1 Approximate tan(-0.1) with the 3rd-order Taylor polynomial centered at 0. For x "near" 0 we have

$$\tan x \approx \sum_{n=0}^{3} \frac{\tan^{(n)}(0)}{n!} x^n = \tan(0) + \tan'(0)x + \frac{\tan''(0)}{2}x^2 + \frac{\tan''(0)}{6}x^3.$$

Since $\tan' = \sec^2$, $\tan'' = 2 \sec^2 \tan$, $\tan''' = 2 \sec^4 + 4 \sec^2 \tan^2$, we obtain

$$\tan x \approx x + \frac{1}{3}x^3$$

and thus

$$\tan(-0.1) \approx -0.1 + \frac{1}{3}(-0.1)^3 = -\frac{301}{3000} = -0.10033333333.$$

The exact value is $\tan(-0.1) = -0.1003346721...$, and so the absolute error is about 1.339×10^{-6} .

2 Here $p_2(x) = 1 + x + x^2/2$ is the 2nd-order Taylor polynomial for $f(x) = e^x$ with center $x_0 = 0$. Let $I = [-\frac{1}{2}, \frac{1}{2}]$. Now, $f^{(3)}(x) = e^x$, and for all $t \in I$ we have

$$|f^{(3)}(t)| = e^t \le e^{1/2}.$$

A theorem from the homework now implies that the remainder $R_2 = f - p_2$ is such that

$$|R_2(x)| \le \frac{e^{1/2}|x|^3}{3!}$$

for all $x \in I$. In particular we find that

$$|f(x) - p_2(x)| \le \frac{e^{1/2}(1/2)^3}{3!} = \frac{\sqrt{e}}{48} \approx 0.03435$$

for all $-\frac{1}{2} \le x \le \frac{1}{2}$.

3a Apply Ratio Test:

$$\lim_{n \to \infty} \left| \frac{x^{n+1}}{\sqrt{(n+1)^2 + 3}} \cdot \frac{\sqrt{n^2 + 3}}{x^n} \right| = |x| \lim_{n \to \infty} \left| \sqrt{\frac{n^2 + 3}{n^2 + 2n + 4}} \right| = |x|.$$

Series converges if |x| < 1, so interval of convergence contains (-1, 1). Check endpoints.

At x = 1: series becomes $\sum 1/\sqrt{n^2 + 3}$, and since

$$\frac{1}{\sqrt{n^2+3}} > \frac{1}{\sqrt{n^2}} = \frac{1}{n}$$

and the series $\sum 1/n$ is known to diverge, the series $\sum 1/\sqrt{n^2+3}$ diverges by the Direct Comparison Test.

At x = -1: series becomes $\sum (-1)^n / \sqrt{n^2 + 3}$, which can be shown to converge by the Alternating Series Test.

Therefore the original series has interval of convergence [-1, 1).

3b Apply the Root Test:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left| 1 + \frac{1}{n} \right| |x+2| = |x+2| \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = |x+2|.$$

Series converges if |x + 2| < 1, so interval of convergence contains (-3, -1). Check endpoints. At x = -1: Series becomes

$$\sum \left(1 + \frac{1}{n}\right)^n$$

and since $(1 + \frac{1}{n})^n \to e$ as $n \to \infty$, the series diverges by the Divergence Test. At x = -3: Series becomes

$$\sum \left(1 + \frac{1}{n}\right)^n (-1)^n = \sum (-1)^n \left(1 + \frac{1}{n}\right)^n,$$

which also diverges by the Divergence Test.

Therefore the original series has interval of convergence (-3, -1).

3c Apply Ratio Test, using L'Hôpital's Rule to find the limit:

$$\lim \left| \frac{x^{n+1} \ln(n+1)}{x^n \ln n} \right| = |x| \lim_{n \to \infty} \frac{\ln(n+1)}{\ln n} \stackrel{\text{\tiny LR}}{=} |x| \lim_{n \to \infty} \frac{1/(n+1)}{1/n} = |x|.$$

Thus the series converges if |x| < 1, so interval of convergence contains (-1, 1). At the endpoints we obtain either the series $\sum \ln n$ or $\sum (-1)^n \ln n$, both of which diverge by the Divergence Test. Therefore the original series has interval of convergence (-1, 1).

4 We have

$$f(x) = \sum_{n=0}^{\infty} e^{-nx} = \sum_{n=0}^{\infty} (e^{-x})^n = \frac{1}{1 - e^{-x}} = \frac{e^x}{e^x - 1}$$

5 Using the binomial series,

$$(1+x^2)^{-1/3} = \sum_{n=0}^{\infty} {\binom{-1/3}{n}} x^{2n} \approx 1 - \frac{1}{3}x^2 + \frac{2}{9}x^4 - \frac{14}{81}x^6.$$

6 We have

$$\int_{0}^{0.1} \frac{\ln(1+x)}{x} dx = \int_{0}^{0.1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n-1}}{n} dx = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \int_{0}^{0.1} x^{n-1} dx$$
$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(0.1)^n}{n^2} = 0.1 - \frac{(0.1)^2}{2^2} + \frac{(0.1)^3}{3^2} - \cdots$$

Since $(0.1)^3/3^2 < 10^{-5}$, the estimate

$$\int_0^{0.1} \frac{\ln(1+x)}{x} \, dx \approx 0.1 - \frac{(0.1)^2}{2^2} = 0.0975$$

will have an absolute error less than 10^{-5} .

7 Use the identity $\tan^2 + 1 = \sec^2 t$ of find that $y^2 + 1 = \sec^2 t$, so that $x = \sec^2 t - 1 = (y^2 + 1) - 1 = y^2$.

Thus we have $x = y^2$ with domain $y \in (-\infty, \infty)$, recalling that $y = \tan t$ for $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- 8 Parametric equations: $x = \cos t + 2$, $y = \sin t + 3$. Answers can vary.
- 9 Rewrite as $r \sin \theta = e^{r \cos \theta}$, which in rectangular coordinates becomes $y = e^x$.