 3 < 1, implying —2 < z < —1.
When x = —2 the series becomes
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which converges by the Alternating Series Test. When x = —1 the series becomes
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diverges. Interval of convergence is [—2, —1), radius of convergence is 3.

which diverges since

1c Clearly the series converges when r = —2. Assuming x # —2, we can employ the Ratio
Test with .
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to obtain
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Thus the series converges if 3|z 4 2| < 1, which implies |z + 2| < 2 and thus —4 < 2 < 0. The
Ratio Test is inconclusive when x = —4 or x = 0, so we analyze these endpoint separately.
When z = —4 the series becomes
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which is the harmonic series and therefore diverges.
When x = 0 the series becomes
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which is an alternating series > (—1)*b, with b, = 1/k. Since limy_, bx = 0 and
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for all k£, by the Alternating Series Test this series converges.
Therefore the series converges on the interval (—4,0], and the radius of convergence is
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2 We manipulate to obtain

o0

h(z)=2- ppar —22 —3x)F =) " 2(-3x)",

k=0

).

W=

which converges if and only if | — 3z| < 1, so the interval of convergence is (—%,

3 Formally, the function represented by the series is given by
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The series converges if and only if |\/z + 4| < 1, or equivalently —5 < /x < —3. But there
exists no x € R which satisfies this inequality, and so there is no interval of convergence!
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4c Use the Ratio Test to find that the interval of convergence is (—o0, 00).

5 We have
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for all z € (—o00,00), and so
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for all —oo < & < co. In particular the series at right in (1) converges on (—o0, 00), and so
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for all x € (—o0, ) and arbitrary constant ¢. Thus, by the Fundamental Theorem of Calculus,
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We have arrived at an alternating series Y (—1)*b;, with
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for k > 0. Evaluating the first few b, values,
bo = 0.23/(3 - 1!) ~ 2.6667 x 10~
by =0.27/(7-3!) ~ 3.0476 x 10"
by = 0.2'1/(11 - 5!) ~ 1.5515 x 107!
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By the Alternating Series Estimation Theorem the approximation
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will have an absolute error that is less than by ~ 1.5515 x 10~ < 107'°. Therefore the
approximation
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has an absolute error less than 10719,
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6 From z = /t + 4 comes v/t = z — 4. Putting this into y = 3v/¢ gives y = 3(z — 4). Note
that this will not be a line, since 0 <t < 16 implies 0 < Vi< 4, and this means 0 <z —4 < 4.
That is, we have

y=3r—12, 4 <z <8,

which is a line segment.
7 (2,27/3), (2,—47/3), (—2,—n/3), among other possibilities.

8 We have r = f(#) with f(f) = 8sinf. The slope m of the curve at (4,57/6) is
_ f'(57/6) sin(57/6) + f(5m/6) cos(5m/6)
f(5m/6) cos(bm/6) — f(5m/6)sin(bmw/6)
_ 8 cos(5m/6) sin(57/6) + 8sin(57/6) cos(57/6)
8 cos(hm/6) cos(5m/6) — 8sin(57/6) sin(57/6)
_ 2cos(5m/6)sin(57/6) 2(—/3/2)(1/2) _
cos?(5m/6) — sin®(5m/6)  (—+/3/2)2 — (1/2)2

9 Here r = f(#) with f(0) = 3 + 5sinf. The curve is generated for 6 € [0, 27), so we find all
0 <6 < 27 for which
f(0)sin€ + f(0)cosh =0,
which gives
5cosB@sinf + cosf(3 + 5sinf) = 0.
Factoring results in the equation

(10sinf + 3) cos @ = 0,

so either 10sinf + 3 = 0 or cosf = 0. The latter equation has solutions 6 = 7/2,37/2. The
former equation gives sin# = —3/10, and though the angle sin~'(—3/10) is not in the interval
[0,27), the angles
21 +sin”'(=3/10) and 7 —sin~'(—3/10)
both are. You must be up on your basic trigonometry to figure this out!
Therefore the points on the curve r = 3 4 5sin§ where the tangent line is horizontal are:

(8:3), (=2.%), (G2r+sin7(=5)), (57 —sin™ ().



