MATH 141 ExaM #2 KEY (SUMMER 2011)
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1b. Let u = 2+ 3, so x = u — 3 and dz = du, and we get /(xfis)?dx = /uu_23du = /(u_1 —3u%)du =
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Inful +3u'+C=Injz+3| + —— +C.
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2a. Making the substitution v = 7/ along the way, we proceed thusly: / wdm = lim wdx =
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lim Mdu = lim [COS(U)] = lim cos(r/b) = cos(0) = —. That is, the improper integral converges
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to 1/m.
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2b. The function f(z) = 1//x has a vertical asymptote at x = 0, so —dx = lim e Vide =
0 \4/5 a—0t J,
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al_i,rng {33:3/4] ) = al_i>r(r)1+ — (1634 — a3/ = 3 16%/4 = 3 8 = 3 The integral converges to 32/3.
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3b. ant+1 = %an, with a1 = 1.
3c. a, = 1 forn>1
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4b. First we evaluate lim ¢/n = lim n'/" = lim exp(lnnl/”) = exp ( lim lnnl/") = exp < lim nn> LR
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exp ( lim > =exp(0) = 1.
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Now, consider the subsequence of {a,}72 ; that consists of the even-indexed terms, which can be denoted by

{an, }72, with ng, = 2k for £ > 1. Then, using the fact that lim n*™ =1, we have lim ap, = lim (—1)"kn,1€/n’“ =
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lim (—1)2%(2k)/ 0 = 1im (2k)/ 0 = 1.
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Next, consider the subsequence consisting of the odd-indexed terms, which can be denoted by {ay, }72; with
ng = 2k — 1 for k > 1. Then we have lim a,, = lim (—1)**7(2k — DYDY = Jim | —(2k — 1)1/(2}“_1)} =-1.
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Since {a,} has two subsequences with different limits, the sequence {ay,} itself cannot converge. That is, {a,}
diverges.
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4c. For all n > 1 we have —1 < cosn < 1, and thus —— < < for all n. Since lim — =0 = lim —,
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by the Squeeze Theorem we conclude that lim = 0.
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a. llm —— = — so series diverges e Divergence Test.
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7b. Since the function f(x) = ———= is not actually nonincreasing on [1, c0), the Integral Test cannot be used.
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Unfortunately the series is in textbook under instructions to use this test, so it’s an error in the book. The fact
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=1, so the series diverges by the Divergence Test.
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concludes that the series converges.
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7d. lim {/|ay| = lim {/k?/2F = lim —— = 1/2 < 1, so Root Test concludes that the series converges.
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7e. Use the Limit Comparison Test on the series E R and E T starting the index k at 2 since, technically,
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the test requires the series involved to consist of positive terms. It’s known that Z 1/k diverges, so therefore
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Z — diverges also. Now, since lim 1+9 = lim —w———=1¢ (0,00), the LCT concludes that Z 3o must
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di . Therefore the original seri — di .
iverge erefore the original series ; e iverges
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7f. For all kK > 1 we have i3 < 71 = 13 and since Z 3 is a convergent p-series, it follows by the Direct
k=1
Comparison Test that the series Z i3 converges.

k=1



