1 Approximate $\tan (-0.1)$ with the 3rd-order Taylor polynomial centered at 0 . For x "near" 0 we have

$$
\tan x \approx \sum_{n=0}^{3} \frac{\tan ^{(n)}(0)}{n!} x^{n}=\tan (0)+\tan ^{\prime}(0) x+\frac{\tan ^{\prime \prime}(0)}{2} x^{2}+\frac{\tan ^{\prime \prime \prime}(0)}{6} x^{3}
$$

Since $\tan ^{\prime}=\sec ^{2}, \tan ^{\prime \prime}=2 \sec ^{2} \tan , \tan ^{\prime \prime \prime}=2 \sec ^{4}+4 \sec ^{2} \tan ^{2}$, we obtain

$$
\tan x \approx x+\frac{1}{3} x^{3}
$$

and thus

$$
\tan (-0.1) \approx-0.1+\frac{1}{3}(-0.1)^{3}=-\frac{301}{3000}=-0.1003333333 \ldots
$$

The exact value is $\tan (-0.1)=-0.1003346721 \ldots$, and so the absolute error is about 1.339×10^{-6}.

2 Here $p_{2}(x)=1+x+x^{2} / 2$ is the 2 nd-order Taylor polynomial for $f(x)=e^{x}$ with center $x_{0}=0$. Let $I=\left[-\frac{1}{2}, \frac{1}{2}\right]$. Now, $f^{(3)}(x)=e^{x}$, and for all $t \in I$ we have

$$
\left|f^{(3)}(t)\right|=e^{t} \leq e^{1 / 2}
$$

A theorem from the homework now implies that the remainder $R_{2}=f-p_{2}$ is such that

$$
\left|R_{2}(x)\right| \leq \frac{e^{1 / 2}|x|^{3}}{3!}
$$

for all $x \in I$. In particular we find that

$$
\left|f(x)-p_{2}(x)\right| \leq \frac{e^{1 / 2}(1 / 2)^{3}}{3!}=\frac{\sqrt{e}}{48} \approx 0.03435
$$

for all $-\frac{1}{2} \leq x \leq \frac{1}{2}$.

3a Apply Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{\sqrt{(n+1)^{2}+3}} \cdot \frac{\sqrt{n^{2}+3}}{x^{n}}\right|=|x| \lim _{n \rightarrow \infty}\left|\sqrt{\frac{n^{2}+3}{n^{2}+2 n+4}}\right|=|x|
$$

Series converges if $|x|<1$, so interval of convergence contains $(-1,1)$. Check endpoints.
At $x=1$: series becomes $\sum 1 / \sqrt{n^{2}+3}$, and since

$$
\frac{1}{\sqrt{n^{2}+3}}>\frac{1}{\sqrt{n^{2}}}=\frac{1}{n}
$$

and the series $\sum 1 / n$ is known to diverge, the series $\sum 1 / \sqrt{n^{2}+3}$ diverges by the Direct Comparison Test.

At $x=-1$: series becomes $\sum(-1)^{n} / \sqrt{n^{2}+3}$, which can be shown to converge by the Alternating Series Test.

Therefore the original series has interval of convergence $[-1,1)$.

3b Apply the Root Test:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left|1+\frac{1}{n}\right||x+2|=|x+2| \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=|x+2| .
$$

Series converges if $|x+2|<1$, so interval of convergence contains $(-3,-1)$. Check endpoints.
At $x=-1$: Series becomes

$$
\sum\left(1+\frac{1}{n}\right)^{n}
$$

and since $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$, the series diverges by the Divergence Test.
At $x=-3$: Series becomes

$$
\sum\left(1+\frac{1}{n}\right)^{n}(-1)^{n}=\sum(-1)^{n}\left(1+\frac{1}{n}\right)^{n}
$$

which also diverges by the Divergence Test.
Therefore the original series has interval of convergence $(-3,-1)$.

3c Apply Ratio Test, using L'Hôpital's Rule to find the limit:

$$
\lim \left|\frac{x^{n+1} \ln (n+1)}{x^{n} \ln n}\right|=|x| \lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln n} \stackrel{\text { LR }}{=}|x| \lim _{n \rightarrow \infty} \frac{1 /(n+1)}{1 / n}=|x| .
$$

Thus the series converges if $|x|<1$, so interval of convergence contains $(-1,1)$. At the endpoints we obtain either the series $\sum \ln n$ or $\sum(-1)^{n} \ln n$, both of which diverge by the Divergence Test. Therefore the original series has interval of convergence $(-1,1)$.

4 We have

$$
f(x)=\sum_{n=0}^{\infty} e^{-n x}=\sum_{n=0}^{\infty}\left(e^{-x}\right)^{n}=\frac{1}{1-e^{-x}}=\frac{e^{x}}{e^{x}-1} .
$$

5 Using the binomial series,

$$
\left(1+x^{2}\right)^{-1 / 3}=\sum_{n=0}^{\infty}\binom{-1 / 3}{n} x^{2 n} \approx 1-\frac{1}{3} x^{2}+\frac{2}{9} x^{4}-\frac{14}{81} x^{6}
$$

6 We have

$$
\begin{aligned}
\int_{0}^{0.1} \frac{\ln (1+x)}{x} d x & =\int_{0}^{0.1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n-1}}{n} d x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \int_{0}^{0.1} x^{n-1} d x \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(0.1)^{n}}{n^{2}}=0.1-\frac{(0.1)^{2}}{2^{2}}+\frac{(0.1)^{3}}{3^{2}}-\cdots
\end{aligned}
$$

Since $(0.1)^{3} / 3^{2}<10^{-5}$, the estimate

$$
\int_{0}^{0.1} \frac{\ln (1+x)}{x} d x \approx 0.1-\frac{(0.1)^{2}}{2^{2}}=0.0975
$$

will have an absolute error less than 10^{-5}.

7 Use the identity $\tan ^{2}+1=\sec ^{2}$ to find that $y^{2}+1=\sec ^{2} t$, so that

$$
x=\sec ^{2} t-1=\left(y^{2}+1\right)-1=y^{2} .
$$

Thus we have $x=y^{2}$ with domain $y \in(-\infty, \infty)$, recalling that $y=\tan t$ for $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

8 Parametric equations: $x=\cos t+2, y=\sin t+3$. Answers can vary.

9 Rewrite as $r \sin \theta=e^{r \cos \theta}$, which in rectangular coordinates becomes $y=e^{x}$.

