
Math 141 Exam #3 Key (Summer 2012)

1a. Since ln k and k are monotone increasing functions for k ≥ 2, it follows that

1

k ln2 k

is monotone decreasing (i.e. nonincreasing) for k ≥ 2. Also

lim
k→∞

1

k ln2 k
= 0,

and so by the Alternating Series Test the series converges.

1b. Since

lim
k→∞

∣∣∣∣(−1)k
(

1− 2

k

)∣∣∣∣ = lim
k→∞

(
1− 2

k

)
= 1 6= 0,

the series diverges by the Divergence Test.

2a. Applying the Ratio Test,

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(x+ 1)k+1

8k+1
· 8k

(x+ 1)k

∣∣∣∣ = lim
k→∞

|x+ 1|
8

=
|x+ 1|

8
,

so the series converges if |x + 1|/8 < 1, implying −8 < x + 1 < 8 and thus −9 < x < 7. It
remains to test the endpoints.

When x = 7 the series becomes,

lim
k→∞

(
x+ 1

8

)k
= lim

k→∞

(
7 + 1

8

)k
= lim

k→∞
(1) = 1 6= 0,

so the series diverges by the Divergence Test.
When x = −9 the series becomes,

lim
k→∞

(
x+ 1

8

)k
= lim

k→∞

(
−9 + 1

8

)k
= lim

k→∞
(−1)k 6= 0,

so again the series diverges. Therefore the interval of convergence is (−9, 7), and the radius of
convergence is | − 9− 7|/2 = 8.

2b. Applying the Ratio Test,

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣(2x+ 3)k+1

6(k + 1)
· 6k

(2x+ 3)k

∣∣∣∣ = lim
k→∞

k|2x+ 3|
k + 1

= |2x+ 3|,

so the series converges if −1 < 2x+ 3 < 1, implying −2 < x < −1.
When x = −2 the series becomes

∞∑
k=1

(−1)k

6k
,
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which converges by the Alternating Series Test. When x = −1 the series becomes
∞∑
k=1

1

6k
,

which diverges since
∞∑
k=1

1

k

diverges. Interval of convergence is [−2,−1), radius of convergence is 1
2
.

3. We manipulate to obtain

g(x) = 5 · 1

1− 6x
= 5

∞∑
k=0

(6x)k =
∞∑
k=0

5(6x)k,

which converges if and only if |6x| < 1, so the interval of convergence is
(
−1

6
, 1
6

)
.

4. Use the geometric series given in the previous problem to get

f(x) =
1

1− (
√
x− 7)

=
1

8−
√
x
.

The series converges if and only if |
√
x − 7| < 1, which solves to give 6 <

√
x < 8 and then

36 < x < 64. So interval of convergence is (36, 64).

5. We evaluate bk = (2k + 1)−3 for successive values of k until we obtain a number less than
10−4:

b0 = 1 b6 = 13−3 ≈ 4.55× 10−4

b1 = 1/27 b7 = 15−3 ≈ 2.96× 10−4

b2 = 1/125 b8 = 17−3 ≈ 2.04× 10−4

b3 = 7−3 ≈ 2.92× 10−3 b9 = 19−3 ≈ 1.46× 10−4

b4 = 9−3 ≈ 1.37× 10−3 b10 = 21−3 ≈ 1.08× 10−4

b5 = 11−3 ≈ 7.51× 10−4 b11 = 23−3 ≈ 8.22× 10−5

Thus, by the Remainder Theorem we have

R10 = |s− s10| ≤ b11 ≈ 8.22× 10−5 < 10−4,

which is to say that the approximation

∞∑
k=0

(−1)k

(2k + 1)3
≈

10∑
k=0

(−1)k

(2k + 1)3
= s10 = 1−3 − 3−3 + · · ·+ 21−3 ≈ 1.0277

has an absolute error that is less than 10−4.
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6a. We have

40

0!
x0 − 42

2!
x2 +

44

4!
x4 − 46

6!
x6 + · · · = 1− 16

2
x2 +

256

24
x4 − 4096

720
x6 + · · ·

= 1− 8x2 +
32

3
x4 − 256

45
x6 + · · ·

6b.
∞∑
k=0

(−1)k42k

(2k)!
x2k =

∞∑
k=0

(−1)k(4x)2k

(2k)!
.

6c. Use the Ratio Test to find that the interval of convergence is (−∞,∞).

7. Since the limit takes x toward 0 we use the Maclaurin series for cosx and ex:

lim
x→0

1− cosx

1 + x− ex
= lim

x→0

1−
∑∞

k=0
(−1)kx2k

(2k)!

1 + x−
∑∞

k=0
xk

k!

= lim
x→0

1−
(

1− x2

2
+ x4

24
− x6

720
+ · · ·

)
1 + x−

(
1 + x+ x2

2
+ x3

6
+ · · ·

)
= lim

x→0

x2

2
− x4

24
+ x6

720
− · · ·

−x2

2
− x3

6
− · · ·

= lim
x→0

(
−1 +

x3

6
− x4

24
+ · · ·

)
= −1.

Note that long division is employed to obtain the penultimate equality.

8. Because the Maclaurin series for sin(x) is everywhere convergent it can be multiplied by
1/x termwise:

sin(x)

x
=

1

x

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
=
∞∑
k=0

(−1)kx2k

(2k + 1)!
.

Now, the new series we obtain is also everywhere convergent, so it can be integrated termwise:∫ 0.15

0

sin(x)

x
dx =

∫ 0.15

0

[
∞∑
k=0

(−1)kx2k

(2k + 1)!

]
dx =

∞∑
k=0

[∫ 0.15

0

(−1)kx2k

(2k + 1)!
dx

]

=
∞∑
k=0

[
(−1)kx2k+1

(2k + 1)(2k + 1)!

]0.15
0

=
∞∑
k=0

(−1)k(0.15)2k+1

(2k + 1)(2k + 1)!

=
0.15

(1)(1)
− 0.153

(3)(3!)
+

0.155

(5)(5!)
− 0.157

(7)(7!)
+ · · ·

≈ 0.15− 1.875× 10−4 + 1.266× 10−7 − · · · .

The Remainder Theorem assures us that if we estimate the value of
∫ 0.15

0
sin(x)/x dx by

0.15− 1.875× 10−4 ≈ 0.1498
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then the error will be no greater than 1.266 × 10−7, and this is certainly within our accepted
tolerance of 10−4! Therefore our estimate is 0.1498.

9. From x =
√
t + 4 comes

√
t = x− 4. Putting this into y = 3

√
t gives y = 3(x− 4). Note

that this will not be a line, since 0 ≤ t ≤ 16 implies 0 ≤
√
t ≤ 4, and this means 0 ≤ x− 4 ≤ 4.

That is, we have
y = 3x− 12, 4 ≤ x ≤ 8,

which is a line segment.

10. (2, 2π/3), (2,−4π/3), (−2,−π/3), among other possibilities.

11. We have r = f(θ) with f(θ) = 8 sin θ. The slope m of the curve at (4, 5π/6) is

m =
f ′(5π/6) sin(5π/6) + f(5π/6) cos(5π/6)

f ′(5π/6) cos(5π/6)− f(5π/6) sin(5π/6)

=
8 cos(5π/6) sin(5π/6) + 8 sin(5π/6) cos(5π/6)

8 cos(5π/6) cos(5π/6)− 8 sin(5π/6) sin(5π/6)

=
2 cos(5π/6) sin(5π/6)

cos2(5π/6)− sin2(5π/6)
=

2(−
√

3/2)(1/2)

(−
√

3/2)2 − (1/2)2
= −
√

3

12. Here r = f(θ) with f(θ) = 3 + 5 sin θ. The curve is generated for θ ∈ [0, 2π), so we find
all 0 ≤ θ < 2π for which

f ′(θ) sin θ + f(θ) cos θ = 0,

which gives
5 cos θ sin θ + cos θ(3 + 5 sin θ) = 0.

Factoring results in the equation

(10 sin θ + 3) cos θ = 0,

so either 10 sin θ + 3 = 0 or cos θ = 0. The latter equation has solutions θ = π/2, 3π/2. The
former equation gives sin θ = −3/10, and though the angle sin−1(−3/10) is not in the interval
[0, 2π), the angles

2π + sin−1(−3/10) and π − sin−1(−3/10)

both are. You must be up on your basic trigonometry to figure this out!
Therefore the points on the curve r = 3 + 5 sin θ where the tangent line is horizontal are:(

8, π
2

)
,
(
− 2, 3π

2

)
,
(
3
2
, 2π + sin−1(− 3

10
)
)
,
(
3
2
, π − sin−1(− 3

10
)
)
.


