
Math 141 Exam #2 Key (Summer 2012)

1a. Let x = 3 sec θ, so that dx is replaced with 3 sec θ tan θ dθ as part of the substitution.
Since x > 3 we have sec θ > 1, which implies θ ∈ (0, π/2) and so tan θ > 0. Now, making use
of the given formula for

∫
tann θ dθ, we obtain∫ √

x2 − 9

x
dx =

∫ √
9 sec2 θ − 9

3 sec θ
· 3 sec θ tan θ dθ =

∫
3
√

tan2 θ · tan θ dθ

= 3

∫
tan2 θ dθ = 3

(
tan θ −

∫
1 dθ

)
= 3 tan θ − 3θ + c.

From x = 3 sec θ comes sec θ = x/3, so θ may be characterized as an angle in the right triangle

θ
3

√
x2 − 9

x

From this triangle we see that

tan θ =

√
x2 − 9

3
, and θ = tan−1

(√
x2 − 9

3

)
and therefore ∫ √

x2 − 9

x
dx =

√
x2 − 9− 3 tan−1

(√
x2 − 9

3

)
+ c.

1b. Let x = 11 sin θ for θ ∈ [−π/2, π/2], so that dx is replaced with 11 cos θ dθ as part of the
substitution. Observe that −π/2 ≤ θ ≤ π/2 implies cos θ ≥ 0, so that

√
cos2 θ = | cos θ| = cos θ.

Now, ∫ √
121− x2 dx =

∫ √
121− 121 sin2 θ · 11 cos θ dθ =

∫
121 cos θ

√
1− sin2 θ dθ

= 121

∫
cos θ
√

cos2 θ dθ = 121

∫
cos2 θ dθ,

and with the deft use of the given formula for
∫

cosn θ dθ we obtain∫ √
121− x2 dx = 121

(
cos θ sin θ

2
+

1

2

∫
(1) dθ

)
=

121

2
cos θ sin θ +

121

2
θ + c.

From x = 11 sin θ comes sin θ = x/11, so θ = sin−1(x/11) and θ may be characterized as
an angle in the right triangle

θ√
121− x2

|x|11



2

Note that x ≥ 0 if θ ∈ [0, π/2], and x < 0 if θ ∈ [−π/2, 0). From this triangle we see that
cos θ =

√
121− x2/11, and therefore∫ √

121− x2 dx =
121

2
·
√

121− x2
11

· x
11

+
121

2
sin−1

( x
11

)
+ c

=
x
√

121− x2
2

+
121

2
sin−1

( x
11

)
+ c.

2a. This is a job for partial fraction decomposition:∫
3

x3 − x2 − 12x
dx =

∫
3

x(x− 4)(x+ 3)
dx =

∫ (
−1/4

x
+

3/28

x− 4
+

1/7

x+ 3

)
dx

= −1

4
ln |x|+ 3

28
ln |x− 4|+ 1

7
ln |x+ 3|+ c.

2b. Again start with a decomposition, noting that x2 + 2x + 6 is an irreducible (i.e. unfac-
torable) quadratic:∫

2

(x− 4)(x2 + 2x+ 6)
dx =

∫ (
1/15

x− 4
+
−x/15− 2/5

x2 + 2x+ 6

)
dx

=
1

15
ln |x− 4| − 1

15

∫
x+ 6

(x+ 1)2 + 5
dx. (1)

For the remaining integral, let u = x+ 1 to obtain∫
x+ 6

(x+ 1)2 + 5
dx =

∫
u+ 5

u2 + 5
du =

∫
u

u2 + 5
du+ 5

∫
1

u2 + (
√

5)2
du (2)

Letting w = u2 + 5 in the first integral in (2), and using Formula (13) for the second, we next
get∫

x+ 6

(x+ 1)2 + 5
dx =

∫
1/2

w
dw + 5 · 1√

5
tan−1

(
u√
5

)
+ c

=
1

2
ln |w|+

√
5 tan−1

(
u√
5

)
+ c =

1

2
ln(u2 + 5) +

√
5 tan−1

(
u√
5

)
+ c

=
1

2
ln[(x+ 1)2 + 5] +

√
5 tan−1

(
x+ 1√

5

)
+ c

Returning to (1),∫
2

(x− 4)(x2 + 2x+ 6)
dx =

ln |x− 4|
15

− 1

15

[
ln[(x+ 1)2 + 5]

2
+
√

5 tan−1
(
x+ 1√

5

)
+ c

]
=

ln |x− 4|
15

− ln(x2 + 2x+ 6)

30
−
√

5

15
tan−1

(
x+ 1√

5

)
+ c.
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3a. Letting u = 2x− 3, we have∫ 1

−∞

1

(2x− 3)2
dx = lim

a→−∞

∫ 1

a

1

(2x− 3)2
dx = lim

a→−∞

∫ −1
2a−3

1/2

u2
du

= lim
a→−∞

1

2

[
−1

u

]−1
2a−3

= lim
a→−∞

1

2

(
1 +

1

2a− 3

)
=

1

2
.

3b. We must evaluate
∫ 1

0
1/(x− 1) dx and

∫ 4

1
1/(x− 1) dx, if possible. By definition,∫ 1

0

1

x− 1
dx = lim

b→1−

∫ b

0

1

x− 1
dx = lim

b→1−
[ln |x− 1|]b0 = lim

b→1−
(ln |b− 1| − ln | − 1|)

= lim
b→1−

ln(1− b) = −∞.

So
∫ 1

0
1/(x− 1) dx diverges, and therefore

∫ 4

0
1/(x− 1) dx also diverges.

4a. We have

lim
n→∞

5n8

√
36n16 − 10n10

= lim
n→∞

5n8

n8
√

36− 10/n6
= lim

n→∞

5√
36− 10/n6

=
5√
36

=
5

6
.

4b. First we evaluate

lim
n→∞

n
√
n = lim

n→∞
n1/n = lim

n→∞
exp(lnn1/n) = exp

(
lim
n→∞

lnn1/n
)

= exp

(
lim
n→∞

lnn

n

)
LR
= exp

(
lim
n→∞

1

n

)
= exp(0) = 1.

Now, consider the subsequence of {an}∞n=1 that consists of the even-indexed terms, which
can be denoted by {ank

}∞k=1 with nk = 2k for k ≥ 1. Then, using the fact that limn→∞ n
1/n = 1,

we have

lim
k→∞

ank
= lim

k→∞
(−1)nkn

1/nk

k = lim
k→∞

(−1)2k(2k)1/(2k) = lim
k→∞

(2k)1/(2k) = 1.

Next, consider the subsequence consisting of the odd-indexed terms, which can be denoted
by {ank

}∞k=1 with nk = 2k − 1 for k ≥ 1. Then we have

lim
k→∞

ank
= lim

k→∞
(−1)2k−1(2k − 1)1/(2k−1) = lim

k→∞

[
−(2k − 1)1/(2k−1)

]
= −1.

Since {an} has two subsequences with different limits, the sequence {an} itself cannot
converge. That is, {an} diverges.
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5. Starting by reindexing, we have
∞∑
k=2

3

(−2)k
=
∞∑
k=0

3

(−2)k+2
=
∞∑
k=0

3

4

(
−1

2

)k

=
3/4

1− (−1/2)
=

1

2
.

6. Partial fraction decomposition gives

1

(k + 1)(k + 2)
=

1

k + 1
− 1

k + 2
,

so series becomes
∞∑
k=1

(
1

k + 1
− 1

k + 2

)
.

Now,

sn =
n∑

k=1

(
1

k + 1
− 1

k + 2

)
=

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+ · · ·+

(
1

n
− 1

n+ 1

)
+

(
1

n+ 1
− 1

n+ 2

)
=

1

2
− 1

n+ 2
,

so
∞∑
k=1

(
1

k + 1
− 1

k + 2

)
= lim

n→∞
sn = lim

n→∞

(
1

2
− 1

n+ 2

)
=

1

2
.

7a. Since

lim
k→∞

k√
k2 + 25

= 1 6= 0,

the series diverges by the Divergence Test.

7b. Letting u = −2x2, we have∫ ∞
1

xe−2x
2

dx = lim
b→∞

∫ b

1

xe−2x
2

dx = lim
b→∞

∫ −2b2
−2

−1

4
eu du = lim

b→∞
−1

4
[eu]−2b

2

−2

= lim
b→∞
−1

4

(
e−2b

2 − e−2
)

= −1

4
(0− e−2) =

e−2

4
,

so the integral ∫ ∞
1

xe−2x
2

dx

converges, and therefore the series converges by the Integral Test.
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7c. Since

lim
k→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
k→∞

∣∣∣∣ [(k + 1)!]2

[2(k + 1)]!
· (2k)!

(k!)2

∣∣∣∣ = lim
k→∞

(k + 1)(k + 1)

(2k + 1)(2k + 2)
= lim

k→∞

k + 1

4k + 2
=

1

4
< 1,

the series converges by the Ratio Test.

7d. Since

lim
k→∞

k
√
|ak| = lim

k→∞

k

√
k2

2k
= lim

k→∞

k2/k

2
=

1

2
< 1,

the series converges by the Root Test.

7e. For each k ≥ 1 we have

0 ≤ sin2 k

k
√
k
≤ 1

k
√
k

=
1

k3/2
,

and since
∑∞

k=1 k
−3/2 is a convergent p-series, it follows that

∞∑
k=1

sin2 k

k
√
k

converges by the Direct Comparison Test.

7f. For each k ≥ 1 we have

0 ≤ k7

k9 + 3
≤ k7

k9
=

1

k2
,

and since
∑∞

k=1 k
−2 is a convergent p-series, it follows that

∞∑
k=1

k7

k9 + 3

converges by the Direct Comparison Test.


