Math 141 Exam \#2 Key (Summer 2012)

1a. Let $x=3 \sec \theta$, so that $d x$ is replaced with $3 \sec \theta \tan \theta d \theta$ as part of the substitution. Since $x>3$ we have $\sec \theta>1$, which implies $\theta \in(0, \pi / 2)$ and so $\tan \theta>0$. Now, making use of the given formula for $\int \tan ^{n} \theta d \theta$, we obtain

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-9}}{x} d x & =\int \frac{\sqrt{9 \sec ^{2} \theta-9}}{3 \sec \theta} \cdot 3 \sec \theta \tan \theta d \theta=\int 3 \sqrt{\tan ^{2} \theta} \cdot \tan \theta d \theta \\
& =3 \int \tan ^{2} \theta d \theta=3\left(\tan \theta-\int 1 d \theta\right)=3 \tan \theta-3 \theta+c
\end{aligned}
$$

From $x=3 \sec \theta$ comes $\sec \theta=x / 3$, so θ may be characterized as an angle in the right triangle

From this triangle we see that

$$
\tan \theta=\frac{\sqrt{x^{2}-9}}{3}, \quad \text { and } \quad \theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}-9}}{3}\right)
$$

and therefore

$$
\int \frac{\sqrt{x^{2}-9}}{x} d x=\sqrt{x^{2}-9}-3 \tan ^{-1}\left(\frac{\sqrt{x^{2}-9}}{3}\right)+c
$$

1b. Let $x=11 \sin \theta$ for $\theta \in[-\pi / 2, \pi / 2]$, so that $d x$ is replaced with $11 \cos \theta d \theta$ as part of the substitution. Observe that $-\pi / 2 \leq \theta \leq \pi / 2$ implies $\cos \theta \geq 0$, so that

$$
\sqrt{\cos ^{2} \theta}=|\cos \theta|=\cos \theta
$$

Now,

$$
\begin{aligned}
\int \sqrt{121-x^{2}} d x & =\int \sqrt{121-121 \sin ^{2} \theta} \cdot 11 \cos \theta d \theta=\int 121 \cos \theta \sqrt{1-\sin ^{2} \theta} d \theta \\
& =121 \int \cos \theta \sqrt{\cos ^{2} \theta} d \theta=121 \int \cos ^{2} \theta d \theta
\end{aligned}
$$

and with the deft use of the given formula for $\int \cos ^{n} \theta d \theta$ we obtain

$$
\int \sqrt{121-x^{2}} d x=121\left(\frac{\cos \theta \sin \theta}{2}+\frac{1}{2} \int(1) d \theta\right)=\frac{121}{2} \cos \theta \sin \theta+\frac{121}{2} \theta+c
$$

From $x=11 \sin \theta$ comes $\sin \theta=x / 11$, so $\theta=\sin ^{-1}(x / 11)$ and θ may be characterized as an angle in the right triangle

Note that $x \geq 0$ if $\theta \in[0, \pi / 2]$, and $x<0$ if $\theta \in[-\pi / 2,0)$. From this triangle we see that $\cos \theta=\sqrt{121-x^{2}} / 11$, and therefore

$$
\begin{aligned}
\int \sqrt{121-x^{2}} d x & =\frac{121}{2} \cdot \frac{\sqrt{121-x^{2}}}{11} \cdot \frac{x}{11}+\frac{121}{2} \sin ^{-1}\left(\frac{x}{11}\right)+c \\
& =\frac{x \sqrt{121-x^{2}}}{2}+\frac{121}{2} \sin ^{-1}\left(\frac{x}{11}\right)+c
\end{aligned}
$$

2a. This is a job for partial fraction decomposition:

$$
\begin{aligned}
\int \frac{3}{x^{3}-x^{2}-12 x} d x & =\int \frac{3}{x(x-4)(x+3)} d x=\int\left(\frac{-1 / 4}{x}+\frac{3 / 28}{x-4}+\frac{1 / 7}{x+3}\right) d x \\
& =-\frac{1}{4} \ln |x|+\frac{3}{28} \ln |x-4|+\frac{1}{7} \ln |x+3|+c
\end{aligned}
$$

2b. Again start with a decomposition, noting that $x^{2}+2 x+6$ is an irreducible (i.e. unfactorable) quadratic:

$$
\begin{align*}
\int \frac{2}{(x-4)\left(x^{2}+2 x+6\right)} d x & =\int\left(\frac{1 / 15}{x-4}+\frac{-x / 15-2 / 5}{x^{2}+2 x+6}\right) d x \\
& =\frac{1}{15} \ln |x-4|-\frac{1}{15} \int \frac{x+6}{(x+1)^{2}+5} d x \tag{1}
\end{align*}
$$

For the remaining integral, let $u=x+1$ to obtain

$$
\begin{equation*}
\int \frac{x+6}{(x+1)^{2}+5} d x=\int \frac{u+5}{u^{2}+5} d u=\int \frac{u}{u^{2}+5} d u+5 \int \frac{1}{u^{2}+(\sqrt{5})^{2}} d u \tag{2}
\end{equation*}
$$

Letting $w=u^{2}+5$ in the first integral in (2), and using Formula (13) for the second, we next get

$$
\begin{aligned}
\int \frac{x+6}{(x+1)^{2}+5} d x & =\int \frac{1 / 2}{w} d w+5 \cdot \frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{u}{\sqrt{5}}\right)+c \\
& =\frac{1}{2} \ln |w|+\sqrt{5} \tan ^{-1}\left(\frac{u}{\sqrt{5}}\right)+c=\frac{1}{2} \ln \left(u^{2}+5\right)+\sqrt{5} \tan ^{-1}\left(\frac{u}{\sqrt{5}}\right)+c \\
& =\frac{1}{2} \ln \left[(x+1)^{2}+5\right]+\sqrt{5} \tan ^{-1}\left(\frac{x+1}{\sqrt{5}}\right)+c
\end{aligned}
$$

Returning to (1),

$$
\begin{aligned}
\int \frac{2}{(x-4)\left(x^{2}+2 x+6\right)} d x & =\frac{\ln |x-4|}{15}-\frac{1}{15}\left[\frac{\ln \left[(x+1)^{2}+5\right]}{2}+\sqrt{5} \tan ^{-1}\left(\frac{x+1}{\sqrt{5}}\right)+c\right] \\
& =\frac{\ln |x-4|}{15}-\frac{\ln \left(x^{2}+2 x+6\right)}{30}-\frac{\sqrt{5}}{15} \tan ^{-1}\left(\frac{x+1}{\sqrt{5}}\right)+c .
\end{aligned}
$$

3a. Letting $u=2 x-3$, we have

$$
\begin{aligned}
\int_{-\infty}^{1} \frac{1}{(2 x-3)^{2}} d x & =\lim _{a \rightarrow-\infty} \int_{a}^{1} \frac{1}{(2 x-3)^{2}} d x=\lim _{a \rightarrow-\infty} \int_{2 a-3}^{-1} \frac{1 / 2}{u^{2}} d u \\
& =\lim _{a \rightarrow-\infty} \frac{1}{2}\left[-\frac{1}{u}\right]_{2 a-3}^{-1}=\lim _{a \rightarrow-\infty} \frac{1}{2}\left(1+\frac{1}{2 a-3}\right)=\frac{1}{2}
\end{aligned}
$$

3b. We must evaluate $\int_{0}^{1} 1 /(x-1) d x$ and $\int_{1}^{4} 1 /(x-1) d x$, if possible. By definition,

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x-1} d x & =\lim _{b \rightarrow 1^{-}} \int_{0}^{b} \frac{1}{x-1} d x=\lim _{b \rightarrow 1^{-}}[\ln |x-1|]_{0}^{b}=\lim _{b \rightarrow 1^{-}}(\ln |b-1|-\ln |-1|) \\
& =\lim _{b \rightarrow 1^{-}} \ln (1-b)=-\infty
\end{aligned}
$$

So $\int_{0}^{1} 1 /(x-1) d x$ diverges, and therefore $\int_{0}^{4} 1 /(x-1) d x$ also diverges.

4a. We have

$$
\lim _{n \rightarrow \infty} \frac{5 n^{8}}{\sqrt{36 n^{16}-10 n^{10}}}=\lim _{n \rightarrow \infty} \frac{5 n^{8}}{n^{8} \sqrt{36-10 / n^{6}}}=\lim _{n \rightarrow \infty} \frac{5}{\sqrt{36-10 / n^{6}}}=\frac{5}{\sqrt{36}}=\frac{5}{6} .
$$

4b. First we evaluate

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{n} & =\lim _{n \rightarrow \infty} n^{1 / n}=\lim _{n \rightarrow \infty} \exp \left(\ln n^{1 / n}\right)=\exp \left(\lim _{n \rightarrow \infty} \ln n^{1 / n}\right) \\
& =\exp \left(\lim _{n \rightarrow \infty} \frac{\ln n}{n}\right) \stackrel{L R}{=} \exp \left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)=\exp (0)=1 .
\end{aligned}
$$

Now, consider the subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$ that consists of the even-indexed terms, which can be denoted by $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ with $n_{k}=2 k$ for $k \geq 1$. Then, using the fact that $\lim _{n \rightarrow \infty} n^{1 / n}=1$, we have

$$
\lim _{k \rightarrow \infty} a_{n_{k}}=\lim _{k \rightarrow \infty}(-1)^{n_{k}} n_{k}^{1 / n_{k}}=\lim _{k \rightarrow \infty}(-1)^{2 k}(2 k)^{1 /(2 k)}=\lim _{k \rightarrow \infty}(2 k)^{1 /(2 k)}=1 .
$$

Next, consider the subsequence consisting of the odd-indexed terms, which can be denoted by $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ with $n_{k}=2 k-1$ for $k \geq 1$. Then we have

$$
\lim _{k \rightarrow \infty} a_{n_{k}}=\lim _{k \rightarrow \infty}(-1)^{2 k-1}(2 k-1)^{1 /(2 k-1)}=\lim _{k \rightarrow \infty}\left[-(2 k-1)^{1 /(2 k-1)}\right]=-1 .
$$

Since $\left\{a_{n}\right\}$ has two subsequences with different limits, the sequence $\left\{a_{n}\right\}$ itself cannot converge. That is, $\left\{a_{n}\right\}$ diverges.
5. Starting by reindexing, we have

$$
\sum_{k=2}^{\infty} \frac{3}{(-2)^{k}}=\sum_{k=0}^{\infty} \frac{3}{(-2)^{k+2}}=\sum_{k=0}^{\infty} \frac{3}{4}\left(-\frac{1}{2}\right)^{k}=\frac{3 / 4}{1-(-1 / 2)}=\frac{1}{2}
$$

6. Partial fraction decomposition gives

$$
\frac{1}{(k+1)(k+2)}=\frac{1}{k+1}-\frac{1}{k+2},
$$

so series becomes

$$
\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+2}\right)
$$

Now,

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n}\left(\frac{1}{k+1}-\frac{1}{k+2}\right) \\
& =\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right) \\
& =\frac{1}{2}-\frac{1}{n+2},
\end{aligned}
$$

so

$$
\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+2}\right)=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{n+2}\right)=\frac{1}{2}
$$

7a. Since

$$
\lim _{k \rightarrow \infty} \frac{k}{\sqrt{k^{2}+25}}=1 \neq 0
$$

the series diverges by the Divergence Test.

7b. Letting $u=-2 x^{2}$, we have

$$
\begin{aligned}
\int_{1}^{\infty} x e^{-2 x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} x e^{-2 x^{2}} d x=\lim _{b \rightarrow \infty} \int_{-2}^{-2 b^{2}}-\frac{1}{4} e^{u} d u=\lim _{b \rightarrow \infty}-\frac{1}{4}\left[e^{u}\right]_{-2}^{-2 b^{2}} \\
& =\lim _{b \rightarrow \infty}-\frac{1}{4}\left(e^{-2 b^{2}}-e^{-2}\right)=-\frac{1}{4}\left(0-e^{-2}\right)=\frac{e^{-2}}{4}
\end{aligned}
$$

so the integral

$$
\int_{1}^{\infty} x e^{-2 x^{2}} d x
$$

converges, and therefore the series converges by the Integral Test.

7c. Since

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{k \rightarrow \infty}\left|\frac{[(k+1)!]^{2}}{[2(k+1)]!} \cdot \frac{(2 k)!}{(k!)^{2}}\right|=\lim _{k \rightarrow \infty} \frac{(k+1)(k+1)}{(2 k+1)(2 k+2)}=\lim _{k \rightarrow \infty} \frac{k+1}{4 k+2}=\frac{1}{4}<1
$$

the series converges by the Ratio Test.

7d. Since

$$
\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}=\lim _{k \rightarrow \infty} \sqrt[k]{\frac{k^{2}}{2^{k}}}=\lim _{k \rightarrow \infty} \frac{k^{2 / k}}{2}=\frac{1}{2}<1
$$

the series converges by the Root Test.

7e. For each $k \geq 1$ we have

$$
0 \leq \frac{\sin ^{2} k}{k \sqrt{k}} \leq \frac{1}{k \sqrt{k}}=\frac{1}{k^{3 / 2}}
$$

and since $\sum_{k=1}^{\infty} k^{-3 / 2}$ is a convergent p-series, it follows that

$$
\sum_{k=1}^{\infty} \frac{\sin ^{2} k}{k \sqrt{k}}
$$

converges by the Direct Comparison Test.

7f. For each $k \geq 1$ we have

$$
0 \leq \frac{k^{7}}{k^{9}+3} \leq \frac{k^{7}}{k^{9}}=\frac{1}{k^{2}}
$$

and since $\sum_{k=1}^{\infty} k^{-2}$ is a convergent p-series, it follows that

$$
\sum_{k=1}^{\infty} \frac{k^{7}}{k^{9}+3}
$$

converges by the Direct Comparison Test.

