MATH 141 ExAM #3 KEY (SUMMER 2013)
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1b First we evaluate
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where “LR” indicates an application of L’Hopital’s Rule.

Now, consider the subsequence of {a,}>; that consists of the even-indexed terms, which
can be denoted by {ay, }7°, with n, = 2k for k > 1. Then, using the fact that lim,,_, n'/m =1,
we have
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Next, consider the subsequence consisting of the odd-indexed terms, which can be denoted
by {an, }32, with ny =2k — 1 for £ > 1. Then we have
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Since {a,} has two subsequences with different limits, the sequence {a,} itself cannot
converge. That is, {a,} diverges.

2 Starting by reindexing, we have
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3 Partial fraction decomposition gives
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So series becomes



Now,
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the series diverges by the Divergence Test.

4b Letting u = —222, we have
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converges, and therefore the series converges by the Integral Test.

so the integral
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the series converges by the Ratio Test.

4d Since
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the series converges by the Root Test.



4e For each k > 1 we have
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and since > 7, k=3/% is a convergent p-series, it follows that
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converges by the Direct Comparison Test.

4f For each k > 1 we have
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and since Y ;- k™% is a convergent p-series, it follows that
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converges by the Direct Comparison Test.

5a Since Ink and k£ are monotone increasing functions for k£ > 2, it follows that
1
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is monotone decreasing (i.e. nonincreasing) for k£ > 2. Also
O KT
and so by the Alternating Series Test the series converges.
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the series diverges by the Divergence Test.



