MATH 141 EXAM #1 KEY (SUMMER 2013)

1. We have

$$f(2) = 2(2)^3 + 2 - 12 = 18 - 12 = 6,$$

and from $f'(x) = 6x^2 + 1$ we find that $f'(2) = 25 \neq 0$. Now, clearly f is differentiable on $(-\infty,\infty)$, and since f'>0 on $(-\infty,\infty)$ we conclude that f is everywhere increasing and therefore one-to-one. By the appropriate theorem we then obtain

$$(f^{-1})'(6) = \frac{1}{f'(2)} = \frac{1}{25}.$$

2. Let f_1 be the restriction of f to the interval $[4, \infty)$. That is, $f_1(x) = f(x)$ for $x \ge 4$. Then f_1 is a one-to-one function and thus has an inverse f_1^{-1} . To find f_1^{-1} set $f_1 = f_1(x)$ so that $y = (x-4)^2$ for $x \ge 4$. Then

$$\sqrt{y} = |x - 4| = x - 4,$$

whence $x = 4 + \sqrt{y}$. Since $y = f_1(x)$ if and only if $x = f_1^{-1}(y)$, we obtain $f_1^{-1}(y) = 4 + \sqrt{y}$. Next, let f_2 be the restriction of f to the interval $(-\infty, 4]$. That is, $f_2(x) = f(x)$ for $x \le 4$. Then f_2 is a one-to-one function and has an inverse f_2^{-1} . To find f_2^{-1} set $y = f_2(x)$, so that $y = (x-4)^2$ for $x \le 4$. Then

$$\sqrt{y} = |x - 4| = -(x - 4) = 4 - x,$$

whence $x = 4 - \sqrt{y}$. Since $y = f_2(x)$ if and only if $x = f_2^{-1}(y)$, we obtain $f_2^{-1}(y) = 4 - \sqrt{y}$.

We have now found that there are two (local) inverses associated with f: the function f_1^{-1} given by

$$f_1^{-1}(y) = 4 + \sqrt{y}$$

with $\text{Dom}(f_1^{-1}) = \text{Ran}(f_1) = [0, \infty)$, and f_2^{-1} given by

$$f_2^{-1}(y) = 4 - \sqrt{y}$$

with $Dom(f_2^{-1}) = Ran(f_2) = [0, \infty).$

3a.
$$f'(x) = \frac{2e^{2x}}{e^{2x} + 3}$$

3b. Dom $(g) = (0, \infty)$, and for all x > 0 we have

$$g(x) = x^{\ln(x^3)} = \exp\left(\ln\left(x^{\ln(x^3)}\right)\right) = \exp\left(\ln(x^3)\ln(x)\right) = \exp\left(3\ln^2(x)\right),$$

and thus

$$g'(x) = \exp(3\ln^2(x)) \cdot (3\ln^2(x))' = x^{\ln(x^3)} \cdot \frac{6\ln(x)}{x} = \frac{6x^{\ln(x^3)}\ln(x)}{x}.$$

3c. For x such that tan(x) > 0 we have

$$h(x) = (\tan x)^{\cos x} = \exp(\ln((\tan x)^{\cos x})) = \exp(\cos x \cdot \ln(\tan x)),$$

and thus

$$h'(x) = \exp(\cos x \cdot \ln(\tan x)) \cdot (\cos x \cdot \ln(\tan x))'$$

$$= \exp(\cos x \cdot \ln(\tan x)) \cdot \left(\cos x \cdot \frac{\sec^2 x}{\tan x} - \sin x \cdot \ln(\tan x)\right)$$

$$= (\tan x)^{\cos x} \left(\csc x - \ln(\tan x)^{\sin x}\right)$$

3d.
$$k'(x) = \frac{7}{(4-x^5)\ln(3)} \cdot (4-x^5)' = -\frac{35x^4}{(4-x^5)\ln(3)}$$

3e.
$$\ell'(x) = \frac{1}{\sqrt{1 - (e^{-2x})^2}} \cdot (e^{-2x})' = -\frac{2e^{-2x}}{\sqrt{1 - e^{-4x}}}$$

3f.
$$p'(x) = -\frac{1}{1 + (\sqrt{x})^2} \cdot (\sqrt{x})' = -\frac{1}{1 + x} \cdot \frac{1}{2\sqrt{x}} = -\frac{1}{2\sqrt{x}(1 + x)}$$

4a.
$$\int (3e^{-8x} - 8e^{11x})dx = -\frac{3}{8}e^{-8x} - \frac{8}{11}e^{11x} + c$$

4b.
$$\int \frac{4}{3-10x} dx = -\frac{2}{5} \ln|3-10x| + c$$

4c. Let $u = x^4$, so by the Substitution Rule we replace $x^3 dx$ with $\frac{1}{4} du$ to get

$$\int x^3 9^{x^4} dx = \int \frac{1}{4} 9^u du = \frac{1}{4} \cdot \frac{9^u}{\ln(9)} + c = \frac{9^{x^4}}{4 \ln(9)} + c.$$

5a. Let $u = \ln(x)$, so when x = 1 we have $u = \ln(1) = 0$, and when x = 3e we have $u = \ln(3e)$. Now, by the Substitution Rule we replace $\frac{1}{x}dx$ with du to get

$$\int_0^{\ln(3e)} \frac{e^u}{2} du = \left[\frac{1}{2} e^u \right]_0^{\ln(3e)} = \frac{1}{2} (e^{\ln(3e)} - e^0) = \frac{3e - 1}{2}.$$

5b. We have

$$5\int_{2}^{2\sqrt{3}} \frac{1}{z^{2} + 2^{2}} dz = 5\left[\frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right)\right]_{2}^{2\sqrt{3}} = \frac{5}{2}\left[\tan^{-1}\left(\sqrt{3}\right) - \tan^{-1}(1)\right] = \frac{5}{2}\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{5\pi}{24}.$$

6. For all x > 0 we have

$$\left(\frac{2}{3x}\right)^{8/x} = \exp\left[\ln\left(\frac{2}{3x}\right)^{8/x}\right] = \exp\left[\frac{8}{x}\ln\left(\frac{2}{3x}\right)\right] = \exp\left(\frac{8\ln(2/3x)}{x}\right).$$

The functions $f(x) = 8 \ln(2/3x)$ and g(x) = x are differentiable on $(0, \infty)$, and $g'(x) = 1 \neq 0$ for all $x \in (0, \infty)$. Since $g(x) \to \infty$ as $x \to \infty$, and

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{-8/x}{1} = 0,$$

by L'Hôpital's Rule we obtain

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{8\ln(2/3x)}{x} = 0$$

as well. Now, since $\exp(x)$ is a continuous function,

$$\lim_{x \to \infty} \left(\frac{2}{3x}\right)^{8/x} = \lim_{x \to \infty} \exp\left(\frac{8\ln(2/3x)}{x}\right) = \exp\left(\lim_{x \to \infty} \frac{8\ln(2/3x)}{x}\right) = \exp(0) = 1.$$

7. We find that x^{20} , $1.001^x \to \infty$ as $x \to \infty$. To determine which grows faster, x^{20} or 1.001^x , we must evaluate

$$\lim_{x \to \infty} \frac{1.001^x}{x^{20}}.$$

If the limit equals 0 then x^{20} grows faster, and if the limit equals ∞ , then 1.001^x grows faster. We have

$$\lim_{x \to \infty} \ln\left(\frac{1.001^x}{x^{20}}\right) = \lim_{x \to \infty} \left(\ln 1.001^x - \ln x^{20}\right) = \lim_{x \to \infty} (x \ln 1.001 - 20 \ln x)$$
$$= \lim_{x \to \infty} x \left(\ln 1.001 - \frac{20 \ln x}{x}\right),$$

where we easily find by L'Hôpital's Rule that

$$\lim_{x \to \infty} \frac{20 \ln x}{x} = \lim_{x \to \infty} \frac{20/x}{1} = 0,$$

so that

$$\lim_{x \to \infty} \left(\ln 1.001 - \frac{20 \ln x}{x} \right) = \ln 1.001 > 0$$

and therefore

$$\lim_{x \to \infty} \ln \left(\frac{1.001^x}{x^{20}} \right) = \lim_{x \to \infty} x \left(\ln 1.001 - \frac{20 \ln x}{x} \right) = (\infty)(\ln 1.001) = \infty.$$

Now,

$$\lim_{x\to\infty}\frac{1.001^x}{x^{20}}=\lim_{x\to\infty}\exp\left[\ln\left(\frac{1.001^x}{x^{20}}\right)\right]=\exp\left[\lim_{x\to\infty}\ln\left(\frac{1.001^x}{x^{20}}\right)\right]=\exp(\infty)=\infty,$$

so 1.001^x grows faster than x^{20} and we write $1.001^x \gg x^{20}$.